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Exploring the Sampling Theorem with Fourier
Analysis

Aidan Sharpe & Elise Heim

I. RESULTS AND DISCUSSION

A. Aliasing

The sampling theorem states that the sampling frequency
must be at least twice the maximum frequency in a signal to
be able to uniquely identify each frequency in the signal. When
this condition, called the Nyquist sampling rate condition is
not satisfied, frequencies are no longer distinct. For example,
given a sampling frequency of 100[Hz], the maximum distinct
frequency is 50[Hz]. Seen in figure 1, despite being two
frequencies: 20[Hz] (top) and 80[Hz] (bottom), they appear
the same when plotted.

Fig. 1. Ambiguous frequency between 20[Hz] and 80[Hz]

Applying the discrete Fourier transform on the samples
of the 20[Hz] signal reveals large frequency contributions at
20[Hz] and 80[Hz] as seen in figure 2. Even though the signal
is strictly a 20[Hz] sinusoidal signal, there seems to be a very
strong contribution of 80[Hz]. The correct interpretation of
this information is that the samples are identical for an 80[Hz]
signal and a 20[Hz] signal sampled at 100[Hz].

B. Fourier Analysis of the Difference of Two Unit Steps

The Fourier transform is a powerful tool that can convert any
signal in the time domain to a corresponding representation

Fig. 2. Discrete Time Fourier Transform of 20[Hz] signal sampled at 100[Hz]

in the frequency domain. Given a signal, x(t), its Fourier
transform is given by:

X(ω) = F [x(t)] =

∞∫
−∞

x(t)e−jωtdt (1)

where ω is the angular frequency. Consider the difference of
two unit steps:

x(t) = u(t+ 1/2)− u(t− 1/2)

In this case, x(t) only impacts the region in which the integral
is not zero, so rather than taking the difference of two unit step
integrals, the bounds of integration can simply be reduced to
[−1/2, 1/2]. Evaluating this simpler integral gives:

F [u(t+ 1/2)− u(t− 1/2)] =
2 sin(ω/2)

ω
(2)

This result can be verified by using the fourier(x) function
in MATLAB®. In this case, there is no maximum frequency
since the Fourier transform is periodic. Therefore, the signal
is not band-limited, and lossless sampling is not possible.
By sampling with higher frequency, higher fidelity can be
achieved. However, since the contribution of frequencies is
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inversely proportional to the frequency, there will quickly be
diminishing returns with high frequency sampling.

Using a MATLAB® script to calculate the percent of the
power provided by the first k periods of the Fourier transform
of x(t), the diminishing returns are quantified and plotted in
figure 3.

Fig. 3. Diminishing returns on higher fidelity sampling

C. Fourier Analysis of the sinc(t) Function

Using the definition of the Fourier transform in equation 1,
the sinc(t) function can be derived to be:

F [sinc(t)] = πu(π − ω)− πu(−π − ω) (3)

where sinc(t) is the normalized sinc function, and u(ω) is
the unit step. The normalized sinc function was chosen over
the unnormalized variant because it is more widely used in
telecommunications and signal processing.

D. Sampling Low Frequency Signals

Considering the signal, xcompound(t) = cos(2πt/5) +
sin(4πt/7) + cos(16πt/9), the maximum frequency is less
than 2[Hz]. Therefore, a sampling frequency of only 4[Hz]
would still satisfy he Nyquist sampling rate condition. Seen
in figure 4 are the first 100 samples of a 4[Hz] sampling of
xcompound(t).

While the samples may appear quite random, by taking
the discrete Fourier transform, and plotting the sums of the
corresponding sinusoidal signals, the original continuous time
signal can be recovered.

E. Symbolic Fourier Analysis in MATLAB®

Finding the Fourier transform of x(t) = e−4tu(t) can be
accomplished by evaluating the integral in equation 1. This
results in the answer of 1

4+jω . MATLAB® can be utilized to
confirm these calculations with the assistance of a very short
program.

Fig. 4. First 100 samples of xcompound(t) at a sampling rate of 4[Hz]

In order to find the Fourier transform of the function x(t) =
e−a |t|, one must begin by taking the integral

X(ω) =

∫
e−a|t|e−jωtdt (4)

where a is a constant. Evaluating yields two terms:

1

a+ jω
+

1

a− jω

These terms can further be combined and simplified to 2 a
a2+w2 .

These calculations were confirmed through a short MATLAB
program that resulted in the same answer. Another MATLAB
program can be utilized to find the Fourier transform of x(t) =
cos (b t). This result is π (δ (b+ w) + δ (b− w)).

F. Two-Dimensional Sampling

In one dimension, we can consider sampling a time signal.
In higher dimensions, we have a continuous-valued function.
We evaluate this signal at intervals measured in meters. There
are two types of frequencies: continuous space frequency as-
sociated with the original image, and discrete space frequency.
The Fourier representations for continuous space signals and
sampled discrete space signals are important for understanding
sampling. The discrete space frequency is equal to the con-
tinuous space frequency multiplied by the sampling interval,
and the discrete space is equal to continuous space times the
sampling interval. The sampling frequencies are similar to the
one-dimensional case, where a sample continuous space signal
is the sum of samples multiplied by impulses. The spectrum
is proportional to the convolution of the original signal and
the Fourier transform. The spacing is inversely proportional
because they were originally spaced in the frequency domain.
Convolution with impulses shifts the function closer to zero,
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resulting in a sample signal spectrum proportional to the orig-
inal signal spectrum shifted. The original signal spectrum is
represented by a two-dimensional frequency domain quantity,
replicated at the sampling frequencies. To prevent aliasing, the
bandwidth must be smaller than half of the spacing between
these replicas. The two-dimensional version of the Nyquist
Sampling Theorem states that if the original image is band-
limited, then it can be uniquely constructed from the samples
taken. This requires achieving the same sample in a set time.
A reconstruction can be created by taking a low-pass filter in
two dimensions and choosing the portion of the spectrum that
corresponds to the first term of the replicated sample signal
spectrum.


