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I. BACKGROUND

Waveform synthesis and spectral analysis are fundamental
concepts used to generate, analyze, and understand signals.
Waveform synthesis is the process of generating specific
waveforms that can encode information for transmission in
a communication system. This is common in signal encoding,
signal modulation, and pulse shaping. On the other hand,
spectral analysis is when a signal is studied in the frequency
domain to understand its frequency components. This is most
commonly applied to frequency component identification,
noise and interference detection, channel capacity and band-
width allocation, and modulation analysis.

II. INTRODUCTION

For the first portion of the lab, we are tasked with synthesiz-
ing a waveform using a specified signal to noise ratio (SNR).
This included synthesizing the signal, plotting it on a graph,
corrupting it with noise to get an SNR of 10, and synthesizing
one cycle of the new noisy waveform. This process was
repeated for different SNRs. After this, the second portion
of the lab required comparing a continuous Fourier transform
(CFT) with a discrete Fourier transform (DFT). The CFT was
found analytically and plotted, then compared to the plot of the
DFT using MATLAB and discussed. The third portion of this
lab focused on the spectral analysis of AM and FM signals.
This was done by first synthesizing an AM signal, finding
the spectral components using MATLAB, adding noise to the
RF signal, and repeating using various different values. After
this, the same process was completed with an FM signal and
comparisons between the two were discussed. The fourth and
final part of the lab was spectral analysis of a piece of music
which was accomplished by plotting the frequency spectrum
of the song and observing its characteristics. Overall, this lab
was focused around waveform synthesis and spectral analysis.

III. GENERATING ARBITRARY WAVEFORMS WITH
SPECIFIED SNRS

We were provided with sample code to assist our program-
ming. The code produced a one second long A♯ signal, which
is a sinusoidal signal with frequency fA♯ = 433.16[Hz]. This
signal was sampled at 8 kHz, and altered to plot the waveform
as shown in figure 1.

Fig. 1. Time domain representation of a pure A♯ tone with amplitude 1
2

.

In addition, the signal was corrupted with a Gaussian noise
source to get a SNR of 10 dB. This waveform sounded staticky
and weak compared to the first signal. We then repeated the
process with SNR values of 20 and 30 dB. As seen in figure
2, increasing the SNR increased the clarity of the signal.

Fig. 2. Time domain representation of the same signal with an SNR of 10db



IV. DIFFERENCES BETWEEN THE CONTINUOUS AND
DISCRETE FOURIER TRANSFORM

Fig. 3. Time domain plot of w(t)

We are given continuous time signal, w(t) = u(t)− u(t−
0.6) + u(t + 0.7) − u(t − 1), seen in figure 3. Since it is
a bounded, finite support aperiodic signal, it is absolutely
integrable. Therefore, its Continuous Fourier transform (CFT)
exists. The CFT of a signal is given by

F{w(t)}(ω) =
∞∫

−∞

w(t)e−jωtdt (1)

where ω is angular frequency. Evaluating the integral gives

F{w(t)}(ω) =
j
(
e−jω0.6 + e−jω − e−jω0.7 − 1

)
ω

. (2)

The spectrum of the signal has infinite bandwidth. By the
sampling theorem, to fully recover the signal, the sampling
frequency must be twice the bandwidth. Therefore, there is
no finite value sampling frequency that can fully recover
the continuous signal. Graphically, this makes sense, because
infinite resolution is required to capture the vertical edges of
the signal.

The DFT is easily found using a fast Fourier transform
algorithm (FFT). The signal was sampled at fs = 10Hz on
the range t ∈ [0, 1]. This yielded 11 samples of t. The DFT of
the signal will have the same number of samples, on the range
0Hz to the sampling frequency of 10Hz. Due to aliasing, the
DFT will always be symmetric over f = fs

2 . The plot of the
DFT is seen in figure 4.

Fig. 4. DFT of w(t) on t ∈ [0, 1] with fs = 10Hz

Likewise, the original signal can easily be recovered using
an inverse fast Fourier transform (IFFT). Again the number of
samples (11) does not change. We chose a sampling frequency

of 10Hz, because it is able to capture the transition at t = 0.6
and its width of 0.1s. W.e plotted the IFFT using a bar
plot starting at the edge, with each bar having a width of
Ts = 1

fs
, seen in figure 5. This method yielded a graph

where the amplitude at each point matches the amplitude of
the original signal. This method also worked to recover the
original continuous signal for fs = 10nHz, n ∈ N+. For
example, the plot is the same for fs = 20Hz and fs = 30Hz.

Fig. 5. The recovered signal from the DFT for t ∈ [0, 1] with fs = 10Hz

V. SYNTHESIZING AM AND FM BANDPASS SIGNALS AND
ANALYZING THEIR SPECTRA

Modulation enables a message signal with frequency fm,
to be broadcast at a much higher carrier frequency fc. When
you tune a radio, the frequency being tuned to is the carrier
frequency. The radio’s job is to receive the high frequency
signal and demodulate it to recover the original message.

Why add so many extra steps? Can’t we just broadcast
the message directly? The answer to the second question is
sort of, but it is not a good idea for several of reasons.
One reason is that message signals contain many of the same
low frequencies. This means that if messages were broadcast
directly, they would interfere with each other, making it nearly
impossible to recover the desired signal. With the use of
modulation, different transmitters can operate in a distinct
band of the frequency spectrum. In doing so, the message
signals no longer interfere and can be recovered with relative
ease.

The two predominant forms of broadcast radio are ampli-
tude modulation (AM) and frequency modulation (FM). We
first examined an AM signal. AM signals are often of the
form

s(t) = Ac(1 +Am cos(2πfmt)) cos(2πfct) (3)

where Ac is the amplitude of the carrier signal, and Am is the
amplitude of the message signal. In our case, we used fc =
25kHz, fm = 5kHz, Ac = 10, and Am = 1. The AM signal
created was s(t) = 10(1+Am cos(2π5000t)) cos(2π25000t).

Next, we added noise to the signal using the same method
as before. We compared the original signal to one with an
SNR of 10 and another with an SNR of 20 and plotted them
in figure 6. It appears that the noise affects the shape of the
signal less where the slope is steeper, and more where it is
shallower.



Fig. 6. An AM transmission at different SNRs

To better understand how the noise is affecting the signal,
we analyzed the frequency spectrum of the signal. We obtained
this by applying a fast Fourier transform (fft) to the samples
of the signal. The resulting spectrum is seen in figure 7. The
spectrum makes it clear that even though the time domain
representation of the signal looks very different at an SNR of
10, the frequency components are not drastically affected.

Also note the three large spikes in the original spectrum.
The large spike at 25000Hz corresponds to the contribution of
the carrier frequency, and the two smaller spikes at 20000Hz
and 30000Hz correspond to the contribution of the message
frequency. The locations of these spikes is always centered at
the carrier frequency, with the spectrum of the original signal
centered at the carrier frequency rather than at the origin.
Hence the smaller spikes at fc ± fm.

Fig. 7. The frequency spectrum an AM transmission at different SNRs

We also synthesized a bandpass FM signal with the same
carrier and message frequencies as before. FM signals are of
the form

s(t) = Ac cos(2πfct+ βfAm sin(2πfmt)) (4)

where βf is the frequency modulation index. In our tests
we used βf = 10. Therefore, our FM signal was s(t) =
10 cos(2π25000t + 10 sin(2π5000t)). Again we added noise

at SNRs of 10 and 20, and plotted the results alongside the
original signal, as seen in figure 8.

Fig. 8. Time domain plot of an FM signal at different SNRs

Finally, we examined the frequency spectrum of the FM
signal. The spectrum of an FM signal will look like a clump
of frequencies centered at the carrier frequency fc. The width
of this cluster depends on the frequency modulation index βf .
The larger βf , the more spread out the spectrum becomes.
With a large βf like 10, as seen in figure 9, the spectrum is
so spread out that it gets cut off. Changing βf to something
smaller like 2 will reduce the spread. Additionally, increasing
the carrier frequency will prevent it from getting cut off. This
may be one reason why FM stations have a carrier frequency
near 100MHz.

Fig. 9. The frequency spectrum of the FM signal at various SNRs

VI. CAPTURING AND ANALYZING THE SPECTRA OF ONE
MORE TIME

As an exercise in spectrum analysis, we selected a song
called One More Time, and imported it into MATLAB. Then,
we used the fast Fourier transform to obtain the song’s
frequency spectrum. As shown in 10, there is a much larger
contribution from lower frequencies, and a very small contri-
bution from frequencies higher than about 5kHz.

This makes sense for several reasons. Firstly, the range of
human hearing is from about 20Hz to about 20kHz, which sets



an upper bound on frequency. Another reason has to do with
the three components of music: melody, harmony and rhythm.

Melody is the combination of note duration and pitch. A
pattern of long notes will have a frequency component from
the pitch of the note, but also a frequency component from
the rate at which the notes are played. Since the duration of a
note is on the order of a few Hertz at the fastest, the frequency
of a string of notes will be quite low.

The contribution from rhythm has to do with the repetition
of a string of notes or beats. For example, repeating a series of
beats every five seconds will result in a frequency contribution
at 1

5 = 0.2Hz.
Harmony will produce frequency components at regular

increments, at what are called harmonics. Looking closely,
there appears to be a regular spacing of spikes between about
1kHz and 3kHz in the spectrum.

Fig. 10. Frequency spectrum of ”One More Time” by Daft Punk

VII. CONCLUSION

Over the course of this lab, there were a number of different
experiments conducted and plots created to depict waveform
synthesis and spectral analysis. These included plotting the
frequency spectrum of a piece of music, generating waveforms
with different SNRs, comparing different Fourier transforms,
and comparing FM and AM signals. For the first portion of the
lab involving generating different waveforms using different
SNRs, we proved a greater SNR is increases the overall quality
of a signal. This makes sense because if you corrupt a signal
with noise and the amount of original signal is greater than
that of the noise, the original signal will be easier to make
out.

The second part of the lab involved comparing the CFT and
the DFT of the same signal. After both were calculated and
plotted, we learned that there is a difference not only in the
values associated with the DFT and CFT, but they also have
different applications when it comes to recovering signals.

For the third part of the lab, with spectral analysis of an
FM and AM signal, the results of the tests showed that AM
signals have a more compact and intuitive spectrum than FM
signals. It also became apparent that the same amount of noise
appears considerably more dramatic in the time domain than
in the frequency domain. This is because both the signal and

noise contribute to almost every point in the time domain,
but in the frequency domain, the power of the signal is
concentrated at specific points. It also became apparent that by
using modulation, the spectrum of the message can be moved
into a specific frequency band, so more people can transmit
at the same time.

The final part of the lab involved plotting the frequency
spectrum of a piece of music. This showed us how the
frequency spectrum is similar for different signals because
the lower frequencies are more common than the higher
frequencies.

Overall, this lab assisted in understanding the topics of
waveform synthesis and spectral analysis. We also gained a
deeper understanding in how FM and AM signals are created,
the reasons for creating them, and how noise affects their
characteristics.


