ROWAN UNIVERSITY ECE Department

Signals and Systems

Fall 2023 Instructor: Ravi P. Ramachandran

Final

- Type your name and sign the statement on the answer sheet.
- Write your choice beside each item on the answer sheet.
- Only upload the answer sheet on canvas
- There are 15 problems on the final.
- The problems are not in order of difficulty. We recommend that you read through all the problems, then do the problems in whatever order suits you best.

Name

If x(t) = u(t+2) - u(t-4) where u(t) is the unit-step, an expression for x(2t-2) is given by:

A. u(t) - u(t - 3)B. u(t) - u(t - 6)C. u(t + 2) - u(t - 4)D. u(t) - u(t - 4)E. u(t) - u(t - 2)F. u(t + 2) - u(t - 2)

Problem 2

If x(t) is even, then x(5t) is

A. Even

B. Odd

- C. Neither even nor odd
- **D.** Both even and odd

Questions 3, 4 and 5 pertain to the following systems

$$y(t) = S_1[x(t)] = \int_{t-10}^t \cos(\tau) x(\tau) d\tau$$

$$y(t) = S_2[x(t)] = \cos(tx(t))$$

$$y(t) = S_3[x(t)] = t\cos(x(t))$$

Note that x(t) is the input and y(t) is the output.

Which of the systems is/are linear?

- **A.** S_1 only
- **B.** S_2 only
- C. S_3 only
- **D.** S_1 and S_2 only
- **E.** S_1 and S_3 only
- **F.** S_2 and S_3 only
- **G.** S_1 , S_2 and S_3

Problem 4

Which of the systems is/are causal?

- **A.** S_1 only
- **B.** S_2 only
- C. S_3 only
- **D.** S_1 and S_2 only
- **E.** S_1 and S_3 only
- **F.** S_2 and S_3 only
- **G.** S_1 , S_2 and S_3

Which of the systems is/are bounded-input bounded-output (BIBO) stable?

- **A.** S_1 only
- **B.** S_2 only
- C. S_3 only
- **D.** S_1 and S_2 only
- **E.** S_1 and S_3 only
- **F.** S_2 and S_3 only
- **G.** S_1 , S_2 and S_3

Problem 6

The impulse response of a linear, time-invariant (LTI) continuous-time system is

$$h(t) = u(t) - u(t - 1),$$

where u(t) is the unit step. If the input to this system is x(t), the system output is

Α.

$$y(t) = \int_{t-1}^{t} x(\tau) d\tau$$

В.

$$y(t) = \int_t^{t+1} x(\tau) d\tau$$

С.

$$y(t) = \int_{t-1}^{t+1} x(\tau) d\tau$$

What is the Laplace transform of $x(t) = \sin(\pi t)[u(t) - u(t-1)]$? Note that u(t) is the unit-step.

A. $X(s) = \frac{\pi}{s^2 + \pi^2}$ B. $X(s) = \frac{\pi e^{-s}}{s^2 + \pi^2}$ C. $X(s) = \frac{\pi s e^{-s}}{s^2 + \pi^2}$ D. $X(s) = \frac{\pi (1 + e^{-s})}{s^2 + \pi^2}$ E. $X(s) = \frac{\pi (1 - e^{-s})}{s^2 + \pi^2}$

Problem 8

The impulse response of a linear, time-invariant (LTI) continuous-time system is

$$h(t) = e^{-t}u(t),$$

where u(t) is the unit step. If the output of the system is $y(t) = (1 - e^{-t})u(t)$, the input to the system x(t) is

A. $x(t) = \delta(t)$ where $\delta(t)$ is the impulse signal

B. x(t) = u(t)

C.
$$x(t) = e^{-t}u(t)$$

D. $x(t) = (1 - e^{-t})u(t)$

A differential equation with initial condition $x(0^{-}) = 0$ is given by

$$\frac{dx}{dt} + 5x(t) = \delta(t) \tag{1}$$

where $\delta(t)$ is the impulse function. What is the solution to the differential equation? Note that u(t) is the unit-step.

A. x(t) = 1B. $x(t) = \delta(t)$ C. $x(t) = e^{-5t}u(t)$ D. $x(t) = [1 - e^{-5t}]u(t)$

Problem 10

Which of the following is the Laplace inverse of

$$X(s) = \frac{2s+3}{s^2+4s+13}$$

Note that u(t) is the unit-step.

Α.

$$x(t) = e^{2t} (2\cos(3t) - \frac{1}{3}\sin(3t)) \ u(t)$$

В.

$$x(t) = e^{-2t} (2\cos(3t) - \frac{1}{3}\sin(3t)) \ u(t)$$

С.

$$x(t) = (2\cos[3(t+2)] - \frac{1}{3}\sin[3(t+2)]) \ u(t)$$

D.

$$x(t) = (2\cos[3(t-2)] - \frac{1}{3}\sin[3(t-2)]) \ u(t)$$

Questions 11 and 12 pertain to the signal $x(t) = 8\cos(2t)$.

Problem 11

The exponential Fourier series of x(t) is

$$\sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_0 t} \tag{2}$$

where $\Omega_0 = 2\pi/T_0$ and T_0 is the period of x(t). Find the value of

$$\sum_{k=-\infty}^{\infty} |X_k|^2 \tag{3}$$

- **A.** 1
- **B.** 2
- C. 4
- **D.** 8
- **E.** 16
- F. 32

Problem 12

Find the trigonometric Fourier series of $x(t - \pi)$.

- **A.** $8[1 + \cos 2t + \sin 2t]$
- **B.** $8[1 + \cos 2t]$
- C. $8[1 + \sin 2t]$
- **D.** $8[\cos 2t + \sin 2t]$
- **E.** $8\cos 2t$
- **F.** $8\sin 2t$

Consider the linear time-invariant system with a frequency response given by

$$H(j\Omega) = \frac{1}{1+j\Omega/2} = \frac{2}{2+j\Omega}$$

The input to the system is

$$x(t) = 2\cos(2t + \pi/2)$$

The output y(t) of this system is given by

J

A. $y(t) = 2\cos(2t + \frac{\pi}{4})$ B. $y(t) = 2\cos(2t - \frac{\pi}{4})$ C. $y(t) = 2\cos(2t)$ D. $y(t) = 2\cos(2t + \frac{\pi}{2})$ E. $y(t) = 2\cos(2t - \frac{\pi}{2})$ F. $y(t) = \sqrt{2}\cos(2t - \frac{\pi}{4})$ G. $y(t) = \sqrt{2}\cos(2t - \frac{\pi}{4})$ H. $y(t) = \sqrt{2}\cos(2t - \frac{\pi}{2})$ J. $y(t) = \sqrt{2}\cos(2t - \frac{\pi}{2})$

Problem 14

Which of the following is the Fourier transform of

$$x(t) = e^{-2t} u(t),$$

where u(t) is the unit step function?

A. $\frac{1}{2+j \ \Omega}$

B.
$$\frac{1}{2-j \ \Omega}$$

C. $2+j \ \Omega$
D. $2-j \ \Omega$

Consider a linear, time-invariant (LTI) system with an impulse response $h(t) = te^{-t}u(t)$ where u(t) is the unit-step function. Consider the following statements.

- (I) All poles of the system are at s = -1.
- (II) The system is causal.
- (III) The magnitude of the Fourier transform of h(t) equals 1 at a frequency of 0 radians/second.
- (IV) An exponential Fourier series of h(t) can be calculated.

Which of the following statements is/are true?

- A. I and II only
- B. I, II and III only
- C. II and IV only
- D. I, II and IV only
- E. III and IV only
- **F.** II, III and IV only
- G. All four statements I, II, III and IV are true.