% DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE % Version 2, December 2004 % % Copyright (C) 2023 Aidan Sharpe % % Everyone is permitted to copy and distribute verbatim or modified % copies of this license document, and changing it is allowed as long % as the name is changed. % % DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE % TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION % % 0. You just DO WHAT THE FUCK YOU WANT TO. \documentclass[journal]{IEEEtran} \usepackage{graphicx} \usepackage{amsmath} \usepackage{amsfonts} \usepackage{esint} \usepackage{physics} \DeclareMathOperator\arctanh{arctanh} \setlength{\parindent}{0pt} \title{EEMAGS Equation Sheet} \newcommand{\del}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\veps}{\varepsilon} \newcommand{\vphi}{\varphi} \begin{document} \maketitle \section{Constants} $$\varepsilon_0 = 8.854 \times 10^{-12}$$ $$\mu_0 = 1.257 \times 10^{-6}$$ $$c = 3 \times 10^8$$ $$\eta_0 = \sqrt{{\mu_0 \over \varepsilon_0}} = 377\Omega \approx 120\pi$$ \section{Fifth's Bullet Points} Find $\veps_r$ given $\lambda$ and $f$: $$\veps_r = {c^2 \over \mu_r \lambda^2 f^2}$$ Find $v_p$ given $\delta$, $\alpha$, and $\beta$ given a good conductor: $$v_p = {\omega \over \beta}$$ Find $P_\text{avg}$ given $\vec{H}(t)$ in air: Find $\Gamma$ in polar and VWSR given $Z_L$ and $Z_0$: $$\Gamma = {Z_L - Z_0 \over Z_L + Z_0}$$ $$\text{VWSR} = {1 + |\Gamma| \over 1 - |\Gamma|}$$ Find $\vec{E}(z,t)$ given $\vec{H}(z,t)$ in a lossless medium of $\mu_r$ and $\veps_r$: Find $\lambda$, $\veps_r$, and $\vec{H}$ given $\vec{E}$: $$\hat{H}_y = {\hat{E}_x \over \eta}$$ $$\veps_r = {\beta^2 \over \omega^2 \mu_r \mu_0 \veps_0}$$ $$\lambda = {v_p \over f}$$ Find $\Gamma^2$ and $\langle P \rangle$ from $\veps$, lossless: Find $\beta_\text{air}$, $\beta_\text{material}$, $\hat{\Gamma}$, $\hat{T}$ given $\vec{E}^i$, $\veps_r$, $\mu_r$, $\sigma_r$: Find $v_p$, $L$, and $Z_0$ given $\veps_r$ and $C$, lossless: $$v_p = {1 \over \sqrt{\mu_0 \mu_r \veps_0 \veps_r}} = {\omega \over \beta}$$ $$Z_0 = \sqrt{L \over C}$$ $$L = {\mu_0 \mu_r \veps_0 \veps_r \over C}$$ Find $C$ given $Z_0$, $R_L$, $f$, and VWSR: $$C = {L \over Z_0^2} - {G \over j\omega} + {R \over j\omega Z_0^2}$$ $$\text{VWSR} = {1 + |\Gamma| \over 1 - |\Gamma|}$$ $$\Gamma = {R_L - Z_0 \over R_L + Z_0}$$ $$\omega = 2\pi f$$ Find VWSR, $\Gamma$, $Z_\text{in}$ from $\lambda$, $Z_0$, $Z_L$, length: $$\Gamma = {Z_L - Z_0 \over Z_L + Z_0}$$ $$\text{VWSR} = {1 + |\Gamma| \over 1 - |\Gamma|}$$ $$\max[Z_\text{in}] = Z_0 \cdot \text{VWSR}$$ $$\min[Z_\text{in}] = {Z_0 \over \text{VWSR}}$$ Find $Z_0$, $\alpha$, $\beta$, $\gamma$, $\lambda$ given $Z_\text{in, sc}$ and $Z_\text{in, oc}$: $$Z_0 = \sqrt{Z_\text{in, sc} Z_\text{in, oc}}$$ $$\gamma = {1\over l} \arctanh\left(\sqrt{Z_\text{in, sc} \over Z_\text{in, oc}}\right)$$ \section{Boundary Conditions} Electric field boundary conditions: $$\vec{E}_{T1} = \vec{E}_{T2}$$ $$\vec{D}_{N1} = \vec{D}_{N2}$$ $$\vec{E} = \vec{E}_N + \vec{E}_T$$ $$\vec{D} = \veps \vec{E}$$ Magnetic field boundary conditions: $$\vec{H}_{T1} = \vec{H}_{T2}$$ $$\vec{B}_{N1} = \vec{B}_{N2}$$ $$\vec{B} = \vec{B}_N + \vec{B}_T$$ $$\vec{B} = \mu \vec{H}$$ Normal vectors: $$\vec{n} = \vec{E}_1 - \vec{E}_2$$ $$\vec{n} = \vec{H}_1 - \vec{H}_2$$ $$\hat{n} = {\vec{n} \over \|\vec{n}\|}$$ \section{Laplace and Poisson} The Laplacian: $$\vec{\nabla} \cdot (-\vec{\nabla}V) = -\vec{\nabla}^2 V = {\rho \over \veps_0}$$ Laplace's Equation (charge free region): $$\vec{\nabla}^2 V = 0$$ Poisson's Equation: $$\vec{\nabla}^2 V = -{\rho \over \veps_0}$$ \section{General Transmission Lines} \begin{center} \includegraphics[width=0.3\textwidth]{Transmission_line_element.png} \end{center} $$\begin{aligned} \gamma &= \alpha + j\beta = \left[(R + j\omega L)(G + j\omega C)\right]^{1/2} \\ & = {1\over l} \arctanh\left( \sqrt{Z_\text{in, sc} \over Z_\text{in, oc}}\right) \end{aligned}$$ The characteristic impedance: $$Z_0 = \sqrt{R + j\omega L \over G + j\omega C} = \sqrt{Z_\text{in, sc} Z_\text{in, oc}}$$ $$Z_\text{in} = Z_0 {Z_L + Z_0 \tanh(\gamma l) \over Z_0 + Z_L \tanh(\gamma l)}$$ \section{Voltage Standing Wave Ratio} $$\Gamma = {V_\text{reflected} \over V_\text{incident}}\Big|_{z' = 0} = {Z_L - Z_0 \over Z_L + Z_0}$$ $$\text{VWSR} = {|V_\text{max}| \over |V_\text{min}|} = {1 + |\Gamma| \over 1 - |\Gamma|}$$ $$v_p = {\omega \over \beta}$$ $$P_\text{avg} = {|V_0^+| \over 2 Z_0}(1 - |\Gamma_L|^2) \section{Transmission Line Design} Lossless lines: $$R = G = 0$$ $$\alpha = 0$$ $$\beta = \omega \sqrt{LC}$$ Distortionless lines: $${R \over L} = {G \over C}$$ $$\alpha = R \sqrt{C \over L}$$ $$\beta = \omega \sqrt{LC}$$ \end{document}