ROWAN UNIVERSITY ECE Department

Signals and Systems

Fall 2023 Instructor: Ravi P. Ramachandran

Quiz 4

- Type your name and sign the statement on the answer sheet.
- Write your choice beside each item on the answer sheet.
- Only upload the answer sheet on canvas
- There are 10 problems in the quiz.
- The problems are not in order of difficulty. We recommend that you read through all the problems, then do the problems in whatever order suits you best.

Name

Which of the following is an odd function?

- A. sin(5t) cos(3t)
 B. sin(4t) sin(7t)
 C. sin(10t + π/2)
 D. |t + 5|
- **E.** e^{6t}
- **F.** u(t+7) u(t-7), where u(t) is the unit-step function.

Problem 2

What is the period of $\sin(\pi t/2) + \sin(4t)$?

- A. It is aperiodic.
- B. 0.5
- **C.** 0.5π
- **D.** 1
- E. π
- F. 2
- G. 2π

Questions 3, 4 and 5 pertain to the system

 $y(t) = S[x(t)] = \sin(t+3)\cos(x(t-3))$

Note that x(t) is the input and y(t) is the output.

Problem 3

Which statement is true?

- **A.** The system is causal.
- **B.** The system is not causal.

Problem 4

Which statement is true?

- **A.** The system is time-invariant.
- **B.** The system is not time-invariant.

Problem 5

Which statement is true?

- A. The system is bounded-input bounded-output (BIBO) stable.
- **B.** The system is not bounded-input, bounded-output (BIBO) stable.

What is the region of convergence of the Laplace transform of $(t-1)^2 u(t-1)$ where u(t) is the unit step function?

- **A.** All values of s
- B. All values of s except s = 0
- **C.** Real(s) < 0
- **D.** Real(s) > 0
- **E.** Real(s) < 1
- **F.** Real(s) > 1

Problem 7

Which of the following is the Laplace inverse of

$$X(s) = \frac{4}{s(s+2)^2}$$

Note that u(t) is the unit-step function.

A.
$$x(t) = [1 - 2te^{-2t} - e^{-2t}] u(t)$$

B. $x(t) = [1 - 2t^2e^{-2t} - e^{-2t}] u(t)$
C. $x(t) = [1 - 2te^{-2t}] u(t)$
D. $x(t) = [1 - 2t^2e^{-2t}] u(t)$
E. $x(t) = [1 - 2e^{-2t}] u(t)$

The unit step response of a system is

$$s(t) = [0.5 - e^{-t} + 0.5e^{-2t}] u(t)$$

Note that u(t) is the unit step function. Which of the following is the transfer function H(s) of the system

Α. $H(s) = \frac{1}{s^2 + 3s + 2}$ В. $H(s) = \frac{1}{2} - \frac{1}{s^2 + 3s + 2}$ $\frac{0.5 \ s}{3s+2}$ С.

$$H(s) = \frac{0.3 \ s}{s^2 + 3s + 2}$$

D.

$$H(s) = \frac{1}{0.5 \ s \ (s^2 + 3s + 2)}$$

Consider the periodic signal

$$x(t) = 1 + \cos(2\pi t) - \cos(6\pi t) \tag{1}$$

Note that the formula for the trigonometric Fourier series is given by

$$x(t) = c_0 + \sum_{k=1}^{\infty} 2c_k \cos(k\Omega_0 t) + \sum_{k=1}^{\infty} 2d_k \sin(k\Omega_0 t)$$
(2)

where Ω_0 is the fundamental frequency of x(t).

Then, the trigonometric Fourier Series coefficients of x(t) are zero except the following coefficients

A. $c_0 = 1, c_1 = 1, c_2 = -1$ B. $c_0 = 1, c_1 = 1, c_3 = -1$ C. $c_0 = 1, c_2 = 1, c_6 = -1$ D. $c_0 = 1, c_1 = \frac{1}{2}, c_2 = -1$ E. $c_0 = 1, c_1 = \frac{1}{2}, c_3 = -1$ F. $c_0 = 1, c_2 = \frac{1}{2}, c_6 = -1$ G. $c_0 = 1, c_1 = 1, c_2 = -\frac{1}{2}$ H. $c_0 = 1, c_1 = 1, c_3 = -\frac{1}{2}$ I. $c_0 = 1, c_2 = 1, c_6 = -\frac{1}{2}$ J. $c_0 = 1, c_1 = \frac{1}{2}, c_2 = -\frac{1}{2}$ K. $c_0 = 1, c_1 = \frac{1}{2}, c_3 = -\frac{1}{2}$ L. $c_0 = 1, c_2 = \frac{1}{2}, c_6 = -\frac{1}{2}$

The transfer function of a causal LTI system is given by

$$H(s) = \frac{Y(s)}{X(s)} = \frac{s+1}{s^2+3s+4}$$

where Y(s) is the Laplace Transform of the output y(t) and X(s) is the Laplace Transform of the input x(t).

The input to the system is $x(t) = 1 + \cos(t + \pi/4)$. Which of the following is the corresponding output y(t) of this system?

A. $y(t) = \frac{1}{4} + \frac{1}{3}\cos(t + \pi/4)$ B. $y(t) = \frac{1}{3}\cos(t + \pi/4)$ C. $y(t) = \frac{1}{4} + \frac{1}{3}\cos(t)$ D. $y(t) = \frac{1}{3}\cos(t)$ E. $y(t) = \frac{1}{4} + \frac{1}{3}\sin(t + \pi/4)$ F. $y(t) = \frac{1}{3}\sin(t + \pi/4)$ G. $y(t) = \frac{1}{4} + \frac{1}{3}\sin(t)$ H. $y(t) = \frac{1}{3}\sin(t)$