# EEMAGS Equation Sheet ## Curl and Divergence Identities 1. The Laplacian: can operate on a scalar or vector field $$\nabla \cdot (\nabla f) = \nabla^2 f$$ $$\frac{\partial^2 f}{\partial x} + \frac{\partial^2 f}{\partial y} + \frac{\partial^2 f}{\partial z}$$ 2. The curl of a gradient is $0$ $$\nabla \times (\nabla f) = 0$$ 3. The gradient of divergence is a scalar $$\nabla (\nabla \cdot \vec{f})$$ 4. The divergence of curl is $0$ $$\nabla \cdot (\nabla \times \vec{v}) = 0$$ 5. Curl of curl $$\nabla \times (\nabla \times \vec{A}) = \nabla(\nabla \cdot \vec{A}) - \nabla^2 \vec{A}$$ ## Maxwell's Equations Gauss's Law for $\vec{E}$-fields: $$\Phi_E =\int \vec{E} \cdot d\vec{s} = \frac{Q_{enc}}{\varepsilon_0}$$ $$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$ Gauss's Law for $\vec{B}$-fields: $$\int \vec{B} \cdot d\vec{s} = 0 $$ $$ \nabla \cdot \vec{B} = 0$$ Faraday's Law $$\int \vec{E} \cdot d\vec{l} = -\frac{d}{dt}\vec{B} $$ $$ \nabla \times \vec{E} = -\frac{d}{dt}\vec{B}$$ Ampere's Law $$\int \vec{B} \cdot d\vec{l} = \mu_0\left( \vec{J} + \varepsilon_0 \frac{d\vec{E}}{dt}\right) = \mu_0 I_{enc}$$ $$ \nabla \times \vec{B} = \mu_0 J + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$ ## Work and Voltage $$\Delta V = -\int \vec{E} \cdot d\vec{l}$$ $$-\nabla V = \vec{E}$$