
Applying Simple CMOS Gates

Aidan Sharpe

I. Introduction
In our previous exercises, we constructed several simple

CMOS gates. Specifically, we made an inverter, a transmis-
sion gate, and a two-input NAND gate. In this exercise, we
combined these simple gates together to obtain more complex
behaviors.

We used transmission gates and the inverter to construct a
two to one multiplexer, and we used multiple NAND gates to
create a half-adder.

II. Half Adder
A half adder is a device that has two inputs A and B, and

two outputs: the sum (Y ) and the carry (C). For simplification
reasons, we opted to keep our carry out inverted (∼ C). The
relationship between the inputs and outputs is seen in table
I. The sum is high when the sum of A and B is one, and low
when the sum modulo two is zero. The carry out is only high
when the sum of A and B is two. Therefore, the inverted carry
out ∼ C is always high unless the sum of A and B is two, in
which case, ∼ C is low.

TABLE I
Half Adder Truth Table

A B Y ∼ C
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 0

We explored several half adder designs during this exercise,
and we settled on using a simple design with four NAND gates
combined as shown in figure 1. We ultimately decided on this
design for its combination of speed and simplicity.

Fig. 1. Symbol-level schematic for half adder

To validate our design matches the desired behavior, we
assembled a simulation that tests every combination of A and
B. This was done with two square waves, each at 50% duty
cycle. The input to A had a 1[ns] period of oscillation, while
the input to B had a 2[ns] period. Together, the signals create
a two-bit binary counter. The signals from the simulation, seen
in figure 2, matched the expected behavior. The teal trace, the
inverted carry out ∼ C, is only low when both A and B are
high. Additionally, the magenta trace, the sum Y , is high when
only one of A and B is high.

Fig. 2. Logic signals for half adder

Taking a closer look at the traces in figure 2, it is important
to note that rise time for the output is actually smaller
than the rise time of the inputs. This effect means that the
switching time for our transistors is faster than our input.

III. Two-to-One Multiplexer
Our two-to-one multiplexer (mux) is a signal control device.

The control signal S0 selects which of the two inputs A0 or
A1 is passed to the output Y .

TABLE II
Two-to-one multiplexer truth table

S0 Y
0 A0
1 A1

Our design used two transmission gates—one for each
input—to determine if the signal should be passed through
or not. We also used an inverter to send the opposite control
signal to one of the transmission gates. This way, only one of
the two signals would be passed through at any given time.
This setup is realized with a schematic in figure 3.

Again, we tested that our design matched the expected
behavior via simulation. We set up our control signal as a
square wave with a 50% duty cycle and a 2[ns] period of
oscillation. Since transmission gates directly pass the input to
the output, we are not restricted to passing a “pure” one or
zero. Therefore, to test which signal is being passed through,
we set A0 to 300[mV] and A1 to 600[mv]. This way, as seen
in figure 4, when S0 is low, the output is 300[mV], and when
the S0 is high, the output is 600[mV].

We confirmed our schematic matches the desired behavior,
so we moved on to creating a layout. To make using multiple
gates together easier, we made some modifications to our
initial layouts. Most importantly, we wanted all horizontal
interconnects to be on metal1 and all vertical interconnects to
be on metal2. Adding this rule of thumb made routing much
easier. For short runs, however, we prioritized using less vias,
so metal1 runs vertically in some areas. Our final layout is
seen in figure 5. Another helpful modification was lining up
the power rails for all designs. This modification made the rails



Fig. 3. Two-to-one multiplexer schematic

Fig. 4. Two-to-one multiplexer logic validation

clearly defined layout boundaries, and it also added additional
space for routing interconnects.

Fig. 5. Layout for two-to-one multiplexer

This process involved some unforeseen steps such as re-
running DRC and LVS checks on the sub-designs, and re-
spacing the elements within the sub-designs to create a more
uniform top-level design.

IV. Conclusion
This exercise proved the conclusion of the last exercise. We

determined that by encapsulating fine details into lower-level
designs, both higher-level schematic and layout design become
much easier. For example, our half adder design used four two-
input NAND gates. Each of our NAND gates contained four

MOSFETs [1]. Therefore, if we were to design the half adder
at a transistor level, we would have had to lay out sixteen
transistors.

Going forward, we will continue to abstract our desings
away from the transistor level. For example, higher-level de-
signs may employ the half adder symbol to effectively place
all sixteen transistors and their interconnects in one click.

By building up a design layer-by-layer, a highly complex
design suddenly becomes attainable.

References
[1] David Money Harris Neil H. E. Weste. CMOS VLSI De-

sign a Circuits and Systems Perspective, Fourth Edition.
Pearson, 2011.


	Introduction
	Half Adder
	Two-to-One Multiplexer
	Conclusion

