
Building a synthesizer for this semester’s Electronics I final project was no
simple task. However, the principles involved in its construction are. In this
application note, I will discuss the planning stages and how the synthesizer
works at a granular scale.

1 Planning the Synth

During our first lab of the semester, one of the tasks was to construct an astable
multivibrator with an oscillation frequency of 500Hz. Before building it, I did
not have a great understanding of how they worked, but once I worked through
the math, I was amazed. Using fairly imprecise components, we were able to
achieve an oscillation frequency of 507Hz, not too bad.

I grew up watching videos about old school computers and synthesizers,
specifically, the Commodore 64’s SID chip. I became familiar with simple wave-
forms, and high school I played around with Fourier series on my graphing
calculator to construct these waveforms. So when I was able to quickly create
a square wave with only a handful of readily available parts, my imagination
went straight to synthesizers.

In February, Elise and I started making schematics to create more waveforms
from the astable multivibrator. I used an integrator to turn the square wave into
a triangle wave, and I was able to use a two stage diode shaper to approximate
a sine wave. Unfortunately, here we ran into trouble. Since we were integrating
a square wave, the amplitude of the created triangle wave would shrink as
frequencies got higher. We should have anticipated this since our integrator
was a low pass filter. At this point the project took a turn into the world of
embedded systems.

2 How the Synth Works

By employing a microcontroller, the higher frequency attenuation was no longer
an issue. Instead, timers were chosen to select an output value for each waveform
at each point in time. Elise was able to put together the code that would allow
the microcontroller to select the frequency based on a button press, while I
focused on generating the signals. Since the GPIO pins are strictly digital, I
opted to convert the values from the timers to pulse width modulation (PWM).
My strategy for doing this was too computationally intense, and I was not able
to create PWM signals any faster than 1KHz, which would not cut it for the
frequencies we wanted to generate.

Simulating the electronics portion went very smoothly. I was able to put
together a python script that made preset PWM signals in the form of a PWL
file that would control a voltage source in LTspice. Using a low pass filter, some
voltage followers, and a summing amplifier to act as a mixer, we were able to
simulate triangle and sawtooth waves that looked quite good. In addition, we
were able to combine the two waveforms together with the summing amplifier

1



to create a sort of bent sawtooth wave.

3 Conclusions

Overall, the project served as a learning experience more than anything. If we
had another week or so, I think we could have used a system similar to the
python script I made to generate some preset PWM values for the microcon-
troller to use. We also found some wiring errors on our printed circuit board
that would have caused problems once we got the microcontroller to generate
the desired output signals. We were fairly close to a working product, and I am
happy that I got to work on such a fun and rewarding project.

2


