function fwseg_dist= comp_fwseg(cleanFile, enhancedFile); % ---------------------------------------------------------------------- % Frequency weighted SNRseg Objective Speech Quality Measure % % This function implements the frequency-weighted SNRseg measure [1] % using a different weighting function, the clean spectrum. % % Usage: fwSNRseg=comp_fwseg(cleanFile.wav, enhancedFile.wav) % % cleanFile.wav - clean input file in .wav format % enhancedFile - enhanced output file in .wav format % fwSNRseg - computed frequency weighted SNRseg in dB % % Note that large numbers of fwSNRseg are better. % % Example call: fwSNRseg =comp_fwseg('sp04.wav','enhanced.wav') % % % References: % [1] Tribolet, J., Noll, P., McDermott, B., and Crochiere, R. E. (1978). % A study of complexity and quality of speech waveform coders. Proc. % IEEE Int. Conf. Acoust. , Speech, Signal Processing, 586-590. % % Author: Philipos C. Loizou % (critical-band filtering routines were written by Bryan Pellom & John Hansen) % % Copyright (c) 2006 by Philipos C. Loizou % $Revision: 0.0 $ $Date: 10/09/2006 $ % ---------------------------------------------------------------------- if nargin~=2 fprintf('USAGE: fwSNRseg=comp_fwseg(cleanFile.wav, enhancedFile.wav)\n'); fprintf('For more help, type: help comp_fwseg\n\n'); return; end [data1, Srate1, Nbits1]= wavread(cleanFile); [data2, Srate2, Nbits2]= wavread(enhancedFile); if ( Srate1~= Srate2) | ( Nbits1~= Nbits2) error( 'The two files do not match!\n'); end len= min( length( data1), length( data2)); data1= data1( 1: len)+eps; data2= data2( 1: len)+eps; wss_dist_vec= fwseg( data1, data2,Srate1); fwseg_dist=mean(wss_dist_vec); % ---------------------------------------------------------------------- function distortion = fwseg(clean_speech, processed_speech,sample_rate) % ---------------------------------------------------------------------- % Check the length of the clean and processed speech. Must be the same. % ---------------------------------------------------------------------- clean_length = length(clean_speech); processed_length = length(processed_speech); if (clean_length ~= processed_length) disp('Error: Files must have same length.'); return end % ---------------------------------------------------------------------- % Global Variables % ---------------------------------------------------------------------- winlength = round(30*sample_rate/1000); % window length in samples skiprate = floor(winlength/4); % window skip in samples max_freq = sample_rate/2; % maximum bandwidth num_crit = 25; % number of critical bands USE_25=1; n_fft = 2^nextpow2(2*winlength); n_fftby2 = n_fft/2; % FFT size/2 gamma=0.2; % power exponent % ---------------------------------------------------------------------- % Critical Band Filter Definitions (Center Frequency and Bandwidths in Hz) % ---------------------------------------------------------------------- cent_freq(1) = 50.0000; bandwidth(1) = 70.0000; cent_freq(2) = 120.000; bandwidth(2) = 70.0000; cent_freq(3) = 190.000; bandwidth(3) = 70.0000; cent_freq(4) = 260.000; bandwidth(4) = 70.0000; cent_freq(5) = 330.000; bandwidth(5) = 70.0000; cent_freq(6) = 400.000; bandwidth(6) = 70.0000; cent_freq(7) = 470.000; bandwidth(7) = 70.0000; cent_freq(8) = 540.000; bandwidth(8) = 77.3724; cent_freq(9) = 617.372; bandwidth(9) = 86.0056; cent_freq(10) = 703.378; bandwidth(10) = 95.3398; cent_freq(11) = 798.717; bandwidth(11) = 105.411; cent_freq(12) = 904.128; bandwidth(12) = 116.256; cent_freq(13) = 1020.38; bandwidth(13) = 127.914; cent_freq(14) = 1148.30; bandwidth(14) = 140.423; cent_freq(15) = 1288.72; bandwidth(15) = 153.823; cent_freq(16) = 1442.54; bandwidth(16) = 168.154; cent_freq(17) = 1610.70; bandwidth(17) = 183.457; cent_freq(18) = 1794.16; bandwidth(18) = 199.776; cent_freq(19) = 1993.93; bandwidth(19) = 217.153; cent_freq(20) = 2211.08; bandwidth(20) = 235.631; cent_freq(21) = 2446.71; bandwidth(21) = 255.255; cent_freq(22) = 2701.97; bandwidth(22) = 276.072; cent_freq(23) = 2978.04; bandwidth(23) = 298.126; cent_freq(24) = 3276.17; bandwidth(24) = 321.465; cent_freq(25) = 3597.63; bandwidth(25) = 346.136; W=[ % articulation index weights 0.003 0.003 0.003 0.007 0.010 0.016 0.016 0.017 0.017 0.022 0.027 0.028 0.030 0.032 0.034 0.035 0.037 0.036 0.036 0.033 0.030 0.029 0.027 0.026 0.026]; W=W'; if USE_25==0 % use 13 bands % ----- lump adjacent filters together ---------------- k=2; cent_freq2(1)=cent_freq(1); bandwidth2(1)=bandwidth(1)+bandwidth(2); W2(1)=W(1); for i=2:13 cent_freq2(i)=cent_freq2(i-1)+bandwidth2(i-1); bandwidth2(i)=bandwidth(k)+bandwidth(k+1); W2(i)=0.5*(W(k)+W(k+1)); k=k+2; end sumW=sum(W2); bw_min = bandwidth2 (1); % minimum critical bandwidth else sumW=sum(W); bw_min=bandwidth(1); end % ---------------------------------------------------------------------- % Set up the critical band filters. Note here that Gaussianly shaped % filters are used. Also, the sum of the filter weights are equivalent % for each critical band filter. Filter less than -30 dB and set to % zero. % ---------------------------------------------------------------------- min_factor = exp (-30.0 / (2.0 * 2.303)); % -30 dB point of filter if USE_25==0 num_crit=length(cent_freq2); for i = 1:num_crit f0 = (cent_freq2 (i) / max_freq) * (n_fftby2); all_f0(i) = floor(f0); bw = (bandwidth2 (i) / max_freq) * (n_fftby2); norm_factor = log(bw_min) - log(bandwidth2(i)); j = 0:1:n_fftby2-1; crit_filter(i,:) = exp (-11 *(((j - floor(f0)) ./bw).^2) + norm_factor); crit_filter(i,:) = crit_filter(i,:).*(crit_filter(i,:) > min_factor); end else for i = 1:num_crit f0 = (cent_freq (i) / max_freq) * (n_fftby2); all_f0(i) = floor(f0); bw = (bandwidth (i) / max_freq) * (n_fftby2); norm_factor = log(bw_min) - log(bandwidth(i)); j = 0:1:n_fftby2-1; crit_filter(i,:) = exp (-11 *(((j - floor(f0)) ./bw).^2) + norm_factor); crit_filter(i,:) = crit_filter(i,:).*(crit_filter(i,:) > min_factor); end end num_frames = clean_length/skiprate-(winlength/skiprate); % number of frames start = 1; % starting sample window = 0.5*(1 - cos(2*pi*(1:winlength)'/(winlength+1))); for frame_count = 1:num_frames % ---------------------------------------------------------- % (1) Get the Frames for the test and reference speech. % Multiply by Hanning Window. % ---------------------------------------------------------- clean_frame = clean_speech(start:start+winlength-1); processed_frame = processed_speech(start:start+winlength-1); clean_frame = clean_frame.*window; processed_frame = processed_frame.*window; % ---------------------------------------------------------- % (2) Compute the magnitude Spectrum of Clean and Processed % ---------------------------------------------------------- clean_spec = abs(fft(clean_frame,n_fft)); processed_spec = abs(fft(processed_frame,n_fft)); % normalize spectra to have area of one % clean_spec=clean_spec/sum(clean_spec(1:n_fftby2)); processed_spec=processed_spec/sum(processed_spec(1:n_fftby2)); % ---------------------------------------------------------- % (3) Compute Filterbank Output Energies % ---------------------------------------------------------- clean_energy=zeros(1,num_crit); processed_energy=zeros(1,num_crit); error_energy=zeros(1,num_crit); W_freq=zeros(1,num_crit); for i = 1:num_crit clean_energy(i) = sum(clean_spec(1:n_fftby2) ... .*crit_filter(i,:)'); processed_energy(i) = sum(processed_spec(1:n_fftby2) ... .*crit_filter(i,:)'); error_energy(i)=max((clean_energy(i)-processed_energy(i))^2,eps); W_freq(i)=(clean_energy(i))^gamma; end SNRlog=10*log10((clean_energy.^2)./error_energy); fwSNR=sum(W_freq.*SNRlog)/sum(W_freq); distortion(frame_count)=min(max(fwSNR,-10),35); start = start + skiprate; end