VLSI Labs 1&2

Simple MOSFET & CMOS Inverter Trends

Aidan Sharpe

I. INTRODUCTION

II. MODELLING A MOSFET

III. THE NOISE MARGIN

The noise margin is the amount of noise that a CMOS circuit can withstand without compromising the operation of the circuit[?]. This region is necessary to create a buffer that prevents small amounts of noise from switching the logic. There are two noise margins: noise margin high (NM_H) and noise margin low (NM_L) .

The two noise margins are defined in terms of four key voltages on the voltage transfer curve (VTC) seen in figure 1: $V_{\rm IL}$, $V_{\rm IH}$, $V_{\rm OL}$, and $V_{\rm OH}$. $V_{\rm IL}$ is defined as the lower input voltage where the slope of the VTC is -1, and $V_{\rm IH}$ is defined as the upper input voltage meeting the same requirement. $V_{\rm OL}$ is defined as the output voltage when the input voltage is equal to $V_{\rm IH}$, and similarly, $V_{\rm OH}$ is defined as the output voltage when the input voltage is equal to $V_{\rm IL}$.

Fig. 1. The VTC and its derivative for a CMOS inverter with $w_p = 240[\text{nm}]$ and $w_n = 120[\text{nm}]$

TABLE I Important VTC voltages

$V_{\rm IL}$	2.357
$V_{\rm IH}$	3.531
$V_{\rm OL}$	0.683
VOH	4.118

With these voltages now defined, the noise margin high was calculated using

$$NM_{\rm H} = V_{\rm OH} - V_{\rm IH},\tag{1}$$

and noise margin low was calculated with

$$NM_{L} = V_{IL} - V_{OL}.$$

$$IV. DISCUSSION$$

$$V. CONCLUSION$$

$$(2)$$