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University | Pontryagin’s Principle

O Before diving headlong into the derivation of Kappa guidance, it is prudent to discuss the
Pontryagin Principle

O This means of optimization was developed by Lev Pontryagin and his students
Developed in Russia in the mid 1950s, with the name “Pontryagin’s Maximum Principle

This optimization method was not well known outside of scholarly circles in the USA for
decades after its development due to the ongoing cold war between the Russia and the
USA

The Euler-Lagrange equation is a special case of the Pontryagin Principle

n

O Core principles
Uses the Hamiltonian and Lagrangian of the system, in conjunction with costates to
determine an optimal control (can be minimized or maximized)
There are as many as 5 conditions for the Pontryagin Principle to optimize a system
® All 5 conditions may not be necessary

" We’'ll discuss the conditions and then use the Pontryagin Principle to develop Kappa
guidance
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niversity” | Pontryagin Parameters

O The Pontryagin Principle can be used for problems far more complicated than the one we're
about to tackle. We wont use all these parameters, but they are provided in the table for
completeness

Symbol _\Parameter _______| _
_ Independent variable

State vector
Control variable

e(x, t) Endpoint equality constraint vector

The v and x symbols
indicate the parameters
needed to derive the
original kappa guidance
law

E(x,, t.) Endpoint cost (Mayer cost) vector

Interior equality constraint vector

X X X < <« <

C(x, u, t,) Control variable equality constraint

O The general case also requires a number of Lagrangian multipliers

Symbol Parameter _________|__

mﬂ_-
const ector

- Endpoint constraint covector
- Control constraint covector X

[ |
- Interior constraint covector X
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University” | Conditions of the Pontryagin Principle

(L Define the Lagrangian (L), full cost function ( J ), and Hamiltonian (H)
L = the integrand of the traditional cost function (the running cost)
Jrun = E'(xf, tf) + ! e(xf, tf) + "N (x,t) + [L(x,u,t)dt
H=L(x,ut)+ AT f(x,u,t) + u’ C(x,u,t)

 The optimal control is determined by setting the partial derivative of the Hamiltonian with
respect to the control to zero :
e . - oH
Hamiltonian Minimization Condition: Fl 0
a

However, to solve for the optimal control, it is often necessary to use costates (Pontryagin
referred to them as covectors)

The costates exist in a different vector space which makes the optimization problem
easier

Covectors (or costates) are often referred to as adjoints
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University” | Conditions of the Pontryagin Principle

o,

The introduction of the costates means a method to traverse between “x” state vector space
and “A” state (costate) vector space. The relationship between these two vector spaces are
described in the following set of equations

T __OE(x,t) T 0 e(x,t)
A (tf) = Tox +v —ax

Terminal Transversality Condition:

Adjoint Equations: AT =22

 In the event that the endpoints of the independent variable, t, is not fixed, an additional
equation is required to complete the set of equations to solve for optimality. This equation is
the Hamiltonian Value Condition:

Hamiltonian Value Condition: H(tf) _ _ (6E(x,t) 4T a e(x,t))

d tf d tf
L Finally, to validate the solution, the Hamiltonian Evolution Equation can be used

Hamiltonian Evolution Equation: % [H] = ‘;_Ij

Where H is Hamiltonian with the optimal value of u in the equation
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University” | Using the Pontryagin Principle

O Some care must be used when using the Pontryagin Principle
Improper problem set-up is often an issue
Proper characterization of the problem is key

O Now that some background has been given, the kappa guidance law will be derived using the
Pontryagin Principle

' Further reading on the subject of optimization and the Pontryagin Principle is readily
available. Two suggested books are

Ross, |. Michael. A Primer on Pontryagin’s Principle in Optimal Control. 2009
Bryson and Ho. Applied Optimal Control. Taylor & Francis, 1975

Copyright © 2015 by Lockheed Martin Corporation



A

Rowanﬂ 2 //Fy
University | The Flaw in n; Minimization as a Cost

O The majority of optimal control guidance laws in use for endo-atmospheric interceptors are
based upon minimizing the induced drag of the interceptor

.. T, T,
minimize [ °D; dt « [ °nZ dt
[ As mentioned in earlier lectures, this assumes the zero-lift drag is insignificant compared to
the induced drag
This is only a reasonable assumption for short range engagements
d Furthermore, the usage of time as an independent variable is not as natural as a parameter
which describes the interceptor’s path in which drag accrues

The most natural independent variable is the interceptor’s trajectory path, s

Range to go (R) is a suitable alternate which is much easier with which to work than
time, t, or time-to-go, T

Traditional Assumptions Used in Guidance Law Optimization Theory Become Poorer

as the Path Length of the Trajectory Increases
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University” | Optimization Hurdles

Using the path of the trajectory, s, as the independent variable is something not discussed
previously in our lectures, but critical if one is to consider the affect of zero-lift drag in the
control law

Our two contributors to the loss of missile speed over the entire trajectory, in terms of s, can
be written as such:

Zero-Lift Drag, Dyp = %f;} CapV? Srey ds

ds

100 nZ w2
Induced drag, D; =~ —
2750 (Curg) P V2 Ser

O Attempting to develop a cost function which is dependent upon highly non-linear parameters
such as ambient density, p, and interceptor speed, V, posed a significant hurdle when
developing an optimal control law
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University | Back to Basics

O In order to properly set up this problem given that missile speed is NOT considered constant,
one goes back to basics

N

F-4

Consider the 2 dimensional diagram of the physical ﬁ
orientation of a missile and its accelerations

Acceleration are in blue 4
Angles are in green
Other parameters of interestareinred VX~ ¥/ L X
Values of vectors without arrows are the
magnitude of the vector (e.g. N = ||IV|| Legend
Normal acc.
[ The normal force is the control that turns the _ A Net axial acc.

missile. It’s corresponding acceleration, N has been
defined previously

Gravity

Missile velocity
Angle of attack
Flight path angle

It is a function of missile speed

Y}
= ] <IowTLZ
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O Having defined s to be the trajectory arc-length,
we can define the instantaneous curvature as k
and the instantaneous radius of curvature as

1/k v

L From principles of circular motion, Missile path

d_]/= d_]/ ’
dt ds J
_ay _ 1ay ;

T ds  vdt

N=V?k i !

K

d If one considers k to be the control rather than \\
N, one can remove the dependency upon ,
missile speed in the guidance optimization
process

iR R

The Concept of Optimizing Curvature Vice Acceleration Commands is Why the

Guidance Law is Called Kappa Guidance
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University' | Removal of the Time Dependency

L The time it takes to reach an intercept point is
determined by the path taken by the missile to the
intercept point and the speed of the missile as it

moves through the atmosphere
0

T, = f V ds 2
So
An unknown optimal trajectory or a poor

estimate of missile speed over the trajectory
obviously has an unknown time of flight

Trajectory 1

 Considering range to go (R) to be the independent
variable removes dependency upon “when” the
missile will achieve intercept

It is a reasonable decision when the trajectory
is not circuitous (trajectory 2)

Also, R is an easier parameter to work with
than s, as its value is always known

Copyright © 2015 by Lockheed Martin Corporation
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niversity” | Summary of State Variables

To develop a guidance law which considers zero-lift drag, one could define the state variables
and independent variable as is done traditionally, or define the problem more efficiently, as
has been discussed in this lecture

[ The efficient method not only removes the dependencies of time and speed, but it also
reduces the number of state variables required. It is the reduction of state variables which
allows one to say that this method is more “efficient”

 The auxiliary state variable y is needed as kappa guidance considers a prescribed final flight
path angle, y

Traditional Method Efficient Method

Efficient Met:

Independent Variable
Control
State Variables

Auxiliary State Variables
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University” | Kappa Guidance

O Let’s return back to the problem at hand - Kappa guidance

O Kappa guidance is an attempt to consider the zero-lift drag on a projectile as it is guided along
a path to a specified intercept point

O Kappa guidance was developed at RCA in Moorestown, NJ in the mid 1970s
It has since been implemented in numerous tactical missile systems

It has been analyzed, discussed and evaluated in open literature since its initial
publication in open literature (Chin-Fang Lin, Modern Navigation Guidance and Control
Processing, Prentice-Hall, 1991)

O Kappa guidance is most simply (and was originally ) derived using the Pontryagin Principle
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University | Defining the Geometry

O The figure to the right shows the missile’s
relationship to its intended intercept point as
well as angular definitions and accelerations
acting upon the missile

O The necessary geometric definitions are
provided

Cartesian Definitions

R = /x2 + z2 Angle Definitions
x =—Rcoso S§=y+4+o0
Z= Rsino 1 Z

c=—tan " —
dx . .
— = cosy z Control Relationship
ds §=y —tan™1—

X dy

dz _ — =K
— =siny ds

ds

Copyright © 2015 by Lockheed Martin Corporation



RowanQp
University

State Equations of Motion

4

L Having defined the relationships between the
Cartesian parameters (x, y) and the angular
parameters ( &, ¥, and ), one must define the
state variables in terms of the independent
variable, R

J Because the majority of the geometric
definitions are a function of path length, s,
rather than our independent variable, R, Eq. 1
is required to describe the equations of motion
in terms of the range-to-go, R

J Note that the state equations (Eq. 3 and Eq. 4)

do not depend upon missile speed (V) or time
(torT).

L Also note that the equations are not linear.
That may be a problem later...

Fom the definitions on the previous slide, one
can derive the following relationship between
the path length and the independent variable,
R

Eq. 1 AR — —cosé
ds

Having defined the relationship between s and
R, we now can define the state equations

Heading error, &

as sin §

Eq. 2 E_ R + K

Eq.3 d—az—tana—}csecﬁ
dR R

Flight path angle, y

Eq. 4 X — _secd
dR
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The acceleration affecting missile velocity
are summed to described total change in
missile velocity as function of time

One wishes to minimize the acceleration
which is along the velocity vector, so Eq. 5 is
rewritten do describe acceleration parallel
and perpendicular to the velocity vector

Eq. 6 describes the acceleration along the
velocity vector. This is the acceleration to be
minimized

Eq. 7 is the acceleration perpendicular to
the velocity vector. This, in essence, is the
control

Note that the N and A in Eq. 6 and Eqg. 7 are
accelerations, thus they are multiplied by

W /G to convert the force equations to
accelerations

4

aw T

Defining the Change in Velocity, =

Missile accelerations are defined as

Eq.5 %:ﬁ+£+ﬁ+§

Rewrite the equation in terms of acceleration
along and perpendicular to the velocity vector

Eq. 6 %:(F—A)cosa—Nsina—Gsiny

Eq.7 V%:(F—A)sina+Ncosa—Gcosy
One now describes the normal acceleration
and the axial (zero-lift) acceleration can be

written in term of aerodynamic coefficients
and dynamic pressure.

wy A w A
Eq. 8 Ca= (E)QSRef N (E)%p'ﬂ SRef
~ = (W) Ne _ (W) _Na
Eq. 9 Cy =Cy, @ _(G)QSRef (G)%szSRef
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Describing the Control, Kk

& Rearranging Eq. 8 and 9 to solve for N and A
brings to light the fact that there are a lot of
constants in each equation. For simplicity
moving forward, we gather all the constants
into the terms k4 and k. We also define, b, a
near constant parameter which gathers some of
the second order terms into a single value

U Define:

kg = %(%) Ca Srer

Ed. 8 and Eq. 9 are rearranged to describe N
and A in terms of aerodynamic properties

Eqg. 10 A=k,pV?
Eqg. 11 N=kypV?a

Substituting Eq. 10 and Eq. 11 into Eq. 7, and
using small angle approximations for « yields

Y _r_ 2y_N —

Eq. 12 V — (F —kupV )kN Tz +N — Gcosy
av _ F — —

Eq. 13 — = N (kN Tz +1 kA/kN) G cosy

One divides Eq. 12 by V2

lay N F g _6
Eq. 14 th_VZ(kNpVZ-i-l kA/kN) —5COsy
N G
Eq. 15 K=;b — 5 cosy

Eqg. 16 N:%(V2K+Gcosy)
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University | A Brief Recap

O Eq. 15 provides the definition of the control —the means in which the instantaneous
curvature of the missile is controlled,

 This equation can be rearranged to describe the normal acceleration
N = %(V2 kK + G cosy)

d Where

b= k(1 - k)
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E We have defined b = ul

It can be assumed thath =~ 1

RN,()VZ

+(1

The table gives the rationale for this approximation

Term Rationale

Rationale

F < pV? unless the missle has signifcant rocket thrust

Rationale

F << pV 2 unless the missile has significant rocket thrust

— =0 F & pV? unless the missile has significant rocket thrust

1-==%1 :—‘« 0.05 for missiles with good reaction capability 1 —-—
N

* I . - .
kf“' << 0.05 for missiles with good reaction capability
~

Rationale

F << pV?2 unless the missile has significant rocket thrust

1-—=1 by 0.05 for missiles with good reaction capability 1 — —
ky Fc il

<
f << 0.05 for missiles with good reaction capability
P

. . . kg . .
(d One canalso consider using this term as the value of k—A is known by the guidance system

designer

N
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@ Dividing Eq. 12 and Eq. 13 by V2 means both
the acceleration along the velocity vector and
perpendicular to the velocity vector are divided
by V2

L Making note of the relationship below, we can
define rate of change of the speed of the
missile with respect to the path length, s

1 dV 1dV

vZdat  vds [L g V]

U Egq. 19 accurately represents the rate of change
of speed of the missile, but it can be rewritten
in @ manner which groups similar (constant or
near constant) terms together, making this
problem easier to understand.

Describing the Change in Speed

Remember
av . .
Eq.6 E:(F—A)cosa—Nsma—Gsmy

One divides Eq. 6 by V2, just as was done for
Eq. 7, and uses small angle approximations for
a

1dV

Eq. 17 =

(F A) —Na —Gsiny
Making use of the definitions k, and ky

d
Eq. 18 = [Log V] =

Using the definition of the normal acceleration
from Eq. 16, one has

(x+G/v? cos y}z
kN P b2

F -G siny
vZ

Eq. 19 %[Log V] = —kyp—
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University” | The Unabridged Cost Function, J

Uking the terms that are defined to the right,

one rewrites Eq. 19

@ Let’s define some that allow us to group the
contributing sources of missile acceleration Eq. 20 % [Log V] = —
more appropriately:

1
koZp

Qw?+Kk?2+2yk)

. . ) d
G Using the relationship, k = —y, Eq. 20 becomes
X =5 cosy ds

1 Eq. 21 <2 [Log V] = — — (2“’—2+x+2 )
wd =~k ky b? p? o ay 09T T Pk X
2 g2 _ 1 2 _kab?plF-Gsiny One can solve for the speed as a function of
= Wo 73X & path length by noting
d  All of the above equations are a function of Eq. 21 Vr=Vye
either V, p, or both VV and p.
_ _ _ Where
U There are multiple ways by which this hurdle
1 2
can.be. overcome for the cost fu.nctlon A to.be Eq. 22 o= [ 2 : (w_ E )() dy
optimized via closed form solution. The various Yo kybiplx = 2

methods are discussed next

(J Note all methods arrive at the same result
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University | Simplifying J;, Method 1

O To optimize our trajectory, we must optimize the following cost function

_ ¥ 2 (w? 1
Eq. 22 L= e bzp(7+5"+ x) dy

O Note that b and kj can be treated as constants

d Non-constants p and y are replaced by their average value, p and y yielding

w

Eq. 23a J, = ﬁ[ﬁf (72+ %;c) dy +x (vy — }'o)]

O Thus, our cost function is now
_rr(el 1
Eq. 23b ]—fyo(x+2}c) dy

O Finally, we replace w with its average value, @, which is only an “average” rather than an
absolute due to p) resulting in the our approximate cost function

=2
Eq. 23c ] = f};’;f ('% +%}c) dy = fORO (52 + %}cz) secd dR

Copyright © 2015 by Lockheed Martin Corporation
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University | Simplifying J;, Method 2

O To optimize our trajectory, we must optimize the following cost function

_ ¥ 2 (w? 1
Eq. 22 L= e bzp(7+5"+ x) dy

O Note that b and kj can be treated as constants

O

Non-constants p is replaced by its average value, p

 Disregard the effect of gravity, and assume rocket thrust is small

2_ -
—5 2 1 4 ka b p|F —Gsiny] _ 2
Eq. 23a W*=wo =X — - = W

Eq. 23b @? = @2 :%kA ky b? p?

O Thus, the cost function, J, becomes

KZ

ky b2D

Eq. 23c J= fORO (kA,o' + ) sec6dR = [Fo (52 + %}cz) secS dR

0

 Butis it unrealistic to disregard gravity?
Not if there is no late maneuver penalty and there is a final flight path angle constraint
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University | Setting Up the Pontryagin Equations

Fhe cost function which is an approximation of
the true cost function, but will be used in

Fhe cost function is also the Lagrange cost of the developing the optimal control is

system, thus Eq. 24 is often written as such

R _ 1
Eq. 24 J= [°(®? +-K?)sec§dR
]: fOROLdR fo ( 2 )
T Having defined the cost (above), one now has
everything required to use of the Pontryagin
L= (52 +%K2)sec5 Maximum Principle
Each of the two terms on the cost function State equations (Eq. 3 and 4) which were
represent a unique penalty: defined earlier
w penalizes long trajectories (zero-lift drag) Eq. 3 ds _  tans secS
) dR
Zx2 penalizes excessive curvature (induced drag) ay
= Eq. 4 ==K secd

The letter “L” is used as the integrand represents the

“Lagrange cost” of the system And the Hamiltonian of the System:

Eq. 25 H=L+A5+15k
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The Pontryagin Maximum
Principle requires 1 costate
equation for each state variable
in the system

If there is no requirement for a
prescribed final flight path
angle, there is no need to
include to include y as a state

. d
variable, or the é state
equation.

The adjoint equations are
determined via the
relationships

dA, _ 0H
dR 36
di, _ OH

R ~ oy

The Hamiltonian’s full form is

tan §

Eq. 25 =

H:(52+%}c2)sec5—/11 —Kksecd (4 +1,)

The costate equations, as defined by their relationship to the
Hamiltonian, are

2
Eq. 26 h (52 +l}c2) tan § sec§ + A; — % + xtan & secs (A +4y)
dR 2 R
Eq. 27 2 _
dR

Finally, the last condition of Pontryagin’s Principle can be
introduced — the equation for optimal control

Eq. 28 Z—::O:}csecﬁ—()ll+)lz)sec5

Eq. 29 K=A4 +4,
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University | Solving for Costates 4, and 4,

Sdbstituting the known value of A, into the

previous equation, only one unknown value
 The condition for optimal control has been remains - A,

defined
Eq. 30 K=A +c
K = 2.1 + 2.2
Now, Eq. 30 is substituted into Eq. 26 in an

L However, the two costates are still undefined — attempt to solve for the remaining unknown

all that is known is the costate equations of

motion (Eq. 26 and Eq. 27) Eq. 31 dr _ [(Exz _ a—)z) sin & + <=¢ !
dR 2 R |1-sinZ §
U The solution for the second costate is readily _ _ _ 5 .

. 1
assuming ————
8 1 —sin2 §

without a tremendous depreciation in accuracy

=~ 1, the equation is simplified
2.2 =C

(1 The solution to the first costate is far more
dx

complicated, and is the heart of this Eq. 32 = = —@%sin 8§ +
. R
optimization problem

K—=¢C
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@& The second order differential equation in Eq. 37 is
the equation that will provide the optimal control
and corresponding trajectory

azf _2df _

=2 —
w = —C
dR®> RdR 6

L This type of equation (degenerate hypergeometric
differential equation) is solved using modified
Bessel functions of the first kind

§=—+C (@°R)*1,(2) + €1 (8°R)* 14 (2)

U Where I,(2) is the modified Bessel function of
order “a” and argument “z” with

a=3/2
Z = R

L While Bessel functions are fairly “unfriendly” with
which to work, the + 3/2 order modified Bessel
functions can be represented with sinh and cosh
functions

The Differential Equation for the
Optimal Trajectory

4

[l couple of slick transformations will make Eq. 32
even more tractable

Define the instantaneous miss, &, and its
derivative (with help from Eq. 3)

Eq. 33 & =Rsinéd
Eq. 34 L _ _yR
dR

Thus, Eq. 32 becomes

Eq. 35 A[_L1E) 1L G2sing — <
dR|l RdR] R2dR R
14§ 1d%  1d _ a e €

Eq. 36 T RdR2+R2dR = —w*sin§ =
a’¢  2dé  _o,

Eq. 37 dR2 R dR §=¢

Copyright © 2015 by Lockheed Martin Corporation



4
Rowanﬂ P2

University | Solution to the Differential Equation

Fhe solution to the differential equation in Eq. 37 is

O Eq. 38is the solution to the differential Eq. 38 § = %"‘ C1(zcoshz — sinhz) + C;(zsinh(z) — cosh z)
equation, but it has not been evaluated ) ) ) )

_ intercept, one can evaluate Eq. 38 at R = 0 and
- NotingatR =0 substitute the expression for ¢ back into Eq. 38

A=u=g =0 Eq. 39 c=a2C,

Y(R=0) =y Eq. 40 ¢ = Cy(zcoshz — sinhz) + C,(zsinh(z) — coshz + 1)

O Itis a side note that the terminal . .
_ . : One makes use of the relationship between ¢ and k as
transversality condition for this problem

. P T S W defined in Eq. 34 — differentiating Eq. 40 to arrive at an

unknown values of A(R = 0) is simply expression of the control, k

equal to another unknown value, v: Eq. 41 K = —C,@? sinhz — C,@? coshz

M=2[v(6—0)]=v
17 5512 1 Now the other boundary condition is used to provide

1, =%[v2(y—yf)] .y, the second equation to solve for the two unknowns
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J Eq. 40and Eq. 43 can be used to solve the
unknowns C; and C, by evaluating the two
equationsat R = Rygand R = 0

U Using the notation

[(}' _E}’f)/(‘j] =M [g;]
O Where

M= (zcoshz —sinhz) zsinh(z) —coshz+1

coshz —1 sinh z
O Constants C; and C, are found to be

sinh z {+(cosh z —1 —z sinh z)(y —-Yr)/@

C]_=

z sinh z —2(cosh z —1)

C. — @?(cosh z =1)é+@(z —sinh 2)(y —yf)/@
1 =

z sinh z —2(cosh z —1)

ltlis known from the second state equation
that

Eq. 4 ¥ — _ksecd
dR

One approximates this to be

Eq. 42 j—"‘}; = -

Thus,

Eqg. 43 y—yf:—foR}c dR

Eq. 44 Y;J = (; (coshz — 1) + C,sinhz

Substituting the values of C; and C, (see the
notes to left) into Eq. 41 gives the closed form
solution to the control, k

@(z —sinh z)(y-yf)+@*(cosh z -1)¢

Eq. 45 K=

z sinh z —2(cosh z—-1)
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The Conventional Form of Kappa

Guidance

Remember the shorthand notation that was
introduced earlier:

Z = 0R

It is advantageous to make k a function of
independent variable, z, rather than constant @
and independent variable, R. This is
accomplished by multiplying k by R/R and
converting & back into R sin 6

Once the guidance gains have been
transformed such that k = k(z), the guidance
equation can be broken into a heading error
term, a trajectory shaping term, and the
someone less interesting gravity compensation
terms

The acceleration command is defined by Eq.
16, where we assume b = 1,

2
Eq. 46 N:%K+Gcosy

In order to reduce the number of variables by
one (converting @ terms into z terms), k is
multiplied by R /R

2
Eq. 47 N = VE (kR) + G cosy

And kR becomes

(z sinh z —z%)(y—yy)—2z*(cosh z —=1) sin &

Eq. 48 KR =

z sinh z —2(cosh z—-1)
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L Eq. 46 and Eq. 47 are the kappa guidance gains
which are used to provide the optimal
trajectory to a given intercept point,
considering both zero lift drag and induced drag

U Asyou’ll see on the next slide, the guidance
gains are function of z - such that even for a
constant @, the guidance gains change as the
missile approaches the intercept point

J  BUT, for the special case where w = 0,0orR =
0, the kappa guidance gains are equal to the
guidance gains developed when zero lift drag is
not considered

Thus, OG to a PIP with Trajectory Shaping
can be considered a special case of Kappa
Guidance

8&parating the guidance command into the
three components (heading error, trajectory
shaping, and gravity compensation) yields

Eqg. 45 N==—§(Kgsin6—Ky(y —yf))Jchosy
Where:
z?(cosh z —1)
Eq. 46 Ks = 2(cosh z =1) —z sinh z
Eq. 47 K = (z sinh z —z?)

vy 2(coshz —1) —z sinh z
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Kappa Guidance Gains, lllustrated

Note the “6-2” ]
relationship when : 5

@ or Ris zero

35

30

25

20

Gain

15

Kappa Guidance Gains, K; and K,

Long trajectories, or high air
density (large p) results in
driving down the heading error
quickly —to make the trajectory
path as short as possible

The guidance law increases the
importance of the trajectory shaping
as the missile approaches intercept

0 5 10 15 20 25 30

z=wR

Copyright © 2015 by Lockheed Martin Corporation



RowanQp
University” | The Kappa Guidance Trajectory

O Kappa guidance uses @ to control path length, often times limiting apogee
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