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Physical Constants

Quantity Value

Electron charge e = (1.602 177 33 ± 0.000 000 46) × 10−19 C

Electron mass m = (9.109 389 7 ± 0.000 005 4) × 10−31 kg

Permittivity of free space �0 = 8.854 187 817 × 10−12 F/m

Permeability of free space µ0 = 4π10−7 H/m

Velocity of light c = 2.997 924 58 × 108 m/s

Dielectric Constant (��
r ) and Loss Tangent (���/��)

Material ǫ
�
r ǫ

��/ǫ�

Air 1.0005

Alcohol, ethyl 25 0.1

Aluminum oxide 8.8 0.000 6

Amber 2.7 0.002

Bakelite 4.74 0.022

Barium titanate 1200 0.013

Carbon dioxide 1.001

Ferrite (NiZn) 12.4 0.000 25

Germanium 16

Glass 4–7 0.002

Ice 4.2 0.05

Mica 5.4 0.000 6

Neoprene 6.6 0.011

Nylon 3.5 0.02

Paper 3 0.008

Plexiglas 3.45 0.03

Polyethylene 2.26 0.000 2

Polypropylene 2.25 0.000 3

Polystyrene 2.56 0.000 05

Porcelain (dry process) 6 0.014

Pyranol 4.4 0.000 5

Pyrex glass 4 0.000 6

Quartz (fused) 3.8 0.000 75

Rubber 2.5–3 0.002

Silica or SiO2 (fused) 3.8 0.000 75

Silicon 11.8

Snow 3.3 0.5

Sodium chloride 5.9 0.000 1

Soil (dry) 2.8 0.05

Steatite 5.8 0.003

Styrofoam 1.03 0.000 1

Teflon 2.1 0.000 3

Titanium dioxide 100 0.001 5

Water (distilled) 80 0.04

Water (sea) 4

Water (dehydrated) 1 0

Wood (dry) 1.5–4 0.01

Material S/m Material S/m

Material r Material r



Quantity Value

e
m

c

Material r

Conductivity (� )

Material ǫ , S/m Material ǫ , S/m

Silver 6.17 × 107 Nichrome 0.1 × 107

Copper 5.80 × 107 Graphite 7 × 104

Gold 4.10 × 107 Silicon 2300

Aluminum 3.82 × 107 Ferrite (typical) 100

Tungsten 1.82 × 107 Water (sea) 5

Zinc 1.67 × 107 Limestone 10−2

Brass 1.5 × 107 Clay 5 × 10−3

Nickel 1.45 × 107 Water (fresh) 10−3

Iron 1.03 × 107 Water (distilled) 10−4

Phosphor bronze 1 × 107 Soil (sandy) 10−5

Solder 0.7 × 107 Granite 10−6

Carbon steel 0.6 × 107 Marble 10−8

German silver 0.3 × 107 Bakelite 10−9

Manganin 0.227 × 107 Porcelain (dry process) 10−10

Constantan 0.226 × 107 Diamond 2 × 10−13

Germanium 0.22 × 107 Polystyrene 10−16

Stainless steel 0.11 × 107 Quartz 10−17

Relative Permeability (µr )

Material µr Material µr

Bismuth 0.999 998 6 Powdered iron 100

Paraffin 0.999 999 42 Machine steel 300

Wood 0.999 999 5 Ferrite (typical) 1000

Silver 0.999 999 81 Permalloy 45 2500

Aluminum 1.000 000 65 Transformer iron 3000

Beryllium 1.000 000 79 Silicon iron 3500

Nickel chloride 1.000 04 Iron (pure) 4000

Manganese sulfate 1.000 1 Mumetal 20 000

Nickel 50 Sendust 30 000

Cast iron 60 Supermalloy 100 000

Cobalt 60
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A B O U T T H E A U T H O R S

William H. Hayt. Jr. (deceased) received his B.S. and M.S. degrees at Purdue Uni-

versity and his Ph.D. from the University of Illinois. After spending four years in

industry, Professor Hayt joined the faculty of Purdue University, where he served as

professor and head of the School of Electrical Engineering, and as professor emeritus

after retiring in 1986. Professor Hayt’s professional society memberships included

Eta Kappa Nu, Tau Beta Pi, Sigma Xi, Sigma Delta Chi, Fellow of IEEE, ASEE, and

NAEB. While at Purdue, he received numerous teaching awards, including the uni-

versity’s Best Teacher Award. He is also listed in Purdue’s Book of Great Teachers, a

permanent wall display in the Purdue Memorial Union, dedicated on April 23, 1999.

The book bears the names of the inaugural group of 225 faculty members, past and

present, who have devoted their lives to excellence in teaching and scholarship. They

were chosen by their students and their peers as Purdue’s finest educators.

A native of Los Angeles, California, John A. Buck received his M.S. and Ph.D.

degrees in Electrical Engineering from the University of California at Berkeley in

1977 and 1982, and his B.S. in Engineering from UCLA in 1975. In 1982, he joined

the faculty of the School of Electrical and Computer Engineering at Georgia Tech,

where he has remained for the past 28 years. His research areas and publications

have centered within the fields of ultrafast switching, nonlinear optics, and optical

fiber communications. He is the author of the graduate text Fundamentals of Optical
Fibers (Wiley Interscience), which is now in its second edition. Awards include three

institute teaching awards and the IEEE Third Millenium Medal. When not glued to

his computer or confined to the lab, Dr. Buck enjoys music, hiking, and photography.
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P R E F A C E

It has been 52 years since the first edition of this book was published, then under the

sole authorship of William H. Hayt, Jr. As I was five years old at that time, this would

have meant little to me. But everything changed 15 years later when I used the second

edition in a basic electromagnetics course as a college junior. I remember my sense

of foreboding at the start of the course, being aware of friends’ horror stories. On first

opening the book, however, I was pleasantly surprised by the friendly writing style

and by the measured approach to the subject, which — at least for me — made it a

very readable book, out of which I was able to learn with little help from my professor.

I referred to it often while in graduate school, taught from the fourth and fifth editions

as a faculty member, and then became coauthor for the sixth and seventh editions on

the retirement (and subsequent untimely death) of Bill Hayt. The memories of my

time as a beginner are clear, and I have tried to maintain the accessible style that I

found so welcome then.

Over the 50-year span, the subject matter has not changed, but emphases have. In

the universities, the trend continues toward reducing electrical engineering core course

allocations to electromagnetics. I have made efforts to streamline the presentation in

this new edition to enable the student to get to Maxwell’s equations sooner, and I have

added more advanced material. Many of the earlier chapters are now slightly shorter

than their counterparts in the seventh edition. This has been done by economizing on

the wording, shortening many sections, or by removing some entirely. In some cases,

deleted topics have been converted to stand-alone articles and moved to the website,

from which they can be downloaded. Major changes include the following: (1) The

material on dielectrics, formerly in Chapter 6, has been moved to the end of Chapter 5.

(2) The chapter on Poisson’s and Laplace’s equations has been eliminated, retaining

only the one-dimensional treatment, which has been moved to the end of Chapter 6.

The two-dimensional Laplace equation discussion and that of numerical methods have

been moved to the website for the book. (3) The treatment on rectangular waveguides

(Chapter 13) has been expanded, presenting the methodology of two-dimensional

boundary value problems in that context. (4) The coverage of radiation and antennas

has been greatly expanded and now forms the entire Chapter 14.

Some 130 new problems have been added throughout. For some of these, I chose

particularly good “classic” problems from the earliest editions. I have also adopted

a new system in which the approximate level of difficulty is indicated beside each

problem on a three-level scale. The lowest level is considered a fairly straightforward

problem, requiring little work assuming the material is understood; a level 2 problem

is conceptually more difficult, and/or may require more work to solve; a level 3 prob-

lem is considered either difficult conceptually, or may require extra effort (including

possibly the help of a computer) to solve.

x



Preface xi

As in the previous edition, the transmission lines chapter (10) is stand-alone,

and can be read or covered in any part of a course, including the beginning. In

it, transmission lines are treated entirely within the context of circuit theory; wave

phenomena are introduced and used exclusively in the form of voltages and cur-

rents. Inductance and capacitance concepts are treated as known parameters, and

so there is no reliance on any other chapter. Field concepts and parameter com-

putation in transmission lines appear in the early part of the waveguides chapter

(13), where they play additional roles of helping to introduce waveguiding con-

cepts. The chapters on electromagnetic waves, 11 and 12, retain their independence

of transmission line theory in that one can progress from Chapter 9 directly to

Chapter 11. By doing this, wave phenomena are introduced from first principles

but within the context of the uniform plane wave. Chapter 11 refers to Chapter 10 in

places where the latter may give additional perspective, along with a little more detail.

Nevertheless, all necessary material to learn plane waves without previously studying

transmission line waves is found in Chapter 11, should the student or instructor wish

to proceed in that order.

The new chapter on antennas covers radiation concepts, building on the retarded

potential discussion in Chapter 9. The discussion focuses on the dipole antenna,

individually and in simple arrays. The last section covers elementary transmit-receive

systems, again using the dipole as a vehicle.

The book is designed optimally for a two-semester course. As is evident, statics

concepts are emphasized and occur first in the presentation, but again Chapter 10

(transmission lines) can be read first. In a single course that emphasizes dynamics,

the transmission lines chapter can be covered initially as mentioned or at any point in

the course. One way to cover the statics material more rapidly is by deemphasizing

materials properties (assuming these are covered in other courses) and some of the

advanced topics. This involves omitting Chapter 1 (assigned to be read as a review),

and omitting Sections 2.5, 2.6, 4.7, 4.8, 5.5–5.7, 6.3, 6.4, 6.7, 7.6, 7.7, 8.5, 8.6, 8.8,

8.9, and 9.5.

A supplement to this edition is web-based material consisting of the afore-

mentioned articles on special topics in addition to animated demonstrations and

interactive programs developed by Natalya Nikolova of McMaster University and

Vikram Jandhyala of the University of Washington. Their excellent contributions

are geared to the text, and icons appear in the margins whenever an exercise that

pertains to the narrative exists. In addition, quizzes are provided to aid in further

study.

The theme of the text is the same as it has been since the first edition of 1958.

An inductive approach is used that is consistent with the historical development. In

it, the experimental laws are presented as individual concepts that are later unified

in Maxwell’s equations. After the first chapter on vector analysis, additional math-

ematical tools are introduced in the text on an as-needed basis. Throughout every

edition, as well as this one, the primary goal has been to enable students to learn

independently. Numerous examples, drill problems (usually having multiple parts),

end-of-chapter problems, and material on the web site, are provided to facilitate this.



xii Preface

Answers to the drill problems are given below each problem. Answers to odd-

numbered end-of-chapter problems are found in Appendix F. A solutions manual

and a set of PowerPoint slides, containing pertinent figures and equations, are avail-

able to instructors. These, along with all other material mentioned previously, can be

accessed on the website:

www.mhhe.com/haytbuck

I would like to acknowledge the valuable input of several people who helped

to make this a better edition. Special thanks go to Glenn S. Smith (Georgia Tech),

who reviewed the antennas chapter and provided many valuable comments and sug-

gestions. Detailed suggestions and errata were provided by Clive Woods (Louisiana

State University), Natalya Nikolova, and Don Davis (Georgia Tech). Accuracy checks

on the new problems were carried out by Todd Kaiser (Montana State University)

and Steve Weis (Texas Christian University). Other reviewers provided detailed com-

ments and suggestions at the start of the project; many of the suggestions affected the

outcome. They include:

Sheel Aditya – Nanyang Technological University, Singapore

Yaqub M. Amani – SUNY Maritime College

Rusnani Ariffin – Universiti Teknologi MARA

Ezekiel Bahar – University of Nebraska Lincoln

Stephen Blank – New York Institute of Technology

Thierry Blu – The Chinese University of Hong Kong

Jeff Chamberlain – Illinois College

Yinchao Chen – University of South Carolina

Vladimir Chigrinov – Hong Kong University of Science and Technology

Robert Coleman – University of North Carolina Charlotte

Wilbur N. Dale

Ibrahim Elshafiey – King Saud University

Wayne Grassel – Point Park University

Essam E. Hassan – King Fahd University of Petroleum and Minerals

David R. Jackson – University of Houston

Karim Y. Kabalan – American University of Beirut

Shahwan Victor Khoury, Professor Emeritus – Notre Dame University,

Louaize-Zouk Mosbeh, Lebanon

Choon S. Lee – Southern Methodist University

Mojdeh J. Mardani – University of North Dakota

Mohamed Mostafa Morsy – Southern Illinois University Carbondale

Sima Noghanian – University of North Dakota

W.D. Rawle – Calvin College

Gönül Sayan – Middle East Technical University

Fred H. Terry – Professor Emeritus, Christian Brothers University

Denise Thorsen – University of Alaska Fairbanks

Chi-Ling Wang – Feng-Chia University



Preface xiii

I also acknowledge the feedback and many comments from students, too numerous to

name, including several who have contacted me from afar. I continue to be open and

grateful for this feedback and can be reached at john.buck@ece.gatech.edu. Many

suggestions were made that I considered constructive and actionable. I regret that

not all could be incorporated because of time restrictions. Creating this book was a

team effort, involving several outstanding people at McGraw-Hill. These include my

publisher, Raghu Srinivasan, and sponsoring editor, Peter Massar, whose vision and

encouragement were invaluable, Robin Reed, who deftly coordinated the production

phase with excellent ideas and enthusiasm, and Darlene Schueller, who was my

guide and conscience from the beginning, providing valuable insights, and jarring me

into action when necessary. Typesetting was supervised by Vipra Fauzdar at Glyph

International, who employed the best copy editor I ever had, Laura Bowman. Diana

Fouts (Georgia Tech) applied her vast artistic skill to designing the cover, as she has

done for the previous two editions. Finally, I am, as usual in these projects, grateful

to a patient and supportive family, and particularly to my daughter, Amanda, who

assisted in preparing the manuscript.

John A. Buck
Marietta, Georgia

December, 2010

On the cover: Radiated intensity patterns for a dipole antenna, showing the cases

for which the wavelength is equal to the overall antenna length (red), two-thirds the

antenna length (green), and one-half the antenna length (blue).
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Vector Analysis

V
ector analysis is a mathematical subject that is better taught by mathematicians

than by engineers. Most junior and senior engineering students have not had

the time (or the inclination) to take a course in vector analysis, although it is

likely that vector concepts and operations were introduced in the calculus sequence.

These are covered in this chapter, and the time devoted to them now should depend

on past exposure.

The viewpoint here is that of the engineer or physicist and not that of the mathe-

matician. Proofs are indicated rather than rigorously expounded, and physical inter-

pretation is stressed. It is easier for engineers to take a more rigorous course in the

mathematics department after they have been presented with a few physical pictures

and applications.

Vector analysis is a mathematical shorthand. It has some new symbols and some

new rules, and it demands concentration and practice. The drill problems, first found

at the end of Section 1.4, should be considered part of the text and should all be

worked. They should not prove to be difficult if the material in the accompanying

section of the text has been thoroughly understood. It takes a little longer to “read”

the chapter this way, but the investment in time will produce a surprising interest. ■

1.1 SCALARS AND VECTORS

The term scalar refers to a quantity whose value may be represented by a single

(positive or negative) real number. The x, y, and z we use in basic algebra are scalars,

and the quantities they represent are scalars. If we speak of a body falling a distance

L in a time t , or the temperature T at any point in a bowl of soup whose coordinates

are x, y, and z, then L , t, T, x, y, and z are all scalars. Other scalar quantities are

mass, density, pressure (but not force), volume, volume resistivity, and voltage.

A vector quantity has both a magnitude1 and a direction in space. We are con-

cerned with two- and three-dimensional spaces only, but vectors may be defined in

1 We adopt the convention that magnitude infers absolute value; the magnitude of any quantity is,

therefore, always positive.

1



2 ENGINEERING ELECTROMAGNETICS

n-dimensional space in more advanced applications. Force, velocity, acceleration,

and a straight line from the positive to the negative terminal of a storage battery

are examples of vectors. Each quantity is characterized by both a magnitude and a

direction.

Our work will mainly concern scalar and vector field . A field (scalar or vector)

may be defined mathematically as some function that connects an arbitrary origin

to a general point in space. We usually associate some physical effect with a field,

such as the force on a compass needle in the earth’s magnetic field, or the movement

of smoke particles in the field defined by the vector velocity of air in some region

of space. Note that the field concept invariably is related to a region. Some quantity

is defined at every point in a region. Both scalar field and vector field exist. The

temperature throughout the bowl of soup and the density at any point in the earth

are examples of scalar fields. The gravitational and magnetic fields of the earth, the

voltage gradient in a cable, and the temperature gradient in a soldering-iron tip are

examples of vector fields. The value of a field varies in general with both position and

time.

In this book, as in most others using vector notation, vectors will be indicated by

boldface type, for example,A. Scalars are printed in italic type, for example, A. When

writing longhand, it is customary to draw a line or an arrow over a vector quantity to

show its vector character. (CAUTION: This is the first pitfall. Sloppy notation, such as

the omission of the line or arrow symbol for a vector, is the major cause of errors in

vector analysis.)

1.2 VECTOR ALGEBRA

With the definition of vectors and vector fields now established, we may proceed to

define the rules of vector arithmetic, vector algebra, and (later) vector calculus. Some

of the rules will be similar to those of scalar algebra, some will differ slightly, and

some will be entirely new.

To begin, the addition of vectors follows the parallelogram law. Figure 1.1 shows

the sum of two vectors, A and B. It is easily seen that A+B = B+A, or that vector

addition obeys the commutative law. Vector addition also obeys the associative law,

A+ (B+ C) = (A+ B) + C

Note that when a vector is drawn as an arrow of finite length, its location is

defined to be at the tail end of the arrow.

Coplanar vectors are vectors lying in a common plane, such as those shown

in Figure 1.1. Both lie in the plane of the paper and may be added by expressing

each vector in terms of “horizontal” and “vertical” components and then adding the

corresponding components.

Vectors in three dimensions may likewise be added by expressing the vectors

in terms of three components and adding the corresponding components. Examples

of this process of addition will be given after vector components are discussed in

Section 1.4.
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Figure 1.1 Two vectors may be added graphically either by drawing

both vectors from a common origin and completing the parallelogram or

by beginning the second vector from the head of the first and completing

the triangle; either method is easily extended to three or more vectors.

The rule for the subtraction of vectors follows easily from that for addition, for

we may always expressA−B asA+(−B); the sign, or direction, of the second vector

is reversed, and this vector is then added to the first by the rule for vector addition.

Vectors may be multiplied by scalars. The magnitude of the vector changes, but

its direction does not when the scalar is positive, although it reverses direction when

multiplied by a negative scalar. Multiplication of a vector by a scalar also obeys the

associative and distributive laws of algebra, leading to

(r + s)(A+ B) = r (A+ B) + s(A+ B) = rA+ rB+ sA+ sB

Division of a vector by a scalar is merely multiplication by the reciprocal of that

scalar. The multiplication of a vector by a vector is discussed in Sections 1.6 and 1.7.

Two vectors are said to be equal if their difference is zero, or A = B if A− B = 0.

In our use of vector fields we shall always add and subtract vectors that are defined

at the same point. For example, the total magnetic field about a small horseshoe mag-

net will be shown to be the sum of the fields produced by the earth and the permanent

magnet; the total field at any point is the sum of the individual fields at that point.

If we are not considering a vector fiel , we may add or subtract vectors that are

not defined at the same point. For example, the sum of the gravitational force acting

on a 150 lb f (pound-force) man at the North Pole and that acting on a 175 lb f person

at the South Pole may be obtained by shifting each force vector to the South Pole

before addition. The result is a force of 25 lb f directed toward the center of the earth

at the South Pole; if we wanted to be difficult, we could just as well describe the force

as 25 lb f directed away from the center of the earth (or “upward”) at the North Pole.2

1.3 THE RECTANGULAR
COORDINATE SYSTEM

To describe a vector accurately, some specific lengths, directions, angles, projections,

or components must be given. There are three simple methods of doing this, and

about eight or ten other methods that are useful in very special cases. We are going

2 Students have argued that the force might be described at the equator as being in a “northerly”

direction. They are right, but enough is enough.
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to use only the three simple methods, and the simplest of these is the rectangular, or

rectangular cartesian, coordinate system.

In the rectangular coordinate system we set up three coordinate axes mutually

at right angles to each other and call them the x, y, and z axes. It is customary to

choose a right-handed coordinate system, in which a rotation (through the smaller

angle) of the x axis into the y axis would cause a right-handed screw to progress in

the direction of the z axis. If the right hand is used, then the thumb, forefinger, and

middle finger may be identified, respectively, as the x, y, and z axes. Figure 1.2a
shows a right-handed rectangular coordinate system.

A point is located by giving its x, y, and z coordinates. These are, respectively,

the distances from the origin to the intersection of perpendicular lines dropped from

the point to the x, y, and z axes. An alternative method of interpreting coordinate

Figure 1.2 (a) A right-handed rectangular coordinate system. If the curved fingers of the

right hand indicate the direction through which the x axis is turned into coincidence with the

y axis, the thumb shows the direction of the z axis. (b) The location of points P(1, 2, 3) and

Q(2,−2, 1). (c) The differential volume element in rectangular coordinates; dx, dy, and dz

are, in general, independent differentials.
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values, which must be used in all other coordinate systems, is to consider the point as

being at the common intersection of three surfaces. These are the planes x = constant,

y = constant, and z = constant, where the constants are the coordinate values of the

point.

Figure 1.2b shows points P and Q whose coordinates are (1, 2, 3) and (2, −2, 1),

respectively. Point P is therefore located at the common point of intersection of the

planes x = 1, y = 2, and z = 3, whereas point Q is located at the intersection of the

planes x = 2, y = −2, and z = 1.

As we encounter other coordinate systems in Sections 1.8 and 1.9, we expect

points to be located at the common intersection of three surfaces, not necessarily

planes, but still mutually perpendicular at the point of intersection.

If we visualize three planes intersecting at the general point P , whose coordinates

are x, y, and z, we may increase each coordinate value by a differential amount and

obtain three slightly displaced planes intersecting at point P ′, whose coordinates are

x + dx , y + dy, and z + dz. The six planes define a rectangular parallelepiped whose

volume is dv = dxdydz; the surfaces have differential areas d S of dxdy, dydz, and

dzdx . Finally, the distance d L from P to P ′ is the diagonal of the parallelepiped and

has a length of
√

(dx)2 + (dy)2 + (dz)2. The volume element is shown in Figure 1.2c;

point P ′ is indicated, but point P is located at the only invisible corner.

All this is familiar from trigonometry or solid geometry and as yet involves only

scalar quantities. We will describe vectors in terms of a coordinate system in the next

section.

1.4 VECTOR COMPONENTS
AND UNIT VECTORS

To describe a vector in the rectangular coordinate system, let us first consider a vector r
extending outward from the origin. A logical way to identify this vector is by giving

the three component vectors, lying along the three coordinate axes, whose vector sum

must be the given vector. If the component vectors of the vector r are x, y, and z,
then r = x+ y+ z. The component vectors are shown in Figure 1.3a. Instead of one

vector, we now have three, but this is a step forward because the three vectors are of

a very simple nature; each is always directed along one of the coordinate axes.

The component vectors have magnitudes that depend on the given vector (such

as r), but they each have a known and constant direction. This suggests the use of unit
vectors having unit magnitude by definition; these are parallel to the coordinate axes

and they point in the direction of increasing coordinate values. We reserve the symbol

a for a unit vector and identify its direction by an appropriate subscript. Thus ax , ay ,

and az are the unit vectors in the rectangular coordinate system.3 They are directed

along the x, y, and z axes, respectively, as shown in Figure 1.3b.

If the component vector y happens to be two units in magnitude and directed

toward increasing values of y, we should then write y = 2ay . A vector rP pointing

3 The symbols i, j, and k are also commonly used for the unit vectors in rectangular coordinates.
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Figure 1.3 (a) The component vectors x, y, and z of vector r. (b) The unit

vectors of the rectangular coordinate system have unit magnitude and are

directed toward increasing values of their respective variables. (c) The vector RPQ

is equal to the vector difference rQ − rP .

from the origin to point P(1, 2, 3) is written rP = ax + 2ay + 3az . The vector from

P to Q may be obtained by applying the rule of vector addition. This rule shows

that the vector from the origin to P plus the vector from P to Q is equal to the

vector from the origin to Q. The desired vector from P(1, 2, 3) to Q(2, −2, 1) is

therefore

RP Q = rQ − rP = (2 − 1)ax + (−2 − 2)ay + (1 − 3)az

= ax − 4ay − 2az

The vectors rP , rQ , and RP Q are shown in Figure 1.3c.

The last vector does not extend outward from the origin, as did the vector r we

initially considered. However, we have already learned that vectors having the same

magnitude and pointing in the same direction are equal, so we see that to help our

visualization processes we are at liberty to slide any vector over to the origin before
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determining its component vectors. Parallelism must, of course, be maintained during

the sliding process.

If we are discussing a force vector F, or indeed any vector other than a

displacement-type vector such as r, the problem arises of providing suitable letters

for the three component vectors. It would not do to call them x, y, and z, for these

are displacements, or directed distances, and are measured in meters (abbreviated m)

or some other unit of length. The problem is most often avoided by using component
scalars, simply called components, Fx , Fy , and Fz . The components are the signed

magnitudes of the component vectors. We may then write F = Fxax + Fyay + Fzaz .

The component vectors are Fxax , Fyay , and Fzaz .

Any vectorB then may be described byB = Bxax + Byay + Bzaz . The magnitude

of B written |B| or simply B, is given by

|B| =
√

B2
x + B2

y + B2
z (1)

Each of the three coordinate systems we discuss will have its three fundamental

and mutually perpendicular unit vectors that are used to resolve any vector into its

component vectors. Unit vectors are not limited to this application. It is helpful to

write a unit vector having a specified direction. This is easily done, for a unit vector

in a given direction is merely a vector in that direction divided by its magnitude. A

unit vector in the r direction is r/
√

x2 + y2 + z2, and a unit vector in the direction of

the vector B is

aB =
B

√

B2
x + B2

y + B2
z

=
B
|B| (2)

EXAMPLE 1.1

Specify the unit vector extending from the origin toward the point G(2, −2, −1).

Solution. We first construct the vector extending from the origin to point G,

G = 2ax − 2ay − az

We continue by finding the magnitude of G,

|G| =
√

(2)2 + (−2)2 + (−1)2 = 3

and finally expressing the desired unit vector as the quotient,

aG =
G
|G|

= 2
3
ax − 2

3
ay − 1

3
az = 0.667ax − 0.667ay − 0.333az

A special symbol is desirable for a unit vector so that its character is immediately

apparent. Symbols that have been used are uB, aB, 1B, or even b. We will consistently

use the lowercase a with an appropriate subscript.
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[NOTE: Throughout the text, drill problems appear following sections in which

a new principle is introduced in order to allow students to test their understanding of

the basic fact itself. The problems are useful in gaining familiarity with new terms

and ideas and should all be worked. More general problems appear at the ends of the

chapters. The answers to the drill problems are given in the same order as the parts

of the problem.]

D1.1. Given points M(−1, 2, 1), N (3, −3, 0), and P(−2, −3, −4), find:

(a) RM N ; (b) RM N + RM P ; (c) |rM |; (d) aM P ; (e) |2rP − 3rN |.

Ans. 4ax − 5ay − az ; 3ax − 10ay − 6az ; 2.45; −0.14ax − 0.7ay − 0.7az ; 15.56

1.5 THE VECTOR FIELD

We have defined a vector field as a vector function of a position vector. In general,

the magnitude and direction of the function will change as we move throughout the

region, and the value of the vector function must be determined using the coordinate

values of the point in question. Because we have considered only the rectangular

coordinate system, we expect the vector to be a function of the variables x, y, and z.
If we again represent the position vector as r, then a vector field G can be

expressed in functional notation as G(r); a scalar field T is written as T (r).
If we inspect the velocity of the water in the ocean in some region near the

surface where tides and currents are important, we might decide to represent it by

a velocity vector that is in any direction, even up or down. If the z axis is taken as

upward, the x axis in a northerly direction, the y axis to the west, and the origin at

the surface, we have a right-handed coordinate system and may write the velocity

vector as v = vxax + vyay + vzaz , or v(r) = vx (r)ax + vy(r)ay + vz(r)az ; each of

the components vx , vy , and vz may be a function of the three variables x, y, and z.

If we are in some portion of the Gulf Stream where the water is moving only to the

north, then vy and vz are zero. Further simplifying assumptions might be made if

the velocity falls off with depth and changes very slowly as we move north, south,

east, or west. A suitable expression could be v = 2ez/100ax . We have a velocity of

2 m/s (meters per second) at the surface and a velocity of 0.368 × 2, or 0.736 m/s, at

a depth of 100 m (z = −100). The velocity continues to decrease with depth, while

maintaining a constant direction.

D1.2. A vector field S is expressed in rectangular coordinates as S = {125/

[(x −1)2 + (y −2)2 + (z +1)2]}{(x −1)ax + (y −2)ay + (z +1)az}. (a) Evaluate

S at P(2, 4, 3). (b) Determine a unit vector that gives the direction of S at P .

(c) Specify the surface f (x, y, z) on which |S| = 1.

Ans. 5.95ax + 11.90ay + 23.8az ; 0.218ax + 0.436ay + 0.873az ;
√

(x − 1)2 + (y − 2)2 + (z + 1)2 = 125
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1.6 THE DOT PRODUCT

We now consider the first of two types of vector multiplication. The second type will

be discussed in the following section.

Given two vectors A and B, the dot product, or scalar product, is defined as the

product of the magnitude of A, the magnitude of B, and the cosine of the smaller

angle between them,

A ·B = |A| |B| cos θAB (3)

The dot appears between the two vectors and should be made heavy for emphasis.

The dot, or scalar, product is a scalar, as one of the names implies, and it obeys the

commutative law,

A ·B = B ·A (4)

for the sign of the angle does not affect the cosine term. The expression A ·B is read

“A dot B.”

Perhaps the most common application of the dot product is in mechanics, where

a constant force F applied over a straight displacement L does an amount of work

F L cos θ , which is more easily written F ·L. We might anticipate one of the results

of Chapter 4 by pointing out that if the force varies along the path, integration is

necessary to find the total work, and the result becomes

Work =
∫

F · dL

Another example might be taken from magnetic fields. The total flux � crossing

a surface of area S is given by BS if the magnetic flux density B is perpendicular

to the surface and uniform over it. We define a vector surface S as having area

for its magnitude and having a direction normal to the surface (avoiding for the

moment the problem of which of the two possible normals to take). The flux crossing

the surface is then B · S. This expression is valid for any direction of the uniform

magnetic flux density. If the flux density is not constant over the surface, the total flux

is � =
∫

B · dS. Integrals of this general form appear in Chapter 3 when we study

electric flux density.

Finding the angle between two vectors in three-dimensional space is often a

job we would prefer to avoid, and for that reason the definition of the dot product is

usually not used in its basic form. A more helpful result is obtained by considering two

vectors whose rectangular components are given, such as A = Axax + Ayay + Azaz
and B = Bxax + Byay + Bzaz . The dot product also obeys the distributive law, and,

therefore, A ·B yields the sum of nine scalar terms, each involving the dot product

of two unit vectors. Because the angle between two different unit vectors of the

rectangular coordinate system is 90◦, we then have

ax · ay = ay · ax = ax · az = az · ax = ay · az = az · ay = 0
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Figure 1.4 (a) The scalar component of B in the direction of the unit vector a is

B · a. (b) The vector component of B in the direction of the unit vector a is (B · a)a.

The remaining three terms involve the dot product of a unit vector with itself, which

is unity, giving finally

A ·B = Ax Bx + Ay By + Az Bz (5)

which is an expression involving no angles.

A vector dotted with itself yields the magnitude squared, or

A ·A = A2 = |A|2 (6)

and any unit vector dotted with itself is unity,

aA · aA = 1

One of the most important applications of the dot product is that of finding the

component of a vector in a given direction. Referring to Figure 1.4a, we can obtain

the component (scalar) of B in the direction specified by the unit vector a as

B · a = |B| |a| cos θBa = |B| cos θBa

The sign of the component is positive if 0 ≤ θBa ≤ 90◦ and negative whenever

90◦ ≤ θBa ≤ 180◦.

To obtain the component vector of B in the direction of a, we multiply the

component (scalar) by a, as illustrated by Figure 1.4b. For example, the component

of B in the direction of ax is B · ax = Bx , and the component vector is Bxax , or

(B · ax )ax . Hence, the problem of finding the component of a vector in any direction

becomes the problem of finding a unit vector in that direction, and that we can do.

The geometrical term projection is also used with the dot product. Thus, B · a is

the projection of B in the a direction.

EXAMPLE 1.2

In order to illustrate these definitions and operations, consider the vector field G =
yax −2.5xay +3az and the point Q(4, 5, 2). We wish to find:G at Q; the scalar com-

ponent of G at Q in the direction of aN = 1
3
(2ax + ay − 2az); the vector component

of G at Q in the direction of aN ; and finally, the angle θGa between G(rQ) and aN .
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Solution. Substituting the coordinates of point Q into the expression forG, we have

G(rQ) = 5ax − 10ay + 3az

Next we find the scalar component. Using the dot product, we have

G · aN = (5ax − 10ay + 3az) · 1
3
(2ax + ay − 2az) = 1

3
(10 − 10 − 6) = −2

The vector component is obtained by multiplying the scalar component by the unit

vector in the direction of aN,

(G · aN )aN = −(2) 1
3
(2ax + ay − 2az) = −1.333ax − 0.667ay + 1.333az

The angle between G(rQ) and aN is found from

G · aN = |G| cos θGa

−2 =
√

25 + 100 + 9 cos θGa

and

θGa = cos−1 −2
√

134
= 99.9◦

D1.3. The three vertices of a triangle are located at A(6, −1, 2), B(−2, 3, −4),

and C(−3, 1, 5). Find: (a)RAB ; (b)RAC ; (c) the angle θB AC at vertex A; (d) the

(vector) projection of RAB on RAC .

Ans. −8ax + 4ay − 6az ; −9ax + 2ay + 3az ; 53.6◦; −5.94ax + 1.319ay + 1.979az

1.7 THE CROSS PRODUCT

Given two vectors A and B, we now define the cross product, or vector product, of A
and B, written with a cross between the two vectors as A × B and read “A cross B.”

The cross product A× B is a vector; the magnitude of A× B is equal to the product

of the magnitudes of A,B, and the sine of the smaller angle between A and B; the

direction ofA×B is perpendicular to the plane containingA andB and is along one of

the two possible perpendiculars which is in the direction of advance of a right-handed

screw as A is turned into B. This direction is illustrated in Figure 1.5. Remember that

either vector may be moved about at will, maintaining its direction constant, until

the two vectors have a “common origin.” This determines the plane containing both.

However, in most of our applications we will be concerned with vectors defined at

the same point.

As an equation we can write

A× B = aN |A| |B| sin θAB (7)

where an additional statement, such as that given above, is required to explain the

direction of the unit vector aN . The subscript stands for “normal.”
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Figure 1.5 The direction of A × B is in the

direction of advance of a right-handed screw

as A is turned into B.

Reversing the order of the vectors A and B results in a unit vector in the opposite

direction, and we see that the cross product is not commutative, forB×A = −(A×B).

If the definition of the cross product is applied to the unit vectors ax and ay , we find

ax × ay = az , for each vector has unit magnitude, the two vectors are perpendicular,

and the rotation of ax into ay indicates the positive z direction by the definition of a

right-handed coordinate system. In a similar way, ay × az = ax and az × ax = ay .

Note the alphabetic symmetry. As long as the three vectors ax , ay , and az are written

in order (and assuming that ax follows az , like three elephants in a circle holding tails,

so that we could also write ay , az , ax or az , ax , ay), then the cross and equal sign may

be placed in either of the two vacant spaces. As a matter of fact, it is now simpler to

define a right-handed rectangular coordinate system by saying that ax × ay = az .

A simple example of the use of the cross product may be taken from geometry

or trigonometry. To find the area of a parallelogram, the product of the lengths of

two adjacent sides is multiplied by the sine of the angle between them. Using vector

notation for the two sides, we then may express the (scalar) area as the magnitude of

A× B, or |A× B|.
The cross product may be used to replace the right-hand rule familiar to all

electrical engineers. Consider the force on a straight conductor of length L, where

the direction assigned to L corresponds to the direction of the steady current I , and

a uniform magnetic field of flux density B is present. Using vector notation, we may

write the result neatly as F = IL × B. This relationship will be obtained later in

Chapter 9.

The evaluation of a cross product by means of its definition turns out to be more

work than the evaluation of the dot product from its definition, for not only must

we find the angle between the vectors, but we must also find an expression for the
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unit vector aN . This work may be avoided by using rectangular components for the

two vectors A and B and expanding the cross product as a sum of nine simpler cross

products, each involving two unit vectors,

A× B = Ax Bxax × ax + Ax Byax × ay + Ax Bzax × az

+ Ay Bxay × ax + Ay Byay × ay + Ay Bzay × az

+ Az Bxaz × ax + Az Byaz × ay + Az Bzaz × az

We have already found that ax × ay = az , ay × az = ax , and az × ax = ay . The

three remaining terms are zero, for the cross product of any vector with itself is zero,

since the included angle is zero. These results may be combined to give

A× B = (Ay Bz − Az By)ax + (Az Bx − Ax Bz)ay + (Ax By − Ay Bx )az (8)

or written as a determinant in a more easily remembered form,

A× B =

∣

∣

∣

∣

∣

∣

ax ay az
Ax Ay Az
Bx By Bz

∣

∣

∣

∣

∣

∣

(9)

Thus, if A = 2ax − 3ay + az and B = −4ax − 2ay + 5az, we have

A× B =

∣

∣

∣

∣

∣

∣

ax ay az
2 −3 1

−4 −2 5

∣

∣

∣

∣

∣

∣

= [(−3)(5) − (1(−2)]ax − [(2)(5) − (1)(−4)]ay + [(2)(−2) − (−3)(−4)]az

= −13ax − 14ay − 16az

D1.4. The three vertices of a triangle are located at A(6, −1, 2), B(−2, 3, −4),

and C(−3, 1, 5). Find: (a) RAB × RAC ; (b) the area of the triangle; (c) a unit

vector perpendicular to the plane in which the triangle is located.

Ans. 24ax + 78ay + 20az ; 42.0; 0.286ax + 0.928ay + 0.238az

1.8 OTHER COORDINATE SYSTEMS:
CIRCULAR CYLINDRICAL COORDINATES

The rectangular coordinate system is generally the one in which students prefer to

work every problem. This often means a lot more work, because many problems

possess a type of symmetry that pleads for a more logical treatment. It is easier to

do now, once and for all, the work required to become familiar with cylindrical and

spherical coordinates, instead of applying an equal or greater effort to every problem

involving cylindrical or spherical symmetry later. With this in mind, we will take a

careful and unhurried look at cylindrical and spherical coordinates.
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The circular cylindrical coordinate system is the three-dimensional version of

the polar coordinates of analytic geometry. In polar coordinates, a point is located

in a plane by giving both its distance ρ from the origin and the angle φ between the

line from the point to the origin and an arbitrary radial line, taken as φ = 0.4 In

circular cylindrical coordinates, we also specify the distance z of the point from an

arbitrary z = 0 reference plane that is perpendicular to the line ρ = 0. For simplicity,

we usually refer to circular cylindrical coordinates simply as cylindrical coordinates.

This will not cause any confusion in reading this book, but it is only fair to point out

that there are such systems as elliptic cylindrical coordinates, hyperbolic cylindrical

coordinates, parabolic cylindrical coordinates, and others.

We no longer set up three axes as with rectangular coordinates, but we must

instead consider any point as the intersection of three mutually perpendicular sur-

faces. These surfaces are a circular cylinder (ρ = constant), a plane (φ = constant),

and another plane (z = constant). This corresponds to the location of a point in a

rectangular coordinate system by the intersection of three planes (x = constant, y =
constant, and z = constant). The three surfaces of circular cylindrical coordinates are

shown in Figure 1.6a. Note that three such surfaces may be passed through any point,

unless it lies on the z axis, in which case one plane suffices.

Three unit vectors must also be defined, but we may no longer direct them along

the “coordinate axes,” for such axes exist only in rectangular coordinates. Instead, we

take a broader view of the unit vectors in rectangular coordinates and realize that they

are directed toward increasing coordinate values and are perpendicular to the surface

on which that coordinate value is constant (i.e., the unit vector ax is normal to the

plane x = constant and points toward larger values of x). In a corresponding way we

may now define three unit vectors in cylindrical coordinates, aρ, aφ , and az .

The unit vector aρ at a point P(ρ1, φ1, z1) is directed radially outward, normal

to the cylindrical surface ρ = ρ1. It lies in the planes φ = φ1 and z = z1. The unit

vector aφ is normal to the plane φ = φ1, points in the direction of increasing φ, lies in

the plane z = z1, and is tangent to the cylindrical surface ρ = ρ1. The unit vector az
is the same as the unit vector az of the rectangular coordinate system. Figure 1.6b
shows the three vectors in cylindrical coordinates.

In rectangular coordinates, the unit vectors are not functions of the coordinates.

Two of the unit vectors in cylindrical coordinates, aρ and aφ , however, do vary with

the coordinate φ, as their directions change. In integration or differentiation with

respect to φ, then, aρ and aφ must not be treated as constants.

The unit vectors are again mutually perpendicular, for each is normal to one of the

three mutually perpendicular surfaces, and we may define a right-handed cylindrical

4 The two variables of polar coordinates are commonly called r and θ . With three coordinates,

however, it is more common to use ρ for the radius variable of cylindrical coordinates and r for the

(different) radius variable of spherical coordinates. Also, the angle variable of cylindrical coordinates is

customarily called φ because everyone uses θ for a different angle in spherical coordinates. The angle

φ is common to both cylindrical and spherical coordinates. See?
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Figure 1.6 (a) The three mutually perpendicular surfaces of the circular cylindrical

coordinate system. (b) The three unit vectors of the circular cylindrical coordinate system.

(c) The differential volume unit in the circular cylindrical coordinate system; dρ, ρdφ, and

dz are all elements of length.

coordinate system as one in which aρ × aφ = az , or (for those who have flexible

fingers) as one in which the thumb, forefinger, and middle finger point in the direction

of increasing ρ, φ, and z, respectively.

A differential volume element in cylindrical coordinates may be obtained by

increasing ρ, φ, and z by the differential increments dρ, dφ, and dz. The two cylinders

of radius ρ and ρ + dρ, the two radial planes at angles φ and φ + dφ, and the two

“horizontal” planes at “elevations” z and z + dz now enclose a small volume, as

shown in Figure 1.6c, having the shape of a truncated wedge. As the volume element

becomes very small, its shape approaches that of a rectangular parallelepiped having

sides of length dρ, ρdφ, and dz. Note that dρ and dz are dimensionally lengths, but

dφ is not; ρdφ is the length. The surfaces have areas of ρ dρ dφ, dρ dz, and ρ dφ dz,

and the volume becomes ρ dρ dφ dz.
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Figure 1.7 The relationship between

the rectangular variables x, y, z and the

cylindrical coordinate variables ρ, φ, z.

There is no change in the variable z

between the two systems.

The variables of the rectangular and cylindrical coordinate systems are easily

related to each other. Referring to Figure 1.7, we see that

x = ρ cos φ

y = ρ sin φ (10)

z = z

From the other viewpoint, we may express the cylindrical variables in terms of x, y,

and z:

ρ =
√

x2 + y2 (ρ ≥ 0)

φ = tan−1 y
x

(11)

z = z

We consider the variable ρ to be positive or zero, thus using only the positive sign

for the radical in (11). The proper value of the angle φ is determined by inspecting

the signs of x and y. Thus, if x = −3 and y = 4, we find that the point lies in the

second quadrant so that ρ = 5 and φ = 126.9◦. For x = 3 and y = −4, we have

φ = −53.1◦ or 306.9◦, whichever is more convenient.

Using (10) or (11), scalar functions given in one coordinate system are easily

transformed into the other system.

A vector function in one coordinate system, however, requires two steps in order

to transform it to another coordinate system, because a different set of component
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vectors is generally required. That is, we may be given a rectangular vector

A = Axax + Ayay + Azaz

where each component is given as a function of x, y, and z, and we need a vector in

cylindrical coordinates

A = Aρaρ + Aφaφ + Azaz

where each component is given as a function of ρ, φ, and z.

To find any desired component of a vector, we recall from the discussion of the

dot product that a component in a desired direction may be obtained by taking the

dot product of the vector and a unit vector in the desired direction. Hence,

Aρ = A · aρ and Aφ = A · aφ

Expanding these dot products, we have

Aρ = (Axax + Ayay + Azaz) · aρ = Axax · aρ + Ayay · aρ (12)

Aφ = (Axax + Ayay + Azaz) · aφ = Axax · aφ + Ayay · aφ (13)

and

Az = (Axax + Ayay + Azaz) · az = Azaz · az = Az (14)

since az · aρ and az · aφ are zero.

In order to complete the transformation of the components, it is necessary to

know the dot products ax · aρ , ay · aρ , ax · aφ , and ay · aφ . Applying the definition

of the dot product, we see that since we are concerned with unit vectors, the result

is merely the cosine of the angle between the two unit vectors in question. Refer-

ring to Figure 1.7 and thinking mightily, we identify the angle between ax and aρ

as φ, and thus ax · aρ = cos φ, but the angle between ay and aρ is 90◦ − φ, and

ay · aρ = cos (90◦ − φ) = sin φ. The remaining dot products of the unit vectors

are found in a similar manner, and the results are tabulated as functions of φ in

Table 1.1.

Transforming vectors from rectangular to cylindrical coordinates or vice versa

is therefore accomplished by using (10) or (11) to change variables, and by using the

dot products of the unit vectors given in Table 1.1 to change components. The two

steps may be taken in either order.

Table 1.1 Dot products of unit vectors in cylindrical

and rectangular coordinate systems

aρ aφ az

ax · cos φ − sin φ 0

ay · sin φ cos φ 0

az · 0 0 1
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EXAMPLE 1.3

Transform the vector B = yax − xay + zaz into cylindrical coordinates.

Solution. The new components are

Bρ = B · aρ = y(ax · aρ) − x(ay · aρ)

= y cos φ − x sin φ = ρ sin φ cos φ − ρ cos φ sin φ = 0

Bφ = B · aφ = y(ax · aφ) − x(ay · aφ)

= −y sin φ − x cos φ = −ρ sin2 φ − ρ cos2 φ = −ρ

Thus,

B = −ρaφ + zaz

D1.5. (a) Give the rectangular coordinates of the point C(ρ = 4.4, φ =
−115◦, z = 2). (b) Give the cylindrical coordinates of the point D(x =
−3.1, y = 2.6, z = −3). (c) Specify the distance from C to D.

Ans. C(x = −1.860, y = −3.99, z = 2); D(ρ = 4.05, φ = 140.0◦, z = −3); 8.36

D1.6. Transform to cylindrical coordinates: (a) F = 10ax −8ay +6az at point

P(10, −8, 6); (b)G = (2x + y)ax − (y −4x)ay at point Q(ρ, φ, z). (c) Give the

rectangular components of the vector H = 20aρ − 10aφ + 3az at P(x = 5,

y = 2, z = −1).

Ans. 12.81aρ +6az ; (2ρ cos2 φ −ρ sin2 φ +5ρ sin φ cos φ)aρ + (4ρ cos2 φ −ρ sin2 φ

− 3ρ sin φ cos φ)aφ ; Hx = 22.3, Hy = −1.857, Hz = 3

1.9 THE SPHERICAL COORDINATE SYSTEM

We have no two-dimensional coordinate system to help us understand the three-

dimensional spherical coordinate system, as we have for the circular cylindrical

coordinate system. In certain respects we can draw on our knowledge of the latitude-

and-longitude system of locating a place on the surface of the earth, but usually we

consider only points on the surface and not those below or above ground.

Let us start by building a spherical coordinate system on the three rectangular

axes (Figure 1.8a). We first define the distance from the origin to any point as r . The

surface r = constant is a sphere.

The second coordinate is an angle θ between the z axis and the line drawn

from the origin to the point in question. The surface θ = constant is a cone, and

the two surfaces, cone and sphere, are everywhere perpendicular along their inter-

section, which is a circle of radius r sin θ . The coordinate θ corresponds to latitude,
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Figure 1.8 (a) The three spherical coordinates. (b) The three mutually perpendicular

surfaces of the spherical coordinate system. (c) The three unit vectors of spherical

coordinates: ar × aθ = aφ . (d) The differential volume element in the spherical coordinate

system.

except that latitude is measured from the equator and θ is measured from the “North

Pole.”

The third coordinate φ is also an angle and is exactly the same as the angle φ of

cylindrical coordinates. It is the angle between the x axis and the projection in the

z = 0 plane of the line drawn from the origin to the point. It corresponds to the angle

of longitude, but the angle φ increases to the “east.” The surface φ = constant is a

plane passing through the θ = 0 line (or the z axis).

We again consider any point as the intersection of three mutually perpendicular

surfaces—a sphere, a cone, and a plane—each oriented in the manner just described.

The three surfaces are shown in Figure 1.8b.

Three unit vectors may again be defined at any point. Each unit vector is per-

pendicular to one of the three mutually perpendicular surfaces and oriented in that
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direction in which the coordinate increases. The unit vector ar is directed radially

outward, normal to the sphere r = constant, and lies in the cone θ = constant and

the plane φ = constant. The unit vector aθ is normal to the conical surface, lies in

the plane, and is tangent to the sphere. It is directed along a line of “longitude” and

points “south.” The third unit vector aφ is the same as in cylindrical coordinates, being

normal to the plane and tangent to both the cone and the sphere. It is directed to the

“east.”

The three unit vectors are shown in Figure 1.8c. They are, of course, mutually per-

pendicular, and a right-handed coordinate system is defined by causing ar × aθ = aφ .

Our system is right-handed, as an inspection of Figure 1.8c will show, on application

of the definition of the cross product. The right-hand rule identifies the thumb, fore-

finger, and middle finger with the direction of increasing r , θ , and φ, respectively.

(Note that the identification in cylindrical coordinates was with ρ, φ, and z, and in

rectangular coordinates with x, y, and z.) A differential volume element may be con-

structed in spherical coordinates by increasing r , θ , and φ by dr , dθ , and dφ, as

shown in Figure 1.8d. The distance between the two spherical surfaces of radius r
and r + dr is dr ; the distance between the two cones having generating angles of θ

and θ + dθ is rdθ ; and the distance between the two radial planes at angles φ and

φ + dφ is found to be r sin θdφ, after a few moments of trigonometric thought. The

surfaces have areas of r dr dθ , r sin θ dr dφ, and r2 sin θ dθ dφ, and the volume is

r2 sin θ dr dθ dφ.

The transformation of scalars from the rectangular to the spherical coordinate

system is easily made by using Figure 1.8a to relate the two sets of variables:

x = r sin θ cos φ

y = r sin θ sin φ (15)

z = r cos θ

The transformation in the reverse direction is achieved with the help of

r =
√

x2 + y2 + z2 (r ≥ 0)

θ = cos−1 z
√

x2 + y2 + z2
(0◦ ≤ θ ≤ 180◦) (16)

φ = tan−1 y
x

The radius variable r is nonnegative, and θ is restricted to the range from 0◦ to 180◦,

inclusive. The angles are placed in the proper quadrants by inspecting the signs of

x, y, and z.

The transformation of vectors requires us to determine the products of the unit

vectors in rectangular and spherical coordinates. We work out these products from

Figure 1.8c and a pinch of trigonometry. Because the dot product of any spheri-

cal unit vector with any rectangular unit vector is the component of the spherical
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Table 1.2 Dot products of unit vectors in spherical

and rectangular coordinate systems

ar aθ aφ

ax · sin θ cos φ cos θ cos φ − sin φ

ay · sin θ sin φ cos θ sin φ cos φ

az · cos θ − sin θ 0

vector in the direction of the rectangular vector, the dot products with az are found

to be

az · ar = cos θ

az · aθ = −sin θ

az · aφ = 0

The dot products involving ax and ay require first the projection of the spherical

unit vector on the xy plane and then the projection onto the desired axis. For example,

ar · ax is obtained by projecting ar onto the xy plane, giving sin θ , and then projecting

sin θ on the x axis, which yields sin θ cos φ. The other dot products are found in a

like manner, and all are shown in Table 1.2.

EXAMPLE 1.4

We illustrate this procedure by transforming the vector field G= (xz/y)ax into

spherical components and variables.

Solution. We find the three spherical components by dotting G with the appropriate

unit vectors, and we change variables during the procedure:

Gr = G · ar =
xz
y
ax · ar =

xz
y

sin θ cos φ

= r sin θ cos θ
cos2 φ

sin φ

Gθ = G · aθ =
xz
y
ax · aθ =

xz
y

cos θ cos φ

= r cos2 θ
cos2 φ

sin φ

Gφ = G · aφ =
xz
y
ax · aφ =

xz
y

(−sin φ)

= −r cos θ cos φ

Collecting these results, we have

G = r cos θ cos φ (sin θ cot φ ar + cos θ cot φ aθ − aφ)

Appendix A describes the general curvilinear coordinate system of which the

rectangular, circular cylindrical, and spherical coordinate systems are special cases.

The first section of this appendix could well be scanned now.
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D1.7. Given the two points, C(−3, 2, 1) and D(r = 5, θ = 20◦, φ = − 70◦),

find: (a) the spherical coordinates of C ; (b) the rectangular coordinates of D;

(c) the distance from C to D.

Ans. C(r = 3.74, θ = 74.5◦, φ = 146.3◦); D(x = 0.585, y = −1.607, z = 4.70);

6.29

D1.8. Transform the following vectors to spherical coordinates at the points

given: (a) 10ax at P(x = −3, y = 2, z = 4); (b) 10ay at Q(ρ = 5, φ = 30◦,

z = 4); (c) 10az at M(r = 4, θ = 110◦, φ = 120◦).

Ans. −5.57ar − 6.18aθ − 5.55aφ ; 3.90ar + 3.12aθ + 8.66aφ ; −3.42ar − 9.40aθ

REFERENCES

1. Grossman, S. I. Calculus. 3d ed. Orlando, Fla.: Academic Press and Harcourt Brace

Jovanovich, 1984. Vector algebra and cylindrical and spherical coordinates appear in

Chapter 17, and vector calculus is introduced in Chapter 20.

2. Spiegel, M. R. Vector Analysis. Schaum Outline Series. New York: McGraw-Hill, 1959.

A large number of examples and problems with answers are provided in this concise,

inexpensive member of an outline series.

3. Swokowski, E. W. Calculus with Analytic Geometry. 3d ed. Boston: Prindle, Weber, &

Schmidt, 1984. Vector algebra and the cylindrical and spherical coordinate systems are

discussed in Chapter 14, and vector calculus appears in Chapter 18.

4. Thomas, G. B., Jr., and R. L. Finney: Calculus and Analytic Geometry. 6th ed. Reading,

Mass.: Addison-Wesley Publishing Company, 1984. Vector algebra and the three

coordinate systems we use are discussed in Chapter 13. Other vector operations are

discussed in Chapters 15 and 17.

CHAPTER 1 PROBLEMS

1.1 Given the vectors M = −10ax + 4ay − 8az and N = 8ax + 7ay − 2az , find:

(a) a unit vector in the direction of −M+ 2N; (b) the magnitude of 5ax +
N− 3M; (c) |M||2N|(M+ N).

1.2 Vector A extends from the origin to (1, 2, 3), and vector B extends from the

origin to (2, 3, −2). Find (a) the unit vector in the direction of (A− B);

(b) the unit vector in the direction of the line extending from the origin to the

midpoint of the line joining the ends of A and B.

1.3 The vector from the origin to point A is given as (6, −2, −4), and the unit

vector directed from the origin toward point B is (2, −2, 1)/3. If points A
and B are ten units apart, find the coordinates of point B.



CHAPTER 1 Vector Analysis 23

1.4 A circle, centered at the origin with a radius of 2 units, lies in the xy plane.

Determine the unit vector in rectangular components that lies in the xy plane,

is tangent to the circle at (−
√

3,1, 0), and is in the general direction of

increasing values of y.

1.5 A vector field is specified as G = 24xyax + 12(x2 + 2)ay + 18z2az . Given

two points, P(1, 2, −1) and Q(−2, 1, 3), find (a) G at P; (b) a unit vector in

the direction of G at Q; (c) a unit vector directed from Q toward P; (d) the

equation of the surface on which |G| = 60.

1.6 Find the acute angle between the two vectors A = 2ax + ay + 3az and

B = ax − 3ay + 2az by using the definition of (a) the dot product; (b) the

cross product.

1.7 Given the vector field E = 4zy2 cos 2xax + 2zy sin 2xay + y2 sin 2xaz for

the region |x |, |y|, and |z| less than 2, find (a) the surfaces on which

Ey = 0; (b) the region in which Ey = Ez ; (c) the region in which E = 0.

1.8 Demonstrate the ambiguity that results when the cross product is used to

find the angle between two vectors by finding the angle between

A = 3ax − 2ay + 4az and B = 2ax + ay − 2az . Does this ambiguity exist

when the dot product is used?

1.9 A field is given as G = [25/(x2 + y2)](xax + yay). Find (a) a unit vector

in the direction of G at P(3, 4, −2); (b) the angle between G and ax at P;

(c) the value of the following double integral on the plane y = 7.

∫ 4

0

∫ 2

0

G · ay dzdx

1.10 By expressing diagonals as vectors and using the definition of the dot

product, find the smaller angle between any two diagonals of a cube, where

each diagonal connects diametrically opposite corners and passes through the

center of the cube.

1.11 Given the points M(0.1, −0.2, −0.1), N (−0.2, 0.1, 0.3), and P(0.4, 0, 0.1),

find (a) the vector RM N ; (b) the dot product RM N ·RM P ; (c) the scalar

projection of RM N on RM P ; (d) the angle between RM N and RM P .

1.12 Write an expression in rectangular components for the vector that extends

from (x1, y1, z1) to (x2, y2, z2) and determine the magnitude of this vector.

1.13 Find (a) the vector component of F = 10ax − 6ay + 5az that is parallel to

G = 0.1ax + 0.2ay + 0.3az ; (b) the vector component of F that is

perpendicular to G; (c) the vector component of G that is perpendicular

to F.

1.14 Given that A+ B+ C = 0, where the three vectors represent line segments

and extend from a common origin, must the three vectors be coplanar? If

A+ B+ C+ D = 0, are the four vectors coplanar?
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1.15 Three vectors extending from the origin are given as r1 = (7, 3, −2),

r2 = (−2, 7, −3), and r3 = (0, 2, 3). Find (a) a unit vector perpendicular to

both r1 and r2; (b) a unit vector perpendicular to the vectors r1 − r2 and

r2 − r3; (c) the area of the triangle defined by r1 and r2; (d) the area of the

triangle defined by the heads of r1, r2, and r3.

1.16 If A represents a vector one unit long directed due east, B represents a vector

three units long directed due north, and A+ B = 2C− D and

2A− B = C+ 2D, determine the length and direction of C.

1.17 Point A(−4, 2, 5) and the two vectors, RAM = (20, 18 − 10) and

RAN = (−10, 8, 15), define a triangle. Find (a) a unit vector perpendicular to

the triangle; (b) a unit vector in the plane of the triangle and perpendicular to

RAN ; (c) a unit vector in the plane of the triangle that bisects the interior

angle at A.

1.18 A certain vector field is given as G = (y + 1)ax + xay . (a) Determine G at

the point (3, −2, 4); (b) obtain a unit vector defining the direction of G at

(3, −2, 4).

1.19 (a) Express the field D = (x2 + y2)−1(xax + yay) in cylindrical components

and cylindrical variables. (b) Evaluate D at the point where ρ = 2, φ = 0.2π ,

and z = 5, expressing the result in cylindrical and rectangular components.

1.20 If the three sides of a triangle are represented by vectors A, B, and C, all

directed counterclockwise, show that |C|2 = (A+ B) · (A+ B) and expand

the product to obtain the law of cosines.

1.21 Express in cylindrical components: (a) the vector from C(3, 2, −7) to

D(−1, −4, 2); (b) a unit vector at D directed toward C ; (c) a unit vector at D
directed toward the origin.

1.22 A sphere of radius a, centered at the origin, rotates about the z axis at angular

velocity � rad/s. The rotation direction is clockwise when one is looking in

the positive z direction. (a) Using spherical components, write an expression

for the velocity field, v, that gives the tangential velocity at any point within

the sphere; (b) convert to rectangular components.

1.23 The surfaces ρ = 3, ρ = 5, φ = 100◦, φ = 130◦, z = 3, and z = 4.5 define a

closed surface. Find (a) the enclosed volume; (b) the total area of the

enclosing surface; (c) the total length of the twelve edges of the surfaces;

(d) the length of the longest straight line that lies entirely within the volume.

1.24 Two unit vectors, a1 and a2, lie in the xy plane and pass through the origin.

They make angles φ1 and φ2, respectively, with the x axis (a) Express each

vector in rectangular components; (b) take the dot product and verify the

trigonometric identity, cos(φ1 − φ2) = cos φ1 cos φ2 + sin φ1 sin φ2; (c) take

the cross product and verify the trigonometric identity

sin(φ2 − φ1) = sin φ2 cos φ1 − cos φ2 sin φ1.
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1.25 Given point P(r = 0.8, θ = 30◦, φ = 45◦) and E = 1/r2 [cos φ ar +
(sin φ/ sin θ ) aφ], find (a) E at P; (b) |E| at P; (c) a unit vector in the

direction of E at P .

1.26 Express the uniform vector field F = 5ax in (a) cylindrical components;

(b) spherical components.

1.27 The surfaces r = 2 and 4, θ = 30◦ and 50◦, and φ = 20◦ and 60◦ identify a

closed surface. Find (a) the enclosed volume; (b) the total area of the

enclosing surface; (c) the total length of the twelve edges of the surface;

(d) the length of the longest straight line that lies entirely within the surface.

1.28 State whether or not A = B and, if not, what conditions are imposed on A
and B when (a) A · ax = B · ax ; (b) A× ax = B× ax ; (c) A · ax = B · ax and
A× ax = B× ax ; (d) A · C = B · C and A× C = B× C where C is any

vector except C = 0.

1.29 Express the unit vector ax in spherical components at the point: (a) r = 2,

θ = 1 rad, φ = 0.8 rad; (b) x = 3, y = 2, z = −1; (c) ρ = 2.5, φ = 0.7 rad,

z = 1.5.

1.30 Consider a problem analogous to the varying wind velocities encountered by

transcontinental aircraft. We assume a constant altitude, a plane earth, a flight

along the x axis from 0 to 10 units, no vertical velocity component, and no

change in wind velocity with time. Assume ax to be directed to the east and

ay to the north. The wind velocity at the operating altitude is assumed to be:

v(x, y) =
(0.01x2 − 0.08x + 0.66)ax − (0.05x − 0.4)ay

1 + 0.5y2

Determine the location and magnitude of (a) the maximum tailwind

encountered; (b) repeat for headwind; (c) repeat for crosswind; (d) Would

more favorable tailwinds be available at some other latitude? If so, where?



2 C H A P T E R

Coulomb’s Law and
Electric Field Intensity

H
aving formulated the language of vector analysis in the first chapter, we next

establish and describe a few basic principles of electricity. In this chapter,

we introduce Coulomb’s electrostatic force law and then formulate this in

a general way using field theory. The tools that will be developed can be used to

solve any problem in which forces between static charges are to be evaluated or to

determine the electric field that is associated with any charge distribution. Initially,

we will restrict the study to fields in vacuum or free space; this would apply to media

such as air and other gases. Other materials are introduced in Chapters 5 and 6 and

time-varying fields are introduced in Chapter 9. ■

2.1 THE EXPERIMENTAL LAW OF COULOMB

Records from at least 600 B.C. show evidence of the knowledge of static electricity.

The Greeks were responsible for the term electricity, derived from their word for

amber, and they spent many leisure hours rubbing a small piece of amber on their

sleeves and observing how it would then attract pieces of fluff and stuff. However,

their main interest lay in philosophy and logic, not in experimental science, and it

was many centuries before the attracting effect was considered to be anything other

than magic or a “life force.”

Dr. Gilbert, physician to Her Majesty the Queen of England, was the first to do

any true experimental work with this effect, and in 1600 he stated that glass, sulfur,

amber, and other materials, which he named, would “not only draw to themselves

straws and chaff, but all metals, wood, leaves, stone, earths, even water and oil.”

Shortly thereafter, an officer in the French Army Engineers, Colonel Charles

Coulomb, performed an elaborate series of experiments using a delicate torsion bal-

ance, invented by himself, to determine quantitatively the force exerted between two

objects, each having a static charge of electricity. His published result bears a great

similarity to Newton’s gravitational law (discovered about a hundred years earlier).

26
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Coulomb stated that the force between two very small objects separated in a vacuum

or free space by a distance, which is large compared to their size, is proportional to

the charge on each and inversely proportional to the square of the distance between

them, or

F = k
Q1 Q2

R2

where Q1 and Q2 are the positive or negative quantities of charge, R is the separation,

and k is a proportionality constant. If the International System of Units1 (SI) is used,

Q is measured in coulombs (C), R is in meters (m), and the force should be newtons

(N). This will be achieved if the constant of proportionality k is written as

k =
1

4πǫ0

The new constant ǫ0 is called the permittivity of free space and has magnitude, mea-

sured in farads per meter (F/m),

ǫ0 = 8.854 × 10−12 =̇
1

36π
10−9 F/m (1)

The quantity ǫ0 is not dimensionless, for Coulomb’s law shows that it has the

label C2/N · m2. We will later define the farad and show that it has the dimensions

C2/N · m; we have anticipated this definition by using the unit F/m in equation (1).

Coulomb’s law is now

F =
Q1 Q2

4πǫ0 R2
(2)

The coulomb is an extremely large unit of charge, for the smallest known quantity

of charge is that of the electron (negative) or proton (positive), given in SI units as

1.602 × 10−19 C; hence a negative charge of one coulomb represents about 6 × 1018

electrons.2 Coulomb’s law shows that the force between two charges of one coulomb

each, separated by one meter, is 9 × 109 N, or about one million tons. The electron

has a rest mass of 9.109 × 10−31kg and has a radius of the order of magnitude of

3.8 × 10−15 m. This does not mean that the electron is spherical in shape, but merely

describes the size of the region in which a slowly moving electron has the greatest

probability of being found. All other known charged particles, including the proton,

have larger masses and larger radii, and occupy a probabilistic volume larger than

does the electron.

In order to write the vector form of (2), we need the additional fact (furnished

also by Colonel Coulomb) that the force acts along the line joining the two charges

1 The International System of Units (an mks system) is described in Appendix B. Abbreviations for the

units are given in Table B.1. Conversions to other systems of units are given in Table B.2, while the

prefixes designating powers of ten in SI appear in Table B.3.
2 The charge and mass of an electron and other physical constants are tabulated in Table C.4 of

Appendix C.
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Figure 2.1 If Q1 and Q2 have like

signs, the vector force F2 on Q2 is in the

same direction as the vector R12.

and is repulsive if the charges are alike in sign or attractive if they are of opposite sign.

Let the vector r1 locate Q1, whereas r2 locates Q2. Then the vector R12 = r2 − r1

represents the directed line segment from Q1 to Q2, as shown in Figure 2.1. The vector

F2 is the force on Q2 and is shown for the case where Q1 and Q2 have the same sign.

The vector form of Coulomb’s law is

F2 =
Q1 Q2

4πǫ0 R2
12

a12 (3)

where a12 = a unit vector in the direction of R12, or

a12 =
R12

|R12|
=

R12

R12

=
r2 − r1

|r2 − r1|
(4)

EXAMPLE 2.1

We illustrate the use of the vector form of Coulomb’s law by locating a charge of

Q1 = 3 × 10−4 C at M(1, 2, 3) and a charge of Q2 = −10−4 C at N (2, 0, 5) in a

vacuum. We desire the force exerted on Q2 by Q1.

Solution. We use (3) and (4) to obtain the vector force. The vector R12 is

R12 = r2 − r1 = (2 − 1)ax + (0 − 2)ay + (5 − 3)az = ax − 2ay + 2az

leading to |R12| = 3, and the unit vector, a12 = 1
3
(ax − 2ay + 2az). Thus,

F2 =
3 × 10−4(−10−4)

4π (1/36π )10−9 × 32

(

ax − 2ay + 2az

3

)

= −30

(

ax − 2ay + 2az

3

)

N

The magnitude of the force is 30 N, and the direction is specified by the unit

vector, which has been left in parentheses to display the magnitude of the force. The

force on Q2 may also be considered as three component forces,

F2 = −10ax + 20ay − 20az
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The force expressed by Coulomb’s law is a mutual force, for each of the two

charges experiences a force of the same magnitude, although of opposite direction.

We might equally well have written

F1 = −F2 =
Q1 Q2

4πǫ0 R2
12

a21 = −
Q1 Q2

4πǫ0 R2
12

a12 (5)

Coulomb’s law is linear, for if we multiply Q1 by a factor n, the force on Q2 is

also multiplied by the same factor n. It is also true that the force on a charge in the

presence of several other charges is the sum of the forces on that charge due to each

of the other charges acting alone.

D2.1. A charge Q A = −20 µC is located at A(−6, 4, 7), and a charge Q B =
50 µC is at B(5, 8, −2) in free space. If distances are given in meters, find:

(a) RAB ; (b) RAB . Determine the vector force exerted on Q A by Q B if ǫ0 =
(c) 10−9/(36π ) F/m; (d) 8.854 × 10−12 F/m.

Ans. 11ax + 4ay − 9az m; 14.76 m; 30.76ax + 11.184ay − 25.16az mN; 30.72ax
+ 11.169ay − 25.13az mN

2.2 ELECTRIC FIELD INTENSITY

If we now consider one charge fixed in position, say Q1, and move a second charge

slowly around, we note that there exists everywhere a force on this second charge;

in other words, this second charge is displaying the existence of a force fiel that is

associated with charge, Q1. Call this second charge a test charge Qt . The force on it

is given by Coulomb’s law,

Ft =
Q1 Qt

4πǫ0 R2
1t
a1t

Writing this force as a force per unit charge gives the electric fiel intensity,E1 arising

from Q1:

E1 =
Ft

Q1

=
Q1

4πǫ0 R2
1t
a1t (6)

E1 is interpreted as the vector force, arising from charge Q1, that acts on a unit positive

test charge. More generally, we write the defining expression:

E =
Ft

Qt
(7)

in whichE, a vector function, is the electric field intensity evaluated at the test charge
location that arises from all other charges in the vicinity—meaning the electric field

arising from the test charge itself is not included in E.

The units of E would be in force per unit charge (newtons per coulomb). Again

anticipating a new dimensional quantity, the volt (V), having the label of joules per
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coulomb (J/C), or newton-meters per coulomb (N · m/C), we measure electric field

intensity in the practical units of volts per meter (V/m).

Now, we dispense with most of the subscripts in (6), reserving the right to use

them again any time there is a possibility of misunderstanding. The electric field of a

single point charge becomes:

E =
Q

4πǫ0 R2
aR (8)

We remember that R is the magnitude of the vector R, the directed line segment

from the point at which the point charge Q is located to the point at whichE is desired,

and aR is a unit vector in the R direction.3

We arbitrarily locate Q1 at the center of a spherical coordinate system. The unit

vector aR then becomes the radial unit vector ar , and R is r . Hence

E =
Q1

4πǫ0r2
ar (9)

The field has a single radial component, and its inverse-square-law relationship is

quite obvious.

If we consider a charge that is not at the origin of our coordinate system, the

field no longer possesses spherical symmetry, and we might as well use rectangular

coordinates. For a charge Q located at the source point r′ = x ′ax + y′ay + z′az , as

illustrated in Figure 2.2, we find the field at a general field point r = xax+ yay + zaz
by expressing R as r− r′, and then

E(r) =
Q

4πǫ0|r− r′|2
r− r′

|r− r′|
=

Q(r− r′)

4πǫ0|r− r′|3

=
Q[(x − x ′)ax + (y − y′)ay + (z − z′)az]

4πǫ0[(x − x ′)2 + (y − y′)2 + (z − z′)2]3/2
(10)

Earlier, we defined a vector field as a vector function of a position vector, and this is

emphasized by letting E be symbolized in functional notation by E(r).
Because the coulomb forces are linear, the electric field intensity arising from

two point charges, Q1 at r1 and Q2 at r2, is the sum of the forces on Qt caused by

Q1 and Q2 acting alone, or

E(r) =
Q1

4πǫ0|r− r1|2
a1 +

Q2

4πǫ0|r− r2|2
a2

where a1 and a2 are unit vectors in the direction of (r− r1) and (r− r2), respectively.

The vectors r, r1, r2, r− r1, r− r2, a1, and a2 are shown in Figure 2.3.

3 We firmly intend to avoid confusing r and ar with R and aR . The first two refer specifically to the

spherical coordinate system, whereas R and aR do not refer to any coordinate system—the choice is

still available to us.
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Figure 2.2 The vector r′ locates the point

charge Q, the vector r identifies the general point

in space P(x, y, z), and the vector R from Q to

P(x, y, z) is then R = r − r′.

Figure 2.3 The vector addition of the total electric field

intensity at P due to Q1 and Q2 is made possible by the

linearity of Coulomb’s law.
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If we add more charges at other positions, the field due to n point charges is

E(r) =
n

∑

m=1

Qm

4πǫ0|r− rm |2
am (11)

EXAMPLE 2.2

In order to illustrate the application of (11), we findE at P(1, 1, 1) caused by four iden-

tical 3-nC (nanocoulomb) charges located at P1(1, 1, 0), P2(−1, 1, 0), P3(−1, −1, 0),

and P4(1, −1, 0), as shown in Figure 2.4.

Solution. We find that r = ax + ay + az, r1 = ax + ay , and thus r − r1 = az .

The magnitudes are: |r − r1| = 1, |r − r2| =
√

5, |r − r3| = 3, and |r − r4| =
√

5.

Because Q/4πǫ0 = 3 × 10−9/(4π × 8.854 × 10−12) = 26.96 V · m, we may now

use (11) to obtain

E = 26.96

[

az

1

1

12
+

2ax + az√
5

1
(√

5
)2

+
2ax + 2ay + az

3

1

32
+

2ay + az√
5

1
(√

5
)2

]

or

E = 6.82ax + 6.82ay + 32.8az V/m

D2.2. A charge of −0.3 µC is located at A(25, −30, 15) (in cm), and a

second charge of 0.5 µC is at B(−10, 8, 12) cm. Find E at: (a) the origin;

(b) P(15, 20, 50) cm.

Ans. 92.3ax − 77.6ay − 94.2az kV/m; 11.9ax − 0.519ay + 12.4az kV/m

Figure 2.4 A symmetrical distribution of four identical 3-nC point

charges produces a field at P, E = 6.82ax + 6.82ay + 32.8az V/m.
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D2.3. Evaluate the sums: (a)
5

∑

m=0

1 + (−1)m

m2 + 1
; (b)

4
∑

m=1

(0.1)m + 1

(4 + m2)1.5

Ans. 2.52; 0.176

2.3 FIELD ARISING FROM A CONTINUOUS
VOLUME CHARGE DISTRIBUTION

If we now visualize a region of space filled with a tremendous number of charges

separated by minute distances, we see that we can replace this distribution of very

small particles with a smooth continuous distribution described by a volume charge
density, just as we describe water as having a density of 1 g/cm3 (gram per cubic

centimeter) even though it consists of atomic- and molecular-sized particles. We can

do this only if we are uninterested in the small irregularities (or ripples) in the field

as we move from electron to electron or if we care little that the mass of the water

actually increases in small but finite steps as each new molecule is added.

This is really no limitation at all, because the end results for electrical engineers

are almost always in terms of a current in a receiving antenna, a voltage in an elec-

tronic circuit, or a charge on a capacitor, or in general in terms of some large-scale

macroscopic phenomenon. It is very seldom that we must know a current electron by

electron.4

We denote volume charge density by ρν , having the units of coulombs per cubic

meter (C/m3).

The small amount of charge �Q in a small volume �ν is

�Q = ρν�ν (12)

and we may define ρν mathematically by using a limiting process on (12),

ρν = lim
�ν→0

�Q
�ν

(13)

The total charge within some finite volume is obtained by integrating throughout that

volume,

Q =
∫

vol

ρνdν (14)

Only one integral sign is customarily indicated, but the differential dν signifies inte-

gration throughout a volume, and hence a triple integration.

4 A study of the noise generated by electrons in semiconductors and resistors, however, requires just

such an examination of the charge through statistical analysis.
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EXAMPLE 2.3

As an example of the evaluation of a volume integral, we find the total charge contained

in a 2-cm length of the electron beam shown in Figure 2.5.

Solution. From the illustration, we see that the charge density is

ρν = −5 × 10−6e−105ρz C/m2

The volume differential in cylindrical coordinates is given in Section 1.8; therefore,

Q =
∫ 0.04

0.02

∫ 2π

0

∫ 0.01

0

−5 × 10−6e−105ρzρ dρ dφ dz

We integrate first with respect to φ because it is so easy,

Q =
∫ 0.04

0.02

∫ 0.01

0

−10−5πe−105ρzρ dρ dz

and then with respect to z, because this will simplify the last integration with respect

to ρ,

Q =
∫ 0.01

0

(

−10−5π

−105ρ
e−105ρzρ dρ

)z=0.04

z=0.02

=
∫ 0.01

0

−10−5π (e−2000ρ − e−4000ρ)dρ

Figure 2.5 The total charge contained

within the right circular cylinder may be

obtained by evaluatingQ =
∫

vol ρνdν.



CHAPTER 2 Coulomb’s Law and Electric Field Intensity 35

Finally,

Q = −10−10π

(

e−2000ρ

−2000
−

e−4000ρ

−4000

)0.01

0

Q = −10−10π

(

1

2000
−

1

4000

)

=
−π

40
= 0.0785 pC

where pC indicates picocoulombs.

The incremental contribution to the electric field intensity at r produced by an

incremental charge �Q at r′ is

�E(r) =
�Q

4πǫ0|r− r′|2
r− r′

|r− r′|
=

ρν�ν

4πǫ0|r− r′|2
r− r′

|r− r′|

If we sum the contributions of all the volume charge in a given region and let the

volume element �ν approach zero as the number of these elements becomes infinite,

the summation becomes an integral,

E(r) =
∫

vol

ρν(r′) dν ′

4πǫ0|r− r′|2
r− r′

|r− r′|
(15)

This is again a triple integral, and (except in Drill Problem 2.4) we shall do our best

to avoid actually performing the integration.

The significance of the various quantities under the integral sign of (15) might

stand a little review. The vector r from the origin locates the field point where E is

being determined, whereas the vector r′ extends from the origin to the source point

where ρv (r′)dν ′ is located. The scalar distance between the source point and the

field point is |r − r′|, and the fraction (r − r′)/|r − r′| is a unit vector directed from

source point to field point. The variables of integration are x ′, y′, and z′ in rectangular

coordinates.

D2.4. Calculate the total charge within each of the indicated volumes: (a) 0.1 ≤
|x |, |y|, |z| ≤ 0.2: ρν =

1

x3 y3z3
; (b) 0 ≤ ρ ≤ 0.1, 0 ≤ φ ≤ π , 2 ≤ z ≤ 4; ρν =

ρ2z2 sin 0.6φ; (c) universe: ρν = e−2r/r2.

Ans. 0; 1.018 mC; 6.28 C

2.4 FIELD OF A LINE CHARGE

Up to this point we have considered two types of charge distribution, the point charge

and charge distributed throughout a volume with a density ρν C/m3. If we now consider

a filamentlike distribution of volume charge density, such as a charged conductor of

very small radius, we find it convenient to treat the charge as a line charge of density

ρL C/m.

We assume a straight-line charge extending along the z axis in a cylindrical

coordinate system from −∞ to ∞, as shown in Figure 2.6. We desire the electric

field intensityE at any and every point resulting from a uniform line charge density ρL .
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Figure 2.6 The contribution dE = dEρaρ+
dEzaz to the electric field intensity produced by an

element of charge dQ = ρL dz′ located a distance

z′ from the origin. The linear charge density is

uniform and extends along the entire z axis.

Symmetry should always be considered first in order to determine two specific

factors: (1) with which coordinates the field does not vary, and (2) which compo-

nents of the field are not present. The answers to these questions then tell us which

components are present and with which coordinates they do vary.

Referring to Figure 2.6, we realize that as we move around the line charge,

varying φ while keeping ρ and z constant, the line charge appears the same from

every angle. In other words, azimuthal symmetry is present, and no field component

may vary with φ.

Again, if we maintain ρ and φ constant while moving up and down the line charge

by changing z, the line charge still recedes into infinite distance in both directions

and the problem is unchanged. This is axial symmetry and leads to fields that are not

functions of z.

If we maintain φ and z constant and vary ρ, the problem changes, and Coulomb’s

law leads us to expect the field to become weaker as ρ increases. Hence, by a process

of elimination we are led to the fact that the field varies only with ρ.

Now, which components are present? Each incremental length of line charge

acts as a point charge and produces an incremental contribution to the electric field

intensity which is directed away from the bit of charge (assuming a positive line

charge). No element of charge produces a φ component of electric intensity; Eφ is

zero. However, each element does produce an Eρ and an Ez component, but the

contribution to Ez by elements of charge that are equal distances above and below

the point at which we are determining the field will cancel.
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We therefore have found that we have only an Eρ component and it varies only

with ρ. Now to find this component.

We choose a point P(0, y, 0) on the y axis at which to determine the field.

This is a perfectly general point in view of the lack of variation of the field with φ

and z. Applying (10) to find the incremental field at P due to the incremental charge

d Q = ρLdz′, we have

dE =
ρLdz′(r− r′)

4πǫ0|r− r′|3

where

r = yay = ρaρ

r′ = z′az

and

r− r′ = ρaρ − z′az

Therefore,

dE =
ρLdz′(ρaρ − z′az)

4πǫ0(ρ2 + z′2)3/2

Because only the Eρ component is present, we may simplify:

d Eρ =
ρLρdz′

4πǫ0(ρ2 + z′2)3/2

and

Eρ =
∫ ∞

−∞

ρLρdz′

4πǫ0(ρ2 + z′2)3/2

Integrating by integral tables or change of variable, z′ = ρ cot θ , we have

Eρ =
ρL

4πǫ0

ρ

(

1

ρ2

z′
√

ρ2 + z′2

)∞

−∞

and

Eρ =
ρL

2πǫ0ρ

or finally,

E =
ρL

2πǫ0ρ
aρ (16)

We note that the field falls off inversely with the distance to the charged line, as

compared with the point charge, where the field decreased with the square of the

distance. Moving ten times as far from a point charge leads to a field only 1 percent

the previous strength, but moving ten times as far from a line charge only reduces

the field to 10 percent of its former value. An analogy can be drawn with a source of
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Figure 2.7 A point P(x, y, z) is identified near an infinite

uniform line charge located at x = 6, y = 8.

illumination, for the light intensity from a point source of light also falls off inversely

as the square of the distance to the source. The field of an infinitely long fluorescent

tube thus decays inversely as the first power of the radial distance to the tube, and we

should expect the light intensity about a finite-length tube to obey this law near the

tube. As our point recedes farther and farther from a finite-length tube, however, it

eventually looks like a point source, and the field obeys the inverse-square relationship.

Before leaving this introductory look at the field of the infinite line charge, we

should recognize the fact that not all line charges are located along the z axis. As an

example, let us consider an infinite line charge parallel to the z axis at x = 6, y = 8,

shown in Figure 2.7. We wish to find E at the general field point P(x, y, z).

We replace ρ in (16) by the radial distance between the line charge and point,

P, R =
√

(x − 6)2 + (y − 8)2, and let aρ be aR . Thus,

E =
ρL

2πǫ0

√

(x − 6)2 + (y − 8)2
aR

where

aR =
R
|R|

=
(x − 6)ax + (y − 8)ay
√

(x − 6)2 + (y − 8)2

Therefore,

E =
ρL

2πǫ0

(x − 6)ax + (y − 8)ay

(x − 6)2 + (y − 8)2

We again note that the field is not a function of z.
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In Section 2.6, we describe how fields may be sketched, and we use the field of

the line charge as one example.

D2.5. Infinite uniform line charges of 5 nC/m lie along the (positive and

negative) x and y axes in free space. Find E at: (a) PA(0, 0, 4); (b) PB(0, 3, 4).

Ans. 45az V/m; 10.8ay + 36.9az V/m

2.5 FIELD OF A SHEET OF CHARGE

Another basic charge configuration is the infinite sheet of charge having a uniform

density of ρS C/m2. Such a charge distribution may often be used to approximate

that found on the conductors of a strip transmission line or a parallel-plate capacitor.

As we shall see in Chapter 5, static charge resides on conductor surfaces and not

in their interiors; for this reason, ρS is commonly known as surface charge density.

The charge-distribution family now is complete—point, line, surface, and volume, or

Q, ρL , ρS , and ρν .

Let us place a sheet of charge in the yz plane and again consider symmetry

(Figure 2.8). We see first that the field cannot vary with y or with z, and then we see

that the y and z components arising from differential elements of charge symmetrically

located with respect to the point at which we evaluate the field will cancel. Hence

only Ex is present, and this component is a function of x alone. We are again faced

with a choice of many methods by which to evaluate this component, and this time we

use only one method and leave the others as exercises for a quiet Sunday afternoon.

Let us use the field of the infinite line charge (16) by dividing the infinite sheet

into differential-width strips. One such strip is shown in Figure 2.8. The line charge

Figure 2.8 An infinite sheet of charge in the yz

plane, a general point P on the x axis, and the

differential-width line charge used as the element in

determining the field at P by dE = ρS dy′aR/(2πε0 R).
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density, or charge per unit length, is ρL = ρS dy′, and the distance from this line

charge to our general point P on the x axis is R =
√

x2 + y′2. The contribution to

Ex at P from this differential-width strip is then

d Ex =
ρS dy′

2πǫ0

√

x2 + y′2
cos θ =

ρS

2πǫ0

xdy′

x2 + y′2

Adding the effects of all the strips,

Ex =
ρS

2πǫ0

∫ ∞

−∞

x dy′

x2 + y′2 =
ρS

2πǫ0

tan−1 y′

x

]∞

−∞
=

ρS

2ǫ0

If the point P were chosen on the negative x axis, then

Ex = −
ρS

2ǫ0

for the field is always directed away from the positive charge. This difficulty in sign

is usually overcome by specifying a unit vector aN , which is normal to the sheet and

directed outward, or away from it. Then

E =
ρS

2ǫ0

aN (17)

This is a startling answer, for the field is constant in magnitude and direction.

It is just as strong a million miles away from the sheet as it is right off the surface.

Returning to our light analogy, we see that a uniform source of light on the ceiling of

a very large room leads to just as much illumination on a square foot on the floor as it

does on a square foot a few inches below the ceiling. If you desire greater illumination

on this subject, it will do you no good to hold the book closer to such a light source.

If a second infinite sheet of charge, having a negative charge density −ρS , is

located in the plane x = a, we may find the total field by adding the contribution of

each sheet. In the region x > a,

E+ =
ρS

2ǫ0

ax E− = −
ρS

2ǫ0

ax E = E+ + E− = 0

and for x < 0,

E+ = −
ρS

2ǫ0

ax E− =
ρS

2ǫ0

ax E = E+ + E− = 0

and when 0 < x < a,

E+ =
ρS

2ǫ0

ax E− =
ρS

2ǫ0

ax

and

E = E+ + E− =
ρS

ǫ0

ax (18)

This is an important practical answer, for it is the field between the parallel plates

of an air capacitor, provided the linear dimensions of the plates are very much greater

than their separation and provided also that we are considering a point well removed
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from the edges. The field outside the capacitor, while not zero, as we found for the

preceding ideal case, is usually negligible.

D2.6. Three infinite uniform sheets of charge are located in free space as

follows: 3 nC/m2 at z = −4, 6 nC/m2 at z = 1, and −8 nC/m2 at z = 4.

Find E at the point: (a) PA(2, 5, −5); (b) PB(4, 2, −3); (c) PC (−1, −5, 2); (d)

PD(−2, 4, 5).

Ans. −56.5az ; 283az ; 961az ; 56.5az all V/m

2.6 STREAMLINES AND SKETCHES
OF FIELDS

We now have vector equations for the electric field intensity resulting from several

different charge configurations, and we have had little difficulty in interpreting the

magnitude and direction of the field from the equations. Unfortunately, this simplicity

cannot last much longer, for we have solved most of the simple cases and our new

charge distributions must lead to more complicated expressions for the fields and

more difficulty in visualizing the fields through the equations. However, it is true that

one picture would be worth about a thousand words, if we just knew what picture to

draw.

Consider the field about the line charge,

E =
ρL

2πǫ0ρ
aρ

Figure 2.9a shows a cross-sectional view of the line charge and presents what might

be our first effort at picturing the field—short line segments drawn here and there

having lengths proportional to the magnitude of E and pointing in the direction of E.

The figure fails to show the symmetry with respect to φ, so we try again in Figure 2.9b
with a symmetrical location of the line segments. The real trouble now appears—the

longest lines must be drawn in the most crowded region, and this also plagues us

if we use line segments of equal length but of a thickness that is proportional to E
(Figure 2.9c). Other schemes include drawing shorter lines to represent stronger fields

(inherently misleading) and using intensity of color or different colors to represent

stronger fields.

For the present, let us be content to show only the direction of E by drawing

continuous lines, which are everywhere tangent to E, from the charge. Figure 2.9d
shows this compromise. A symmetrical distribution of lines (one every 45◦) indicates

azimuthal symmetry, and arrowheads should be used to show direction.

These lines are usually called streamlines, although other terms such as flux lines

and direction lines are also used. A small positive test charge placed at any point in

this field and free to move would accelerate in the direction of the streamline passing

through that point. If the field represented the velocity of a liquid or a gas (which,

incidentally, would have to have a source at ρ = 0), small suspended particles in the

liquid or gas would trace out the streamlines.
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Figure 2.9 (a) One very poor sketch, (b) and (c) two fair sketches, and

(d ) the usual form of a streamline sketch. In the last form, the arrows show

the direction of the field at every point along the line, and the spacing of the

lines is inversely proportional to the strength of the field.

We will find out later that a bonus accompanies this streamline sketch, for the

magnitude of the field can be shown to be inversely proportional to the spacing of

the streamlines for some important special cases. The closer they are together, the

stronger is the field. At that time we will also find an easier, more accurate method

of making that type of streamline sketch.

If we attempted to sketch the field of the point charge, the variation of the field

into and away from the page would cause essentially insurmountable difficulties; for

this reason sketching is usually limited to two-dimensional fields.

In the case of the two-dimensional field, let us arbitrarily set Ez = 0. The

streamlines are thus confined to planes for which z is constant, and the sketch is the

same for any such plane. Several streamlines are shown in Figure 2.10, and the Ex and

Ey components are indicated at a general point. It is apparent from the geometry that

Ey

Ex
=

dy
dx

(19)

A knowledge of the functional form of Ex and Ey (and the ability to solve the resultant

differential equation) will enable us to obtain the equations of the streamlines.
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Figure 2.10 The equation of a streamline is

obtained by solving the differential equation

E y/Ex = dy/dx.

As an illustration of this method, consider the field of the uniform line charge

with ρL = 2πǫ0,

E =
1

ρ
aρ

In rectangular coordinates,

E =
x

x2 + y2
ax +

y
x2 + y2

ay

Thus we form the differential equation

dy
dx

=
Ey

Ex
=

y
x

or
dy
y

=
dx
x

Therefore,

ln y = ln x + C1 or ln y = ln x + ln C

from which the equations of the streamlines are obtained,

y = Cx

If we want to find the equation of one particular streamline, say one passing

through P(−2, 7, 10), we merely substitute the coordinates of that point into our

equation and evaluate C . Here, 7 = C(−2), and C = −3.5, so y = −3.5x .

Each streamline is associated with a specific value of C , and the radial lines

shown in Figure 2.9d are obtained when C = 0, 1, −1, and 1/C = 0.

The equations of streamlines may also be obtained directly in cylindrical or

spherical coordinates. A spherical coordinate example will be examined in Section 4.7.
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D2.7. Find the equation of that streamline that passes through the point

P(1, 4, −2) in the field E = (a)
−8x

y
ax +

4x2

y2
ay ; (b) 2e5x [y(5x +1)ax + xay].

Ans. x2 + 2y2 = 33; y2 = 15.7 + 0.4x − 0.08 ln(5x + 1)
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CHAPTER 2 PROBLEMS

2.1 Three point charges are positioned in the x-y plane as follows: 5 nC at y = 5

cm, −10 nC at y = −5 cm, and 15 nC at x = −5 cm. Find the required x-y
coordinates of a 20-nC fourth charge that will produce a zero electric field at

the origin.

2.2 Point charges of 1 nC and −2 nC are located at (0, 0, 0) and (1, 1, 1),

respectively, in free space. Determine the vector force acting on each charge.

2.3 Point charges of 50 nC each are located at A(1, 0, 0), B(−1, 0, 0), C(0, 1, 0),

and D(0, −1, 0) in free space. Find the total force on the charge at A.

2.4 Eight identical point charges of Q C each are located at the corners of a cube

of side length a, with one charge at the origin, and with the three nearest

charges at (a, 0, 0), (0, a, 0), and (0, 0, a). Find an expression for the total

vector force on the charge at P(a, a, a), assuming free space.

2.5 Let a point charge Q1 = 25 nC be located at P1(4, −2, 7) and a charge

Q2 = 60 nC be at P2(−3, 4, −2). (a) If ǫ = ǫ0, find E at P3(1, 2, 3). (b) At

what point on the y axis is Ex = 0?

2.6 Two point charges of equal magnitude q are positioned at z = ±d/2. (a)

Find the electric field everywhere on the z axis; (b) find the electric field

everywhere on the x axis; (c) repeat parts (a) and (b) if the charge at

z = −d/2 is −q instead of +q .

2.7 A 2-µC point charge is located at A(4, 3, 5) in free space. Find Eρ, Eφ , and

Ez at P(8, 12, 2).
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2.8 A crude device for measuring charge consists of two small insulating spheres

of radius a, one of which is fixed in position. The other is movable along the

x axis and is subject to a restraining force kx , where k is a spring constant.

The uncharged spheres are centered at x = 0 and x = d , the latter fixed. If

the spheres are given equal and opposite charges of Q/C, obtain the

expression by which Q may be found as a function of x . Determine the

maximum charge that can be measured in terms of ǫ0, k, and d , and state

the separation of the spheres then. What happens if a larger charge is applied?

2.9 A 100-nC point charge is located at A(−1, 1, 3) in free space. (a) Find the

locus of all points P(x, y, z) at which Ex = 500 V/m. (b) Find y1 if

P(−2, y1, 3) lies on that locus.

2.10 A charge of −1 nC is located at the origin in free space. What charge must be

located at (2, 0, 0) to cause Ex to be zero at (3, 1, 1)?

2.11 A charge Q0 located at the origin in free space produces a field for which

Ez = 1 kV/m at point P(−2, 1, −1). (a) Find Q0. Find E at M(1, 6, 5) in

(b) rectangular coordinates; (c) cylindrical coordinates; (d) spherical

coordinates.

2.12 Electrons are in random motion in a fixed region in space. During any 1 µs

interval, the probability of finding an electron in a subregion of volume

10−15 m2 is 0.27. What volume charge density, appropriate for such time

durations, should be assigned to that subregion?

2.13 A uniform volume charge density of 0.2 µC/m3 is present throughout the

spherical shell extending from r = 3 cm to r = 5 cm. If ρν = 0 elsewhere,

find (a) the total charge present throughout the shell, and (b) r1 if half the

total charge is located in the region 3 cm < r < r1.

2.14 The electron beam in a certain cathode ray tube possesses cylindrical

symmetry, and the charge density is represented by ρv = −0.1/(ρ2 + 10−8)

pC/m3 for 0 < ρ < 3 × 10−4 m, and ρv = 0 for ρ > 3 × 10−4 m. (a) Find

the total charge per meter along the length of the beam; (b) if the electron

velocity is 5 × 107 m/s, and with one ampere defined as 1C/s, find the beam

current.

2.15 A spherical volume having a 2-µm radius contains a uniform volume charge

density of 1015 C/m3. (a) What total charge is enclosed in the spherical

volume? (b) Now assume that a large region contains one of these little

spheres at every corner of a cubical grid 3 mm on a side and that there is no

charge between the spheres. What is the average volume charge density

throughout this large region?

2.16 Within a region of free space, charge density is given as ρν = ρ0rcosθ
a C/m3,

where ρ0 and a are constants. Find the total charge lying within (a) the

sphere, r ≤ a; (b) the cone, r ≤ a, 0 ≤ θ ≤ 0.1π ; (c) the region, r ≤ a,

0 ≤ θ ≤ 0.1π , 0 ≤ φ ≤ 0.2π .
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2.17 A uniform line charge of 16 nC/m is located along the line defined by y =
−2, z = 5. If ǫ = ǫ0: (a) find E at P(1, 2, 3). (b) find E at that point in the

z = 0 plane where the direction of E is given by (1/3)ay − (2/3)az .

2.18 (a) Find E in the plane z = 0 that is produced by a uniform line charge, ρL ,

extending along the z axis over the range −L < z < L in a cylindrical

coordinate system. (b) If the finite line charge is approximated by an infinite

line charge (L → ∞), by what percentage is Eρ in error if ρ = 0.5L? (c)

Repeat (b) with ρ = 0.1L .

2.19 A uniform line charge of 2 µC/m is located on the z axis. Find E in

rectangular coordinates at P(1, 2, 3) if the charge exists from (a) −∞ <

z < ∞; (b) −4 ≤ z ≤ 4.

2.20 A line charge of uniform charge density ρ0 C/m and of length ℓ is oriented

along the z axis at −ℓ/2 < z < ℓ/2. (a) Find the electric field strength, E, in

magnitude and direction at any position along the x axis. (b) With the given

line charge in position, find the force acting on an identical line charge that is

oriented along the x axis at ℓ/2 < x < 3ℓ/2.

2.21 Two identical uniform line charges, with ρl = 75 nC/m, are located in free

space at x = 0, y = ±0.4 m. What force per unit length does each line

charge exert on the other?

2.22 Two identical uniform sheet charges with ρs = 100 nC/m2 are located in free

space at z = ±2.0 cm. What force per unit area does each sheet exert on the

other?

2.23 Given the surface charge density, ρs = 2 µC/m2, existing in the region ρ <

0.2 m, z = 0, find E at (a) PA(ρ = 0, z = 0.5); (b) PB(ρ = 0, z = −0.5).

Show that (c) the field along the z axis reduces to that of an infinite sheet

charge at small values of z; (d) the z axis field reduces to that of a point

charge at large values of z.

2.24 (a) Find the electric field on the z axis produced by an annular ring of

uniform surface charge density ρs in free space. The ring occupies the region

z = 0, a ≤ ρ ≤ b, 0 ≤ φ ≤ 2π in cylindrical coordinates. (b) From your part

(a) result, obtain the field of an infinite uniform sheet charge by taking

appropriate limits.

2.25 Find E at the origin if the following charge distributions are present in free

space: point charge, 12 nC, at P(2, 0, 6); uniform line charge density, 3 nC/m,

at x = −2, y = 3; uniform surface charge density, 0.2 nC/m2 at x = 2.

2.26 A radially dependent surface charge is distributed on an infinite flat sheet in

the x-y plane and is characterized in cylindrical coordinates by surface

density ρs = ρ0/ρ, where ρ0 is a constant. Determine the electric field

strength, E, everywhere on the z axis.
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2.27 Given the electric field E = (4x − 2y)ax − (2x + 4y)ay , find (a) the equation

of the streamline that passes through the point P(2, 3, −4); (b) a unit vector

specifying the direction of E at Q(3, −2, 5).

2.28 An electric dipole (discussed in detail in Section 4.7) consists of two point

charges of equal and opposite magnitude ±Q spaced by distance d . With the

charges along the z axis at positions z = ±d/2 (with the positive charge at

the positive z location), the electric field in spherical coordinates is given

by E(r, θ ) = [Qd/(4πǫ0r3)][2 cos θar + sin θaθ ], where r >> d . Using

rectangular coordinates, determine expressions for the vector force on a point

charge of magnitude q (a) at (0, 0, z); (b) at (0, y, 0).

2.29 If E = 20e−5y(cos 5xax − sin 5xay), find (a) |E| at P(π/6, 0.1, 2); (b) a unit

vector in the direction of E at P; (c) the equation of the direction line passing

through P.

2.30 For fields that do not vary with z in cylindrical coordinates, the equations of

the streamlines are obtained by solving the differential equation E p/Eφ =
dρ/(ρdφ). Find the equation of the line passing through the point (2, 30◦, 0)

for the field E = ρ cos 2φaρ − ρ sin 2φaφ .



3 C H A P T E R

Electric Flux Density,
Gauss’s Law, and
Divergence

A
fter drawing a few of the fields described in the previous chapter and becom-

ing familiar with the concept of the streamlines that show the direction of

the force on a test charge at every point, it is difficult to avoid giving these

lines a physical significance and thinking of them as flu lines. No physical particle

is projected radially outward from the point charge, and there are no steel tentacles

reaching out to attract or repel an unwary test charge, but as soon as the streamlines

are drawn on paper there seems to be a picture showing “something” is present.

It is very helpful to invent an electric flu that streams away symmetrically from a

point charge and is coincident with the streamlines and to visualize this flux wherever

an electric field is present.

This chapter introduces and uses the concept of electric flux and electric flux

density to again solve several of the problems presented in Chapter 2. The work here

turns out to be much easier, and this is due to the extremely symmetrical problems

that we are solving. ■

3.1 ELECTRIC FLUX DENSITY

About 1837, the director of the Royal Society in London, Michael Faraday, became

very interested in static electric fields and the effect of various insulating materials on

these fields. This problem had been bothering him during the past ten years when he

was experimenting in his now-famous work on induced electromotive force, which

we will discuss in Chapter 10. With that subject completed, he had a pair of concentric

metallic spheres constructed, the outer one consisting of two hemispheres that could be

firmly clamped together. He also prepared shells of insulating material (or dielectric

material, or simply dielectric) that would occupy the entire volume between the

concentric spheres. We will immediately use his findings about dielectric materials,

48
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for we are restricting our attention to fields in free space until Chapter 6. At that time

we will see that the materials he used will be classified as ideal dielectrics.

His experiment, then, consisted essentially of the following steps:

1. With the equipment dismantled, the inner sphere was given a known positive

charge.

2. The hemispheres were then clamped together around the charged sphere with

about 2 cm of dielectric material between them.

3. The outer sphere was discharged by connecting it momentarily to ground.

4. The outer space was separated carefully, using tools made of insulating material

in order not to disturb the induced charge on it, and the negative induced charge

on each hemisphere was measured.

Faraday found that the total charge on the outer sphere was equal in magnitude to

the original charge placed on the inner sphere and that this was true regardless of the

dielectric material separating the two spheres. He concluded that there was some sort

of “displacement” from the inner sphere to the outer which was independent of the

medium, and we now refer to this flux as displacement, displacement flux or simply

electric flu .

Faraday’s experiments also showed, of course, that a larger positive charge on the

inner sphere induced a correspondingly larger negative charge on the outer sphere,

leading to a direct proportionality between the electric flux and the charge on the inner

sphere. The constant of proportionality is dependent on the system of units involved,

and we are fortunate in our use of SI units, because the constant is unity. If electric

flux is denoted by � (psi) and the total charge on the inner sphere by Q, then for

Faraday’s experiment

� = Q

and the electric flux � is measured in coulombs.

We can obtain more quantitative information by considering an inner sphere of

radius a and an outer sphere of radius b, with charges of Q and −Q, respectively

(Figure 3.1). The paths of electric flux � extending from the inner sphere to the outer

sphere are indicated by the symmetrically distributed streamlines drawn radially from

one sphere to the other.

At the surface of the inner sphere, � coulombs of electric flux are produced by the

charge Q(= �) Cs distributed uniformly over a surface having an area of 4πa2 m2.

The density of the flux at this surface is �/4πa2 or Q/4πa2 C/m2, and this is an

important new quantity.

Electric flu density, measured in coulombs per square meter (sometimes de-

scribed as “lines per square meter,” for each line is due to one coulomb), is given

the letter D, which was originally chosen because of the alternate names of displace-
ment flu density or displacement density. Electric flux density is more descriptive,

however, and we will use the term consistently.

The electric flux density D is a vector field and is a member of the “flux density”

class of vector fields, as opposed to the “force fields” class, which includes the electric
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Figure 3.1 The electric flux in the region between a

pair of charged concentric spheres. The direction and

magnitude of D are not functions of the dielectric

between the spheres.

field intensity E. The direction of D at a point is the direction of the flux lines at that

point, and the magnitude is given by the number of flux lines crossing a surface normal

to the lines divided by the surface area.

Referring again to Figure 3.1, the electric flux density is in the radial direction

and has a value of

D
∣
∣
∣
∣
r=a

=
Q

4πa2
ar (inner sphere)

D
∣
∣
∣
∣
r=b

=
Q

4πb2
ar (outer sphere)

and at a radial distance r , where a ≤ r ≤ b,

D =
Q

4πr2
ar

If we now let the inner sphere become smaller and smaller, while still retaining a

charge of Q, it becomes a point charge in the limit, but the electric flux density at a

point r meters from the point charge is still given by

D =
Q

4πr2
ar (1)

for Q lines of flux are symmetrically directed outward from the point and pass through

an imaginary spherical surface of area 4πr2.

This result should be compared with Section 2.2, Eq. (9), the radial electric field

intensity of a point charge in free space,

E =
Q

4πǫ0r2
ar
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In free space, therefore,

D = ǫ0E (free space only) (2)

Although (2) is applicable only to a vacuum, it is not restricted solely to the field of

a point charge. For a general volume charge distribution in free space,

E =
∫

vol

ρνdv
4πǫ0 R2

aR (free space only) (3)

where this relationship was developed from the field of a single point charge. In a

similar manner, (1) leads to

D =
∫

vol

ρνdv
4πR2

aR (4)

and (2) is therefore true for any free-space charge configuration; we will consider (2)

as defining D in free space.

As a preparation for the study of dielectrics later, it might be well to point out now

that, for a point charge embedded in an infinite ideal dielectric medium, Faraday’s

results show that (1) is still applicable, and thus so is (4). Equation (3) is not applicable,

however, and so the relationship between D and E will be slightly more complicated

than (2).

Because D is directly proportional to E in free space, it does not seem that it

should really be necessary to introduce a new symbol. We do so for a few reasons.

First, D is associated with the flux concept, which is an important new idea. Second,

the D fields we obtain will be a little simpler than the corresponding E fields, because

ǫ0 does not appear.

D3.1. Given a 60-µC point charge located at the origin, find the total electric

flux passing through: (a) that portion of the sphere r = 26 cm bounded by

0 < θ <
π

2
and 0 < φ <

π

2
; (b) the closed surface defined by ρ = 26 cm and

z = ±26 cm; (c) the plane z = 26 cm.

Ans. 7.5 µC; 60 µC; 30 µC

D3.2. Calculate D in rectangular coordinates at point P(2, −3, 6) produced

by: (a) a point charge Q A = 55 mC at Q(−2, 3, −6); (b) a uniform line

charge ρL B = 20 mC/m on the x axis; (c) a uniform surface charge density

ρSC = 120 µC/m2 on the plane z = −5 m.

Ans. 6.38ax − 9.57ay + 19.14az µC/m2; −212ay + 424az µC/m2; 60az µC/m2
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3.2 GAUSS’S LAW

The results of Faraday’s experiments with the concentric spheres could be summed up

as an experimental law by stating that the electric flux passing through any imaginary

spherical surface lying between the two conducting spheres is equal to the charge

enclosed within that imaginary surface. This enclosed charge is distributed on the

surface of the inner sphere, or it might be concentrated as a point charge at the center

of the imaginary sphere. However, because one coulomb of electric flux is produced

by one coulomb of charge, the inner conductor might just as well have been a cube or a

brass door key and the total induced charge on the outer sphere would still be the same.

Certainly the flux density would change from its previous symmetrical distribution

to some unknown configuration, but +Q coulombs on any inner conductor would

produce an induced charge of −Q coulombs on the surrounding sphere. Going one

step further, we could now replace the two outer hemispheres by an empty (but

completely closed) soup can. Q coulombs on the brass door key would produce

� = Q lines of electric flux and would induce −Q coulombs on the tin can.1

These generalizations of Faraday’s experiment lead to the following statement,

which is known as Gauss’s law:

The electric flu passing through any closed surface is equal to the total charge enclosed
by that surface.

The contribution of Gauss, one of the greatest mathematicians the world has

ever produced, was actually not in stating the law as we have, but in providing a

mathematical form for this statement, which we will now obtain.

Let us imagine a distribution of charge, shown as a cloud of point charges in

Figure 3.2, surrounded by a closed surface of any shape. The closed surface may be

the surface of some real material, but more generally it is any closed surface we wish

to visualize. If the total charge is Q, then Q coulombs of electric flux will pass through

the enclosing surface. At every point on the surface the electric-flux-density vector

D will have some value DS , where the subscript S merely reminds us that D must be

evaluated at the surface, and DS will in general vary in magnitude and direction from

one point on the surface to another.

We must now consider the nature of an incremental element of the surface. An

incremental element of area �S is very nearly a portion of a plane surface, and

the complete description of this surface element requires not only a statement of its

magnitude �S but also of its orientation in space. In other words, the incremental

surface element is a vector quantity. The only unique direction that may be associated

with �S is the direction of the normal to that plane which is tangent to the surface

at the point in question. There are, of course, two such normals, and the ambiguity

is removed by specifying the outward normal whenever the surface is closed and

“outward” has a specific meaning.

1 If it were a perfect insulator, the soup could even be left in the can without any difference in the results.
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Figure 3.2 The electric flux density DS at P arising

from charge Q. The total flux passing through �S is

DS · �S.

At any point P , consider an incremental element of surface �S and let DS make

an angle θ with �S, as shown in Figure 3.2. The flux crossing �S is then the product

of the normal component of DS and �S,

�� = flux crossing �S = DS,norm�S = DS cos θ�S = DS · �S

where we are able to apply the definition of the dot product developed in Chapter 1.

The total flux passing through the closed surface is obtained by adding the dif-

ferential contributions crossing each surface element �S,

� =
∫

d� =
∮

closed
surface

DS · dS

The resultant integral is a closed surface integral, and since the surface element

dS always involves the differentials of two coordinates, such as dx dy, ρ dφ dρ,

or r2 sin θ dθ dφ, the integral is a double integral. Usually only one integral sign is

used for brevity, and we will always place an S below the integral sign to indicate

a surface integral, although this is not actually necessary, as the differential dS is

automatically the signal for a surface integral. One last convention is to place a small

circle on the integral sign itself to indicate that the integration is to be performed over

a closed surface. Such a surface is often called a gaussian surface. We then have the

mathematical formulation of Gauss’s law,

� =
∮

S
DS · dS = charge enclosed = Q (5)

The charge enclosed might be several point charges, in which case

Q = 	Qn

or a line charge,

Q =
∫

ρL dL
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or a surface charge,

Q =
∫

S
ρSdS (not necessarily a closed surface)

or a volume charge distribution,

Q =
∫

vol

ρν dv

The last form is usually used, and we should agree now that it represents any or

all of the other forms. With this understanding, Gauss’s law may be written in terms

of the charge distribution as

∮

S
DS · dS =

∫

vol

ρν dv (6)

a mathematical statement meaning simply that the total electric flux through any

closed surface is equal to the charge enclosed.

EXAMPLE 3.1

To illustrate the application of Gauss’s law, let us check the results of Faraday’s

experiment by placing a point charge Q at the origin of a spherical coordinate system

(Figure 3.3) and by choosing our closed surface as a sphere of radius a.

Solution. We have, as before,

D =
Q

4πr2
ar

At the surface of the sphere,

DS =
Q

4πa2
ar

The differential element of area on a spherical surface is, in spherical coordinates

from Chapter 1,

d S = r2 sin θ dθ dφ = a2 sin θ dθ dφ

or

dS = a2 sin θ dθ dφ ar

The integrand is

DS · dS =
Q

4πa2
a2 sin θ dθ dφar · ar =

Q
4π

sin θ dθ dφ

leading to the closed surface integral

∫ φ=2π

φ=0

∫ θ=π

θ=φ

Q
4π

sin θ dθ dφ



CHAPTER 3 Electric Flux Density, Gauss’s Law, and Divergence 55

Figure 3.3 Applying Gauss’s law to

the field of a point charge Q on a

spherical closed surface of radius a. The

electric flux density D is everywhere

normal to the spherical surface and has

a constant magnitude at every point on it.

where the limits on the integrals have been chosen so that the integration is carried

over the entire surface of the sphere once.2 Integrating gives
∫ 2π

0

Q
4π

(

−cos θ
)π

0
dφ =

∫ 2π

0

Q
2π

dφ = Q

and we obtain a result showing that Q coulombs of electric flux are crossing the

surface, as we should since the enclosed charge is Q coulombs.

D3.3. Given the electric flux density, D = 0.3r2ar nC/m2 in free space:

(a) find E at point P(r = 2, θ = 25◦, φ = 90◦); (b) find the total charge

within the sphere r = 3; (c) find the total electric flux leaving the sphere r = 4.

Ans. 135.5ar V/m; 305 nC; 965 nC

D3.4. Calculate the total electric flux leaving the cubical surface formed by the

six planes x, y, z = ±5 if the charge distribution is: (a) two point charges, 0.1 µC

at (1, −2, 3) and 1
7

µC at (−1, 2, −2); (b) a uniform line charge of π µC/m at

x = −2, y = 3; (c) a uniform surface charge of 0.1 µC/m2 on the plane y = 3x .

Ans. 0.243 µC; 31.4 µC; 10.54 µC

2 Note that if θ and φ both cover the range from 0 to 2π , the spherical surface is covered twice.
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3.3 APPLICATION OF GAUSS’S LAW: SOME
SYMMETRICAL CHARGE DISTRIBUTIONS

We now consider how we may use Gauss’s law,

Q =
∮

S
DS · dS

to determine DS if the charge distribution is known. This is an example of an integral

equation in which the unknown quantity to be determined appears inside the integral.

The solution is easy if we are able to choose a closed surface which satisfies two

conditions:

1. DS is everywhere either normal or tangential to the closed surface, so that

DS · dS becomes either DSdS or zero, respectively.

2. On that portion of the closed surface for which DS · dS is not zero, DS =
constant.

This allows us to replace the dot product with the product of the scalars DS and

d S and then to bring DS outside the integral sign. The remaining integral is then
∫

S d S over that portion of the closed surface which DS crosses normally, and this is

simply the area of this section of that surface. Only a knowledge of the symmetry of

the problem enables us to choose such a closed surface.

Let us again consider a point charge Q at the origin of a spherical coordinate

system and decide on a suitable closed surface which will meet the two requirements

previously listed. The surface in question is obviously a spherical surface, centered

at the origin and of any radius r . DS is everywhere normal to the surface; DS has the

same value at all points on the surface.

Then we have, in order,

Q =
∮

S
DS · dS =

∮

sph

DSdS

= DS

∮

sph

d S = DS

∫ φ=2π

φ=0

∫ θ=π

θ=0

r2 sin θ dθ dφ

= 4πr2 DS

and hence

DS =
Q

4πr2

Because r may have any value and because DS is directed radially outward,

D =
Q

4πr2
ar E =

Q
4πǫ0r2

ar
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which agrees with the results of Chapter 2. The example is a trivial one, and the

objection could be raised that we had to know that the field was symmetrical and

directed radially outward before we could obtain an answer. This is true, and that

leaves the inverse-square-law relationship as the only check obtained from Gauss’s

law. The example does, however, serve to illustrate a method which we may apply

to other problems, including several to which Coulomb’s law is almost incapable of

supplying an answer.

Are there any other surfaces which would have satisfied our two conditions? The

student should determine that such simple surfaces as a cube or a cylinder do not meet

the requirements.

As a second example, let us reconsider the uniform line charge distribution ρL
lying along the z axis and extending from −∞ to +∞. We must first know the

symmetry of the field, and we may consider this knowledge complete when the

answers to these two questions are known:

1. With which coodinates does the field vary (or of what variables is D a function)?

2. Which components of D are present?

In using Gauss’s law, it is not a question of using symmetry to simplify the

solution, for the application of Gauss’s law depends on symmetry, and if we cannot
show that symmetry exists then we cannot use Gauss’s law to obtain a solution. The

preceding two questions now become “musts.”

From our previous discussion of the uniform line charge, it is evident that only

the radial component of D is present, or

D = Dρaρ

and this component is a function of ρ only.

Dρ = f (ρ)

The choice of a closed surface is now simple, for a cylindrical surface is the only

surface to which Dρ is everywhere normal, and it may be closed by plane surfaces

normal to the z axis. A closed right circular cylinder of radius ρ extending from z = 0

to z = L is shown in Figure 3.4.

We apply Gauss’s law,

Q =

∮

cyl

DS · dS = DS

∫

sides

d S + 0

∫

top

d S + 0

∫

bottom

dS

= DS

∫ L

z=0

∫ 2π

φ=0

ρ dφ dz = DS2πρL

and obtain

DS = Dρ =
Q

2πρL
In terms of the charge density ρL , the total charge enclosed is

Q = ρL L
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Figure 3.4 The gaussian

surface for an infinite uniform line

charge is a right circular cylinder of

length L and radius ρ. D is

constant in magnitude and

everywhere perpendicular to the

cylindrical surface; D is parallel to

the end faces.

giving

Dρ =
ρL

2πρ

or

Eρ =
ρL

2πǫ0ρ

Comparing with Section 2.4, Eq. (16), shows that the correct result has been

obtained and with much less work. Once the appropriate surface has been chosen, the

integration usually amounts only to writing down the area of the surface at which D
is normal.

The problem of a coaxial cable is almost identical with that of the line charge and

is an example that is extremely difficult to solve from the standpoint of Coulomb’s

law. Suppose that we have two coaxial cylindrical conductors, the inner of radius a
and the outer of radius b, each infinite in extent (Figure 3.5). We will assume a charge

distribution of ρS on the outer surface of the inner conductor.

Symmetry considerations show us that only the Dρ component is present and

that it can be a function only of ρ. A right circular cylinder of length L and radius ρ,

where a < ρ < b, is necessarily chosen as the gaussian surface, and we quickly have

Q = DS2πρL
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Figure 3.5 The two coaxial

cylindrical conductors forming a

coaxial cable provide an electric

flux density within the cylinders,

given by Dρ = aρS/ρ.

The total charge on a length L of the inner conductor is

Q =
∫ L

z=0

∫ 2π

φ=0

ρSa dφ dz = 2πaLρS

from which we have

DS =
aρS

ρ
D =

aρS

ρ
aρ (a < ρ < b)

This result might be expressed in terms of charge per unit length because the inner

conductor has 2πaρS coulombs on a meter length, and hence, letting ρL = 2πaρS ,

D =
ρL

2πρ
aρ

and the solution has a form identical with that of the infinite line charge.

Because every line of electric flux starting from the charge on the inner cylinder

must terminate on a negative charge on the inner surface of the outer cylinder, the

total charge on that surface must be

Qouter cyl = −2πaLρS,inner cyl

and the surface charge on the outer cylinder is found as

2πbLρS,outer cyl = −2πaLρS,inner cyl

or

ρS,outer cyl = −
a
b
ρS,inner cyl

What would happen if we should use a cylinder of radius ρ, ρ > b, for the

gaussian surface? The total charge enclosed would then be zero, for there are equal

and opposite charges on each conducting cylinder. Hence

0 = DS2πρL (ρ > b)

DS = 0 (ρ > b)



60 ENGINEERING ELECTROMAGNETICS

An identical result would be obtained for ρ < a. Thus the coaxial cable or

capacitor has no external field (we have proved that the outer conductor is a “shield”),

and there is no field within the center conductor.

Our result is also useful for a finit length of coaxial cable, open at both ends, pro-

vided the length L is many times greater than the radius b so that the nonsymmetrical

conditions at the two ends do not appreciably affect the solution. Such a device is

also termed a coaxial capacitor. Both the coaxial cable and the coaxial capacitor will

appear frequently in the work that follows.

EXAMPLE 3.2

Let us select a 50-cm length of coaxial cable having an inner radius of 1 mm and an

outer radius of 4 mm. The space between conductors is assumed to be filled with air.

The total charge on the inner conductor is 30 nC. We wish to know the charge density

on each conductor, and the E and D fields.

Solution. We begin by finding the surface charge density on the inner cylinder,

ρS,inner cyl =
Qinner cyl

2πaL
=

30 × 10−9

2π (10−3)(0.5)
= 9.55 µC/m2

The negative charge density on the inner surface of the outer cylinder is

ρS,outer cyl =
Qouter cyl

2πbL
=

−30 × 10−9

2π (4 × 10−3)(0.5)
= −2.39 µC/m2

The internal fields may therefore be calculated easily:

Dρ =
aρS

ρ
=

10−3(9.55 × 10−6)

ρ
=

9.55

ρ
nC/m2

and

Eρ =
Dρ

ǫ0

=
9.55 × 10−9

8.854 × 10−12ρ
=

1079

ρ
V/m

Both of these expressions apply to the region where 1 < ρ < 4 mm. For ρ < 1 mm

or ρ > 4 mm, E and D are zero.

D3.5. A point charge of 0.25 µC is located at r = 0, and uniform surface

charge densities are located as follows: 2 mC/m2 at r = 1 cm, and −0.6 mC/m2

at r = 1.8 cm. Calculate D at: (a) r = 0.5 cm; (b) r = 1.5 cm; (c) r = 2.5 cm.

(d) What uniform surface charge density should be established at r = 3 cm to

cause D = 0 at r = 3.5 cm?

Ans. 796ar µC/m2; 977ar µC/m2; 40.8ar µC/m2; −28.3 µC/m2
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3.4 APPLICATION OF GAUSS’S LAW:
DIFFERENTIAL VOLUME ELEMENT

We are now going to apply the methods of Gauss’s law to a slightly different type

of problem—one that does not possess any symmetry at all. At first glance, it might

seem that our case is hopeless, for without symmetry, a simple gaussian surface cannot

be chosen such that the normal component of D is constant or zero everywhere on

the surface. Without such a surface, the integral cannot be evaluated. There is only

one way to circumvent these difficulties and that is to choose such a very small

closed surface that D is almost constant over the surface, and the small change in

D may be adequately represented by using the first two terms of the Taylor’s-series

expansion for D. The result will become more nearly correct as the volume enclosed

by the gaussian surface decreases, and we intend eventually to allow this volume to

approach zero.

This example also differs from the preceding ones in that we will not obtain the

value ofD as our answer but will instead receive some extremely valuable information

about the way D varies in the region of our small surface. This leads directly to one

of Maxwell’s four equations, which are basic to all electromagnetic theory.

Let us consider any point P , shown in Figure 3.6, located by a rectangular

coordinate system. The value of D at the point P may be expressed in rectangular

components, D0 = Dx0ax + Dy0ay + Dz0az . We choose as our closed surface the

small rectangular box, centered at P , having sides of lengths �x , �y, and �z, and

apply Gauss’s law,

∮

S
D · dS = Q

In order to evaluate the integral over the closed surface, the integral must be

broken up into six integrals, one over each face,
∮

S
D · dS =

∫

front

+
∫

back

+
∫

left

+
∫

right

+
∫

top

+
∫

bottom

Consider the first of these in detail. Because the surface element is very small, D
is essentially constant (over this portion of the entire closed surface) and

∫

front

=̇ Dfront · �Sfront

=̇ Dfront · �y �z ax

=̇ Dx,front�y �z

where we have only to approximate the value of Dx at this front face. The front face

is at a distance of �x/2 from P , and hence

Dx,front =̇ Dx0 +
�x
2

× rate of change of Dx with x

=̇ Dx0 +
�x
2

∂Dx

∂x
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Figure 3.6 A differential-sized gaussian surface about

the point P is used to investigate the space rate of

change of D in the neighborhood of P.

where Dx0 is the value of Dx at P , and where a partial derivative must be used to

express the rate of change of Dx with x , as Dx in general also varies with y and z.

This expression could have been obtained more formally by using the constant term

and the term involving the first derivative in the Taylor’s-series expansion for Dx in

the neighborhood of P.

We now have
∫

front

=̇
(

Dx0 +
�x
2

∂Dx

∂x

)

�y �z

Consider now the integral over the back surface,
∫

back

=̇ Dback · �Sback

=̇ Dback · (−�y �z ax )

=̇ −Dx,back�y �z

and

Dx,back =̇ Dx0 −
�x
2

∂Dx

∂x
giving

∫

back

=̇
(

−Dx0 +
�x
2

∂Dx

∂x

)

�y �z

If we combine these two integrals, we have
∫

front

+
∫

back

=̇
∂Dx

∂x
�x �y �z
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By exactly the same process we find that

∫

right

+
∫

left

=̇
∂Dy

∂y
�x �y �z

and

∫

top

+
∫

bottom

=̇
∂Dz

∂z
�x �y �z

and these results may be collected to yield

∮

S
D · dS =̇

(
∂Dx

∂x
+

∂Dy

∂y
+

∂Dz

∂z

)

�x �y �z

or

∮

S
D · dS = Q =̇

(
∂Dx

∂x
+

∂Dy

∂y
+

∂Dz

∂z

)

�ν (7)

The expression is an approximation which becomes better as �ν becomes

smaller, and in the following section we shall let the volume �ν approach zero.

For the moment, we have applied Gauss’s law to the closed surface surrounding the

volume element �ν and have as a result the approximation (7) stating that

Charge enclosed in volume �ν =̇
(

∂Dx

∂x
+

∂Dy

∂y
+

∂Dz

∂z

)

× volume �ν (8)

EXAMPLE 3.3

Find an approximate value for the total charge enclosed in an incremental volume of

10−9 m3 located at the origin, if D = e−x sin y ax − e−x cos y ay + 2zaz C/m2.

Solution. We first evaluate the three partial derivatives in (8):

∂Dx

∂x
= −e−x sin y

∂Dy

∂y
= e−x sin y

∂Dz

∂z
= 2

At the origin, the first two expressions are zero, and the last is 2. Thus, we find that

the charge enclosed in a small volume element there must be approximately 2�ν. If

�ν is 10−9 m3, then we have enclosed about 2 nC.
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D3.6. In free space, letD = 8xyz4ax +4x2z4ay +16x2 yz3az pC/m2. (a) Find

the total electric flux passing through the rectangular surface z = 2, 0 <

x < 2, 1 < y < 3, in the az direction. (b) Find E at P(2, −1, 3). (c) Find

an approximate value for the total charge contained in an incremental sphere

located at P(2, −1, 3) and having a volume of 10−12 m3.

Ans. 1365 pC; −146.4ax + 146.4ay − 195.2azV/m; −2.38 × 10−21 C

3.5 DIVERGENCE AND MAXWELL’S
FIRST EQUATION

We will now obtain an exact relationship from (7), by allowing the volume element

�ν to shrink to zero. We write this equation as
(

∂Dx

∂x
+

∂Dy

∂y
+

∂Dz

∂z

)

= lim
�ν→0

∮

S D · dS
�ν

= lim
�ν→0

Q
�ν

= ρν (9)

in which the charge density, ρν , is identified in the second equality.

The methods of the previous section could have been used on any vector A to

find
∮

S A · dS for a small closed surface, leading to

(
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z

)

= lim
�ν→0

∮

S A · dS
�ν

(10)

where A could represent velocity, temperature gradient, force, or any other vector

field.

This operation appeared so many times in physical investigations in the last cen-

tury that it received a descriptive name, divergence. The divergence ofA is defined as

Divergence of A = div A = lim
�ν→0

∮

S A · dS
�ν

(11)

and is usually abbreviated div A. The physical interpretation of the divergence of a

vector is obtained by describing carefully the operations implied by the right-hand

side of (11), where we shall consider A to be a member of the flux-density family of

vectors in order to aid the physical interpretation.

The divergence of the vector flu densityA is the outflo of flu from a small closed surface
per unit volume as the volume shrinks to zero.

The physical interpretation of divergence afforded by this statement is often

useful in obtaining qualitative information about the divergence of a vector field

without resorting to a mathematical investigation. For instance, let us consider the

divergence of the velocity of water in a bathtub after the drain has been opened. The

net outflow of water through any closed surface lying entirely within the water must

be zero, for water is essentially incompressible, and the water entering and leaving
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different regions of the closed surface must be equal. Hence the divergence of this

velocity is zero.

If, however, we consider the velocity of the air in a tire that has just been punc-

tured by a nail, we realize that the air is expanding as the pressure drops, and that

consequently there is a net outflow from any closed surface lying within the tire. The

divergence of this velocity is therefore greater than zero.

A positive divergence for any vector quantity indicates a source of that vector

quantity at that point. Similarly, a negative divergence indicates a sink. Because the

divergence of the water velocity above is zero, no source or sink exists.3 The expanding

air, however, produces a positive divergence of the velocity, and each interior point

may be considered a source.

Writing (9) with our new term, we have

div D =
(

∂Dx

∂x
+

∂Dy

∂y
+

∂Dz

∂z

)

(rectangular) (12)

This expression is again of a form that does not involve the charge density. It is the

result of applying the definition of divergence (11) to a differential volume element

in rectangular coordinates.

If a differential volume unit ρ dρ dφ dz in cylindrical coordinates, or r2 sin θ dr
dθ dφ in spherical coordinates, had been chosen, expressions for divergence involving

the components of the vector in the particular coordinate system and involving partial

derivatives with respect to the variables of that system would have been obtained.

These expressions are obtained in Appendix A and are given here for convenience:

div D =
1

ρ

∂

∂ρ
(ρDρ) +

1

ρ

∂Dφ

∂φ
+

∂Dz

∂z
(cylindrical) (13)

div D =
1

r2

∂

∂r
(r2 Dr ) +

1

r sin θ

∂

∂θ
(sin θ Dθ ) +

1

r sin θ

∂Dφ

∂φ
(spherical) (14)

These relationships are also shown inside the back cover for easy reference.

It should be noted that the divergence is an operation which is performed on a

vector, but that the result is a scalar. We should recall that, in a somewhat similar way,

the dot or scalar product was a multiplication of two vectors which yielded a scalar.

For some reason, it is a common mistake on meeting divergence for the first

time to impart a vector quality to the operation by scattering unit vectors around in

3 Having chosen a differential element of volume within the water, the gradual decrease in water level

with time will eventually cause the volume element to lie above the surface of the water. At the instant

the surface of the water intersects the volume element, the divergence is positive and the small volume

is a source. This complication is avoided above by specifying an integral point.
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the partial derivatives. Divergence merely tells us how much flux is leaving a small

volume on a per-unit-volume basis; no direction is associated with it.

We can illustrate the concept of divergence by continuing with the example at

the end of Section 3.4.

EXAMPLE 3.4

Find div D at the origin if D = e−x sin y ax − e−x cos y ay + 2zaz .

Solution. We use (10) to obtain

div D =
∂Dx

∂x
+

∂Dy

∂y
+

∂Dz

∂z
= −e−x sin y + e−x sin y + 2 = 2

The value is the constant 2, regardless of location.

If the units of D are C/m2, then the units of div D are C/m3. This is a volume charge

density, a concept discussed in the next section.

D3.7. In each of the following parts, find a numerical value for div D at the

point specified: (a) D = (2xyz − y2)ax + (x2z − 2xy)ay + x2 yazC/m2 at

PA(2, 3, −1); (b) D = 2ρz2 sin2 φ aρ + ρz2 sin 2φ aφ + 2ρ2z sin2 φ azC/m2 at

PB(ρ = 2, φ = 110◦, z = −1); (c) D = 2r sin θ cos φ ar + r cos θ cos φ aθ −

r sin φ aφ C/m2 at PC (r = 1.5, θ = 30◦, φ = 50◦).

Ans. −10.00; 9.06; 1.29

Finally, we can combine Eqs. (9) and (12) and form the relation between electric

flux density and charge density:

div D = ρν (15)

This is the first of Maxwell’s four equations as they apply to electrostatics and

steady magnetic fields, and it states that the electric flux per unit volume leaving a

vanishingly small volume unit is exactly equal to the volume charge density there.

This equation is aptly called the point form of Gauss’s law. Gauss’s law relates the flux

leaving any closed surface to the charge enclosed, and Maxwell’s first equation makes

an identical statement on a per-unit-volume basis for a vanishingly small volume, or

at a point. Because the divergence may be expressed as the sum of three partial

derivatives, Maxwell’s first equation is also described as the differential-equation

form of Gauss’s law, and conversely, Gauss’s law is recognized as the integral form

of Maxwell’s first equation.

As a specific illustration, let us consider the divergence of D in the region about

a point charge Q located at the origin. We have the field

D =
Q

4πr2
ar
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and use (14), the expression for divergence in spherical coordinates:

div D =
1

r2

∂

∂r
(r2 Dr ) +

1

r sin θ

∂

∂θ
(Dθ sin θ ) +

1

r sin θ

∂Dφ

∂φ

Because Dθ and Dφ are zero, we have

div D =
1

r2

d
dr

(

r2 Q
4πr2

)

= 0 (if r �= 0)

Thus, ρν = 0 everywhere except at the origin, where it is infinite.

The divergence operation is not limited to electric flux density; it can be applied

to any vector field. We will apply it to several other electromagnetic fields in the

coming chapters.

D3.8. Determine an expression for the volume charge density associated with

each D field: (a) D =
4xy

z
ax +

2x2

z
ay −

2x2 y
z2

az ; (b) D = z sin φ aρ +

z cos φ aφ + ρ sin φ az ; (c) D = sin θ sin φ ar + cos θ sin φ aθ + cos φ aφ .

Ans.
4y
z3

(x2 + z2); 0; 0.

3.6 THE VECTOR OPERATOR ∇
AND THE DIVERGENCE THEOREM

If we remind ourselves again that divergence is an operation on a vector yielding a

scalar result, just as the dot product of two vectors gives a scalar result, it seems possi-

ble that we can find something that may be dotted formally with D to yield the scalar

∂Dx

∂x
+

∂Dy

∂y
+

∂Dz

∂z
Obviously, this cannot be accomplished by using a dot product; the process must be

a dot operation.

With this in mind, we define the del operator ∇ as a vector operator,

∇ =
∂

∂x
ax +

∂

∂y
ay +

∂

∂z
az (16)

Similar scalar operators appear in several methods of solving differential equations

where we often let D replace d/dx , D2 replace d2/dx2, and so forth.4 We agree on

defining ∇ that it shall be treated in every way as an ordinary vector with the one

important exception that partial derivatives result instead of products of scalars.

Consider ∇ ·D, signifying

∇ ·D =

(
∂

∂x
ax +

∂

∂y
ay +

∂

∂z
az

)

· (Dxax + Dyay + Dzaz)

4 This scalar operator D, which will not appear again, is not to be confused with the electric flux density.
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We first consider the dot products of the unit vectors, discarding the six zero terms,

and obtain the result that we recognize as the divergence of D:

∇ ·D =
∂Dx

∂x
+

∂Dy

∂y
+

∂Dz

∂z
= div(D)

The use of ∇ ·D is much more prevalent than that of div D, although both usages

have their advantages. Writing ∇ ·D allows us to obtain simply and quickly the correct

partial derivatives, but only in rectangular coordinates, as we will see. On the other

hand, div D is an excellent reminder of the physical interpretation of divergence.

We shall use the operator notation ∇ ·D from now on to indicate the divergence

operation.

The vector operator ∇ is used not only with divergence, but also with several

other very important operations that appear later. One of these is ∇u, where u is any

scalar field, and leads to

∇u =

(
∂

∂x
ax +

∂

∂y
ay +

∂

∂z
az

)

u =
∂u
∂x

ax +
∂u
∂y

ay +
∂u
∂z

az

The ∇ operator does not have a specific form in other coordinate systems. If we

are considering D in cylindrical coordinates, then ∇ ·D still indicates the divergence

of D, or

∇ ·D =
1

ρ

∂

∂ρ
(ρDρ) +

1

ρ

∂Dφ

∂φ
+

∂Dz

∂z
where this expression has been taken from Section 3.5. We have no form for ∇ itself

to help us obtain this sum of partial derivatives. This means that ∇u, as yet unnamed

but easily written in rectangular coordinates, cannot be expressed by us at this time

in cylindrical coordinates. Such an expression will be obtained when ∇u is defined

in Chapter 4.

We close our discussion of divergence by presenting a theorem that will be needed

several times in later chapters, the divergence theorem. This theorem applies to any

vector field for which the appropriate partial derivatives exist, although it is easiest

for us to develop it for the electric flux density. We have actually obtained it already

and now have little more to do than point it out and name it, for starting from Gauss’s

law, we have
∮

S
D · dS = Q =

∫

vol

ρνdv =

∫

vol

∇ ·D dv

The first and last expressions constitute the divergence theorem,

∮

S
D · dS =

∫

vol

∇ ·D dv (17)

which may be stated as follows:

The integral of the normal component of any vector fiel over a closed surface is equal to
the integral of the divergence of this vector fiel throughout the volume enclosed by the
closed surface.
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Figure 3.7 The divergence theorem states that the total

flux crossing the closed surface is equal to the integral of

the divergence of the flux density throughout the enclosed

volume. The volume is shown here in cross section.

Again, we emphasize that the divergence theorem is true for any vector field,

although we have obtained it specifically for the electric flux density D, and we will

have occasion later to apply it to several different fields. Its benefits derive from the

fact that it relates a triple integration throughout some volume to a double integration

over the surface of that volume. For example, it is much easier to look for leaks in

a bottle full of some agitated liquid by inspecting the surface than by calculating the

velocity at every internal point.

The divergence theorem becomes obvious physically if we consider a volume ν,

shown in cross section in Figure 3.7, which is surrounded by a closed surface S.

Division of the volume into a number of small compartments of differential size and

consideration of one cell show that the flux diverging from such a cell enters, or

converges on, the adjacent cells unless the cell contains a portion of the outer surface.

In summary, the divergence of the flux density throughout a volume leads, then, to

the same result as determining the net flux crossing the enclosing surface.

EXAMPLE 3.5

Evaluate both sides of the divergence theorem for the field D = 2xyax + x2ay C/m2

and the rectangular parellelepiped formed by the planes x = 0 and 1, y = 0 and 2,

and z = 0 and 3.

Solution. Evaluating the surface integral first, we note that D is parallel to the sur-

faces at z = 0 and z = 3, so D · dS = 0 there. For the remaining four surfaces

we have

∮

S
D · dS =

∫ 3

0

∫ 2

0

(D)x=0 · (−dy dz ax ) +
∫ 3

0

∫ 2

0

(D)x=1 · (dy dz ax )

+
∫ 3

0

∫ 1

0

(D)y=0 · (−dx dz ay) +
∫ 3

0

∫ 1

0

(D)y=2 · (dx dz ay)
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= −
∫ 3

0

∫ 2

0

(Dx )x=0dy dz +
∫ 3

0

∫ 2

0

(Dx )x=1dy dz

−
∫ 3

0

∫ 1

0

(Dy)y=0dx dz +
∫ 3

0

∫ 1

0

(Dy)y=2dx dz

However, (Dx )x=0 = 0, and (Dy)y=0 = (Dy)y=2, which leaves only
∮

S
D · dS =

∫ 3

0

∫ 2

0

(Dx )x=1dy dz =
∫ 3

0

∫ 2

0

2y dy dz

=
∫ 3

0

4 dz = 12

Since

∇ ·D =
∂

∂x
(2xy) +

∂

∂y
(x2) = 2y

the volume integral becomes
∫

vol

∇ ·D dv =

∫ 3

0

∫ 2

0

∫ 1

0

2y dx dy dz =

∫ 3

0

∫ 2

0

2y dy dz

=

∫ 3

0

4 dz = 12

and the check is accomplished. Remembering Gauss’s law, we see that we have also

determined that a total charge of 12 C lies within this parallelepiped.

D3.9. Given the fieldD = 6ρ sin 1
2
φ aρ +1.5ρ cos 1

2
φ aφ C/m2, evaluate both

sides of the divergence theorem for the region bounded by ρ = 2, φ = 0,

φ = π , z = 0, and z = 5.

Ans. 225; 225
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CHAPTER 3 PROBLEMS

3.1 Suppose that the Faraday concentric sphere experiment is performed in free

space using a central charge at the origin, Q1, and with hemispheres of radius

a. A second charge Q2 (this time a point charge) is located at distance R
from Q1, where R >> a. (a) What is the force on the point charge before the

hemispheres are assembled around Q1? (b) What is the force on the point

charge after the hemispheres are assembled but before they are discharged?

(c) What is the force on the point charge after the hemispheres are assembled

and after they are discharged? (d) Qualitatively, describe what happens as Q2

is moved toward the sphere assembly to the extent that the condition R >> a
is no longer valid.

3.2 An electric field in free space is E = (5z2/ǫ0) âz V/m. Find the total charge

contained within a cube, centered at the origin, of 4-m side length, in which

all sides are parallel to coordinate axes (and therefore each side intersects an

axis at ±2).

3.3 The cylindrical surface ρ = 8 cm contains the surface charge density, ρS =
5e−20|z| nC/m2. (a) What is the total amount of charge present? (b) How

much electric flux leaves the surface ρ = 8 cm, 1 cm < z < 5 cm,

30◦ < φ < 90◦?

3.4 An electric field in free space is E = (5z3/ǫ0) âz V/m. Find the total charge

contained within a sphere of 3-m radius, centered at the origin.

3.5 Let D = 4xyax + 2(x2 + z2)ay + 4yzaz nC/m2 and evaluate surface integrals

to find the total charge enclosed in the rectangular parallelepiped 0 < x < 2,

0 < y < 3, 0 < z < 5 m.

3.6 In free space, a volume charge of constant density ρν = ρ0 exists within the

region −∞ < x < ∞, −∞ < y < ∞, and −d/2 < z < d/2. Find D and E
everywhere.

3.7 Volume charge density is located in free space as ρν = 2e−1000r nC/m3 for

0 < r < 1 mm, and ρν = 0 elsewhere. (a) Find the total charge enclosed by

the spherical surface r = 1 mm. (b) By using Gauss’s law, calculate the value

of Dr on the surface r = 1 mm.

3.8 Use Gauss’s law in integral form to show that an inverse distance field in

spherical coordinates, D = Aar/r , where A is a constant, requires every

spherical shell of 1 m thickness to contain 4πA coulombs of charge. Does

this indicate a continuous charge distribution? If so, find the charge density

variation with r .



72 ENGINEERING ELECTROMAGNETICS

3.9 A uniform volume charge density of 80 µC/m3 is present throughout the

region 8 mm < r < 10 mm. Let ρν = 0 for 0 < r < 8 mm. (a) Find the total

charge inside the spherical surface r = 10 mm. (b) Find Dr at r = 10 mm.

(c) If there is no charge for r > 10 mm, find Dr at r = 20 mm.

3.10 An infinitely long cylindrical dielectric of radius b contains charge within its

volume of density ρv = aρ2, where a is a constant. Find the electric field

strength, E, both inside and outside the cylinder.

3.11 In cylindrical coordinates, let ρν = 0 for ρ < 1 mm, ρν = 2 sin(2000

πρ) nC/m3 for 1 mm < ρ < 1.5 mm, and ρν = 0 for ρ > 1.5 mm. Find D
everywhere.

3.12 The sun radiates a total power of about 3.86 × 1026 watts (W). If we imagine

the sun’s surface to be marked off in latitude and longitude and assume

uniform radiation, (a) what power is radiated by the region lying between

latitude 50◦ N and 60◦ N and longitude 12◦ W and 27◦ W? (b) What is the

power density on a spherical surface 93,000,000 miles from the sun in W/m2?

3.13 Spherical surfaces at r = 2, 4, and 6 m carry uniform surface charge

densities of 20 nC/m2, −4 nC/m2, and ρS0, respectively. (a) Find D at r = 1,

3, and 5 m. (b) Determine ρS0 such that D = 0 at r = 7 m.

3.14 A certain light-emitting diode (LED) is centered at the origin with its surface

in the xy plane. At far distances, the LED appears as a point, but the glowing

surface geometry produces a far-field radiation pattern that follows a raised

cosine law: that is, the optical power (flux) density in watts/m2 is given in

spherical coordinates by

Pd = P0

cos2 θ

2πr2
ar watts/m2

where θ is the angle measured with respect to the direction that is normal to

the LED surface (in this case, the z axis), and r is the radial distance from the

origin at which the power is detected. (a) In terms of P0, find the total power

in watts emitted in the upper half-space by the LED; (b) Find the cone angle,

θ1, within which half the total power is radiated, that is, within the range

0 < θ < θ1; (c) An optical detector, having a 1-mm2 cross-sectional area, is

positioned at r = 1 m and at θ = 45◦, such that it faces the LED. If one

milliwatt is measured by the detector, what (to a very good estimate) is the

value of P0?

3.15 Volume charge density is located as follows: ρν = 0 for ρ < 1 mm and for

ρ > 2 mm, ρν = 4ρ µC/m3 for 1 < ρ < 2 mm. (a) Calculate the total charge

in the region 0 < ρ < ρ1, 0 < z < L , where 1 < ρ1 < 2 mm. (b) Use

Gauss’s law to determine Dρ at ρ = ρ1. (c) Evaluate Dρ at ρ = 0.8 mm,

1.6 mm, and 2.4 mm.

3.16 An electric flux density is given by D = D0 aρ , where D0 is a given constant.

(a) What charge density generates this field? (b) For the specified field, what
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total charge is contained within a cylinder of radius a and height b, where the

cylinder axis is the z axis?

3.17 A cube is defined by 1 < x, y, z < 1.2. If D = 2x2yax + 3x2y2ay C/m2

(a) Apply Gauss’s law to find the total flux leaving the closed surface of the

cube. (b) Evaluate ∇ · D at the center of the cube. (c) Estimate the total

charge enclosed within the cube by using Eq. (8).

3.18 State whether the divergence of the following vector fields is positive,

negative, or zero: (a) the thermal energy flow in J/(m2 − s) at any point in a

freezing ice cube; (b) the current density in A/m2 in a bus bar carrying direct

current; (c) the mass flow rate in kg/(m2 − s) below the surface of water in a

basin, in which the water is circulating clockwise as viewed from above.

3.19 A spherical surface of radius 3 mm is centered at P(4, 1, 5) in free space. Let

D = xax C/m2. Use the results of Section 3.4 to estimate the net electric flux

leaving the spherical surface.

3.20 A radial electric field distribution in free space is given in spherical

coordinates as:

E1 =
rρ0

3ǫ0

ar (r ≤ a)

E2 =
(2a3 − r3)ρ0

3ǫ0 r2
ar (a ≤ r ≤ b)

E3 =
(2a3 − b3)ρ0

3ǫ0 r2
ar (r ≥ b)

where ρ0, a, and b are constants. (a) Determine the volume charge density in

the entire region (0 ≤ r ≤ ∞) by the appropriate use of ∇ · D = ρv . (b) In

terms of given parameters, find the total charge, Q, within a sphere of radius

r where r > b.

3.21 Calculate ∇ ·D at the point specified if (a) D = (1/z2)[10xyz ax +

5x2z ay + (2z3 − 5x2 y) az] at P(−2, 3, 5); (b) D = 5z2 aρ + 10ρz az at

P(3, −45◦, 5); (c) D = 2r sin θ sin φ ar + r cos θ sin φ aθ + r cos φ aφ at

P(3, 45◦, −45◦).

3.22 (a) A flux density field is given as F1 = 5az . Evaluate the outward flux of F1

through the hemispherical surface, r = a, 0 < θ < π/2, 0 < φ < 2π .

(b) What simple observation would have saved a lot of work in part a?

(c) Now suppose the field is given by F2 = 5zaz . Using the appropriate

surface integrals, evaluate the net outward flux of F2 through the closed

surface consisting of the hemisphere of part a and its circular base in the xy
plane. (d) Repeat part c by using the divergence theorem and an appropriate

volume integral.

3.23 (a) A point charge Q lies at the origin. Show that div D is zero everywhere

except at the origin. (b) Replace the point charge with a uniform volume

charge density ρv0 for 0 < r < a. Relate ρv0 to Q and a so that the total

charge is the same. Find div D everywhere.
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3.24 In a region in free space, electric flux density is found to be

D =
{

ρ0(z + 2d) az C/m2 (−2d ≤ z ≤ 0)

−ρ0(z − 2d) az C/m2 (0 ≤ z ≤ 2d)

Everywhere else, D = 0. (a) Using ∇ · D = ρv , find the volume charge

density as a function of position everywhere. (b) Determine the electric flux

that passes through the surface defined by z = 0, −a ≤ x ≤ a, −b ≤ y ≤ b.

(c) Determine the total charge contained within the region −a ≤ x ≤ a,

−b ≤ y ≤ b, −d ≤ z ≤ d . (d) Determine the total charge contained within

the region −a ≤ x ≤ a, −b ≤ y ≤ b, 0 ≤ z ≤ 2d .

3.25 Within the spherical shell, 3 < r < 4 m, the electric flux density is given as

D = 5(r − 3)3 ar C/m2. (a) What is the volume charge density at r = 4?

(b) What is the electric flux density at r = 4? (c) How much electric flux

leaves the sphere r = 4? (d) How much charge is contained within the sphere

r = 4?

3.26 If we have a perfect gas of mass density ρm kg/m3, and we assign a

velocity U m/s to each differential element, then the mass flow rate is

ρmU kg/(m2 − s). Physical reasoning then leads to the continuity equation,

∇ · (ρmU) = −∂ρm/∂t . (a) Explain in words the physical interpretation of

this equation. (b) Show that
∮

s ρmU · dS = −d M/dt , where M is the total

mass of the gas within the constant closed surface S, and explain the physical

significance of the equation.

3.27 Let D = 5.00r2ar mC/m2 for r ≤ 0.08 m and D = 0.205 ar/r2 µC/m2 for

r ≥ 0.08 m. (a) Find ρν for r = 0.06 m. (b) Find ρν for r = 0.1 m. (c) What

surface charge density could be located at r = 0.08 m to cause D = 0 for

r > 0.08 m?

3.28 Repeat Problem 3.8, but use ∇ ·D = ρν and take an appropriate volume

integral.

3.29 In the region of free space that includes the volume 2 < x, y, z < 3, D =
2
z2 (yz ax + xz ay − 2xy az) C/m2. (a) Evaluate the volume integral side of

the divergence theorem for the volume defined here. (b) Evaluate the surface

integral side for the corresponding closed surface.

3.30 (a) Use Maxwell’s first equation, ∇ · D = ρv , to describe the variation of the

electric field intensity with x in a region in which no charge density exists

and in which a nonhomogeneous dielectric has a permittivity that increases

exponentially with x . The field has an x component only; (b) repeat part (a),

but with a radially directed electric field (spherical coordinates), in which

again ρv = 0, but in which the permittivity decreases exponentially with r .

3.31 Given the flux density D = 16
r cos(2θ ) aθ C/m2, use two different methods to

find the total charge within the region 1 < r < 2 m, 1 < θ < 2 rad,

1 < φ < 2 rad.
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Energy and Potential

I
n Chapters 2 and 3 we became acquainted with Coulomb’s law and its use in

finding the electric field about several simple distributions of charge, and also with

Gauss’s law and its application in determining the field about some symmetrical

charge arrangements. The use of Gauss’s law was invariably easier for these highly

symmetrical distributions because the problem of integration always disappeared

when the proper closed surface was chosen.

However, if we had attempted to find a slightly more complicated field, such as

that of two unlike point charges separated by a small distance, we would have found it

impossible to choose a suitable gaussian surface and obtain an answer. Coulomb’s law,

however, is more powerful and enables us to solve problems for which Gauss’s law is

not applicable. The application of Coulomb’s law is laborious, detailed, and often quite

complex, the reason for this being precisely the fact that the electric field intensity,

a vector field, must be found directly from the charge distribution. Three different

integrations are needed in general, one for each component, and the resolution of the

vector into components usually adds to the complexity of the integrals.

Certainly it would be desirable if we could find some as yet undefined scalar

function with a single integration and then determine the electric field from this scalar

by some simple straightforward procedure, such as differentiation.

This scalar function does exist and is known as the potential or potential fiel .

We shall find that it has a very real physical interpretation and is more familiar to

most of us than is the electric field which it will be used to find.

We should expect, then, to be equipped soon with a third method of finding

electric fields—a single scalar integration, although not always as simple as we might

wish, followed by a pleasant differentiation.

75
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4.1 ENERGY EXPENDED IN MOVING A POINT
CHARGE IN AN ELECTRIC FIELD

The electric field intensity was defined as the force on a unit test charge at that point

at which we wish to find the value of this vector field. If we attempt to move the test

charge against the electric field, we have to exert a force equal and opposite to that

exerted by the field, and this requires us to expend energy or do work. If we wish to

move the charge in the direction of the field, our energy expenditure turns out to be

negative; we do not do the work, the field does.

Suppose we wish to move a charge Q a distance dL in an electric field E. The

force on Q arising from the electric field is

FE = QE (1)

where the subscript reminds us that this force arises from the field. The component

of this force in the direction dL which we must overcome is

FE L = F · aL = QE · aL

where aL = a unit vector in the direction of dL.

The force that we must apply is equal and opposite to the force associated with

the field,

Fappl = −QE · aL

and the expenditure of energy is the product of the force and distance. That is, the

differential work done by an external source moving charge Q is dW = −QE · aLd L ,

or dW = −QE · dL (2)

where we have replaced aLdL by the simpler expression dL.

This differential amount of work required may be zero under several conditions

determined easily from Eq. (2). There are the trivial conditions for whichE, Q, or dL
is zero, and a much more important case in which E and dL are perpendicular. Here

the charge is moved always in a direction at right angles to the electric field. We can

draw on a good analogy between the electric field and the gravitational field, where,

again, energy must be expended to move against the field. Sliding a mass around with

constant velocity on a frictionless surface is an effortless process if the mass is moved

along a constant elevation contour; positive or negative work must be done in moving

it to a higher or lower elevation, respectively.

Returning to the charge in the electric field, the work required to move the charge

a finite distance must be determined by integrating,

W = −Q
∫ final

init

E · dL (3)
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where the path must be specified before the integral can be evaluated. The charge is

assumed to be at rest at both its initial and final positions.

This definite integral is basic to field theory, and we shall devote the following

section to its interpretation and evaluation.

D4.1. Given the electric field E =
1

z2
(8xyzax + 4x2zay − 4x2 yaz) V/m, find

the differential amount of work done in moving a 6-nC charge a distance of

2 µm, starting at P(2, −2, 3) and proceeding in the direction aL = (a) − 6
7
ax +

3
7
ay + 2

7
az ; (b) 6

7
ax − 3

7
ay − 2

7
az ; (c) 3

7
ax + 6

7
ay .

Ans. −149.3 fJ; 149.3 fJ; 0

4.2 THE LINE INTEGRAL

The integral expression for the work done in moving a point charge Q from one

position to another, Eq. (3), is an example of a line integral, which in vector-analysis

notation always takes the form of the integral along some prescribed path of the dot

product of a vector field and a differential vector path length dL. Without using vector

analysis we should have to write

W = −Q
∫ final

init

EL dL

where EL = component of E along dL.

A line integral is like many other integrals which appear in advanced analysis,

including the surface integral appearing in Gauss’s law, in that it is essentially de-

scriptive. We like to look at it much more than we like to work it out. It tells us to

choose a path, break it up into a large number of very small segments, multiply the

component of the field along each segment by the length of the segment, and then

add the results for all the segments. This is a summation, of course, and the integral

is obtained exactly only when the number of segments becomes infinite.

This procedure is indicated in Figure 4.1, where a path has been chosen from

an initial position B to a final position1 A and a uniform electric fiel is selected

for simplicity. The path is divided into six segments, �L1, �L2, . . . , �L6, and the

components of E along each segment are denoted by EL1, EL2, . . . , EL6. The work

involved in moving a charge Q from B to A is then approximately

W = −Q(EL1�L1 + EL2�L2 + · · · + EL6�L6)

or, using vector notation,

W = −Q(E1 · �L1 + E2 · �L2 + · · · + E6 · �L6)

1 The final position is given the designation A to correspond with the convention for potential

difference, as discussed in the following section.
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Figure 4.1 A graphical interpretation of a line integral in a uniform field. The line

integral of E between points B and A is independent of the path selected, even in a

nonuniform field; this result is not, in general, true for time-varying fields.

and because we have assumed a uniform field,

E1 = E2 = · · · = E6

W = −QE · (�L1 + �L2 + · · · + �L6)

What is this sum of vector segments in the preceding parentheses? Vectors add

by the parallelogram law, and the sum is just the vector directed from the initial point

B to the final point A,LB A. Therefore

W = −QE ·LB A (uniform E) (4)

Remembering the summation interpretation of the line integral, this result for the

uniform field can be obtained rapidly now from the integral expression

W = −Q
∫ A

B
E · dL (5)

as applied to a uniform field

W = −QE ·

∫ A

B
dL

where the last integral becomes LB A and

W = −QE ·LB A (uniform E)
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For this special case of a uniform electric field intensity, we should note that the

work involved in moving the charge depends only on Q, E, and LB A, a vector drawn

from the initial to the final point of the path chosen. It does not depend on the particular

path we have selected along which to carry the charge. We may proceed from B to A
on a straight line or via the Old Chisholm Trail; the answer is the same. We show in

Section 4.5 that an identical statement may be made for any nonuniform (static)Efield.

Let us use several examples to illustrate the mechanics of setting up the line

integral appearing in Eq. (5).

EXAMPLE 4.1

We are given the nonuniform field

E = yax + xay + 2az

and we are asked to determine the work expended in carrying 2C from B(1, 0, 1) to

A(0.8, 0.6, 1) along the shorter arc of the circle

x2 + y2 = 1 z = 1

Solution. We use W = −Q
∫ A

B E · dL, whereE is not necessarily constant. Working

in rectangular coordinates, the differential path dL is dxax + dyay + dzaz , and the

integral becomes

W = −Q
∫ A

B
E · dL

= −2

∫ A

B
(yax + xay + 2az) · (dx ax + dy ay + dz az)

= −2

∫ 0.8

1

y dx − 2

∫ 0.6

0

x dy − 4

∫ 1

1

dz

where the limits on the integrals have been chosen to agree with the initial and final

values of the appropriate variable of integration. Using the equation of the circular

path (and selecting the sign of the radical which is correct for the quadrant involved),

we have

W = −2

∫ 0.8

1

√

1 − x2 dx − 2

∫ 0.6

0

√

1 − y2 dy − 0

= −
[

x
√

1 − x2 + sin−1 x
]0.8

1
−

[

y
√

1 − y2 + sin−1 y
]0.6

0

= −(0.48 + 0.927 − 0 − 1.571) − (0.48 + 0.644 − 0 − 0)

= −0.96 J



80 ENGINEERING ELECTROMAGNETICS

EXAMPLE 4.2

Again find the work required to carry 2C from B to A in the same field, but this time

use the straight-line path from B to A.

Solution. We start by determining the equations of the straight line. Any two of the

following three equations for planes passing through the line are sufficient to define

the line:

y − yB =
yA − yB

xA − xB
(x − xB)

z − zB =
z A − zB

yA − yB
(y − yB)

x − xB =
xA − xB

z A − zB
(z − zB)

From the first equation we have

y = −3(x − 1)

and from the second we obtain

z = 1

Thus,

W = −2

∫ 0.8

1

y dx − 2

∫ 0.6

0

x dy − 4

∫ 1

1

dz

= 6

∫ 0.8

1

(x − 1) dx − 2

∫ 0.6

0

(

1 −
y
3

)

dy

= −0.96 J

This is the same answer we found using the circular path between the same

two points, and it again demonstrates the statement (unproved) that the work done is

independent of the path taken in any electrostatic field.

It should be noted that the equations of the straight line show that dy = −3 dx and

dx = − 1
3

dy. These substitutions may be made in the first two integrals, along with

a change in limits, and the answer may be obtained by evaluating the new integrals.

This method is often simpler if the integrand is a function of only one variable.

Note that the expressions for dL in our three coordinate systems use the dif-

ferential lengths obtained in Chapter 1 (rectangular in Section 1.3, cylindrical in

Section 1.8, and spherical in Section 1.9):

dL = dx ax + dy ay + dz az (rectangular) (6)

dL = dρ aρ + ρ dφaφ + dz az (cylindrical) (7)

dL = dr ar + r dθ aθ + r sin θ dφ aφ (spherical) (8)

The interrelationships among the several variables in each expression are determined

from the specific equations for the path.
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Figure 4.2 (a) A circular path and (b) a radial path along which a charge of Q is carried

in the field of an infinite line charge. No work is expected in the former case.

As a final example illustrating the evaluation of the line integral, we investigate

several paths that we might take near an infinite line charge. The field has been

obtained several times and is entirely in the radial direction,

E = Eρaρ =
ρL

2πǫ0ρ
aρ

First we find the work done in carrying the positive charge Q about a circular

path of radius ρb centered at the line charge, as illustrated in Figure 4.2a. Without

lifting a pencil, we see that the work must be nil, for the path is always perpendicular

to the electric field intensity, or the force on the charge is always exerted at right

angles to the direction in which we are moving it. For practice, however, we will set

up the integral and obtain the answer.

The differential element dL is chosen in cylindrical coordinates, and the circular

path selected demands that dρ and dz be zero, so dL = ρ1 dφ aφ . The work is then

W = −Q
∫ final

init

ρL

2πǫ0ρ1

aρ · ρ1 dφ aφ

= −Q
∫ 2π

0

ρL

2πǫ0

dφ aρ · aφ = 0

We will now carry the charge from ρ = a to ρ = b along a radial path

(Figure 4.2b). Here dL = dρ aρ and

W = −Q
∫ final

init

ρL

2πǫ0ρ
aρ · dρ aρ = −Q

∫ b

a

ρL

2πǫ0

d ρ

ρ

or

W = −
QρL

2πǫ0

ln
b
a

Because b is larger than a, ln (b/a) is positive, and the work done is negative,

indicating that the external source that is moving the charge receives energy.
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One of the pitfalls in evaluating line integrals is a tendency to use too many minus

signs when a charge is moved in the direction of a decreasing coordinate value. This is

taken care of completely by the limits on the integral, and no misguided attempt should

be made to change the sign of dL. Suppose we carry Q from b to a (Figure 4.2b).

We still have dL = dρ aρ and show the different direction by recognizing ρ = b as

the initial point and ρ = a as the final point,

W = −Q
∫ a

b

ρL

2πǫ0

d ρ

ρ
=

QρL

2πǫ0

ln
b
a

This is the negative of the previous answer and is obviously correct.

D4.2. Calculate the work done in moving a 4-C charge from B(1, 0, 0) to

A(0, 2, 0) along the path y = 2 − 2x , z = 0 in the field E = (a) 5ax V/m;

(b) 5xax V/m; (c) 5xax + 5yayV/m.

Ans. 20 J; 10 J; −30 J

D4.3. We will see later that a time-varying E field need not be conservative.

(If it is not conservative, the work expressed by Eq. (3) may be a function of the

path used.) Let E = yax V/m at a certain instant of time, and calculate the work

required to move a 3-C charge from (1, 3, 5) to (2, 0, 3) along the straight-line

segments joining: (a) (1, 3, 5) to (2, 3, 5) to (2, 0, 5) to (2, 0, 3); (b) (1, 3, 5) to

(1, 3, 3) to (1, 0, 3) to (2, 0, 3).

Ans. −9 J; 0

4.3 DEFINITION OF POTENTIAL
DIFFERENCE AND POTENTIAL

We are now ready to define a new concept from the expression for the work done

by an external source in moving a charge Q from one point to another in an electric

field E, “Potential difference and work.”

W = −Q
∫ final

init

E · dL

In much the same way as we defined the electric field intensity as the force on a

unit test charge, we now define potential difference V as the work done (by an external

source) in moving a unit positive charge from one point to another in an electric field,

Potential difference = V = −
∫ final

init

E · dL (9)
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We have to agree on the direction of movement, and we do this by stating that

VAB signifies the potential difference between points A and B and is the work done in

moving the unit charge from B (last named) to A (first named). Thus, in determining

VAB , B is the initial point and A is the final point. The reason for this somewhat

peculiar definition will become clearer shortly, when it is seen that the initial point B
is often taken at infinity, whereas the final point A represents the fixed position of the

charge; point A is thus inherently more significant.

Potential difference is measured in joules per coulomb, for which the volt is

defined as a more common unit, abbreviated as V. Hence the potential difference

between points A and B is

VAB = −
∫ A

B
E · dL V (10)

and VAB is positive if work is done in carrying the positive charge from B to A.

From the line-charge example of Section 4.2 we found that the work done in

taking a charge Q from ρ = b to ρ = a was

W =
QρL

2πǫ0

ln
b
a

Thus, the potential difference between points at ρ = a and ρ = b is

Vab =
W
Q

=
ρL

2πǫ0

ln
b
a

(11)

We can try out this definition by finding the potential difference between points

A and B at radial distances rA and rB from a point charge Q. Choosing an origin at Q,

E = Erar =
Q

4πǫ0r2
ar

and

dL = dr ar

we have

VAB = −
∫ A

B
E · dL = −

∫ rA

rB

Q
4πǫ0r2

dr =
Q

4πǫ0

(

1

rA
−

1

rB

)

(12)

If rB > rA, the potential difference VAB is positive, indicating that energy is

expended by the external source in bringing the positive charge from rB to rA. This

agrees with the physical picture showing the two like charges repelling each other.

It is often convenient to speak of the potential, or absolute potential, of a point,

rather than the potential difference between two points, but this means only that we

agree to measure every potential difference with respect to a specified reference point

that we consider to have zero potential. Common agreement must be reached on

the zero reference before a statement of the potential has any significance. A person

having one hand on the deflection plates of a cathode-ray tube that are “at a potential

of 50 V” and the other hand on the cathode terminal would probably be too shaken up
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to understand that the cathode is not the zero reference, but that all potentials in that

circuit are customarily measured with respect to the metallic shield about the tube.

The cathode may be several thousands of volts negative with respect to the shield.

Perhaps the most universal zero reference point in experimental or physical po-

tential measurements is “ground,” by which we mean the potential of the surface

region of the earth itself. Theoretically, we usually represent this surface by an infinite

plane at zero potential, although some large-scale problems, such as those involving

propagation across the Atlantic Ocean, require a spherical surface at zero potential.

Another widely used reference “point” is infinity. This usually appears in theo-

retical problems approximating a physical situation in which the earth is relatively far

removed from the region in which we are interested, such as the static field near the

wing tip of an airplane that has acquired a charge in flying through a thunderhead, or

the field inside an atom. Working with the gravitational potential field on earth, the

zero reference is normally taken at sea level; for an interplanetary mission, however,

the zero reference is more conveniently selected at infinity.

A cylindrical surface of some definite radius may occasionally be used as a zero

reference when cylindrical symmetry is present and infinity proves inconvenient. In a

coaxial cable the outer conductor is selected as the zero reference for potential. And,

of course, there are numerous special problems, such as those for which a two-sheeted

hyperboloid or an oblate spheroid must be selected as the zero-potential reference,

but these need not concern us immediately.

If the potential at point A is VA and that at B is VB , then

VAB = VA − VB (13)

where we necessarily agree that VA and VB shall have the same zero reference point.

D4.4. An electric field is expressed in rectangular coordinates byE = 6x2ax +
6yay +4azV/m. Find: (a) VM N if points M and N are specified by M(2, 6, −1)

and N (−3, −3, 2); (b) VM if V = 0 at Q(4, −2, −35); (c) VN if V = 2 at

P(1, 2, −4).

Ans. −139.0 V; −120.0 V; 19.0 V

4.4 THE POTENTIAL FIELD
OF A POINT CHARGE

In Section 4.3 we found an expression Eq. (12) for the potential difference between

two points located at r = rA and r = rB in the field of a point charge Q placed

at the origin. How might we conveniently define a zero reference for potential? The

simplest possibility is to let V = 0 at infinity. If we let the point at r = rB recede to

infinity, the potential at rA becomes

VA =
Q

4πǫ0rA
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or, as there is no reason to identify this point with the A subscript,

V =
Q

4πǫ0r
(14)

This expression defines the potential at any point distant r from a point charge Q
at the origin, the potential at infinite radius being taken as the zero reference. Returning

to a physical interpretation, we may say that Q/4πǫ0r joules of work must be done

in carrying a unit charge from infinity to any point r meters from the charge Q.

A convenient method to express the potential without selecting a specific zero

reference entails identifying rA as r once again and letting Q/4πǫ0rB be a constant.

Then

V =
Q

4πǫ0r
+ C1 (15)

and C1 may be selected so that V = 0 at any desired value of r . We could also select

the zero reference indirectly by electing to let V be V0 at r = r0.

It should be noted that the potential difference between two points is not a func-

tion of C1.

Equations (14) and (15) represent the potential field of a point charge. The po-

tential is a scalar field and does not involve any unit vectors.

We now define an equipotential surface as a surface composed of all those points

having the same value of potential. All field lines would be perpendicular to such a

surface at the points where they intersect it. Therefore, no work is involved in moving

a unit charge around on an equipotential surface. The equipotential surfaces in the

potential field of a point charge are spheres centered at the point charge.

An inspection of the form of the potential field of a point charge shows that it

is an inverse-distance field, whereas the electric field intensity was found to be an

inverse-square-law function. A similar result occurs for the gravitational force field

of a point mass (inverse-square law) and the gravitational potential field (inverse

distance). The gravitational force exerted by the earth on an object one million miles

from it is four times that exerted on the same object two million miles away. The

kinetic energy given to a freely falling object starting from the end of the universe

with zero velocity, however, is only twice as much at one million miles as it is at two

million miles.

D4.5. A 15-nC point charge is at the origin in free space. Calculate V1 if point

P1 is located at P1(−2, 3, −1) and (a) V = 0 at (6, 5, 4); (b) V = 0 at infinity;

(c) V = 5 V at (2, 0, 4).

Ans. 20.67 V; 36.0 V; 10.89 V
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4.5 THE POTENTIAL FIELD OF A SYSTEM OF
CHARGES: CONSERVATIVE PROPERTY

The potential at a point has been defined as the work done in bringing a unit positive

charge from the zero reference to the point, and we have suspected that this work, and

hence the potential, is independent of the path taken. If it were not, potential would

not be a very useful concept.

Let us now prove our assertion. We do so by beginning with the potential field

of the single point charge for which we showed, in Section 4.4, the independence

with regard to the path, noting that the field is linear with respect to charge so that

superposition is applicable. It will then follow that the potential of a system of charges

has a value at any point which is independent of the path taken in carrying the test

charge to that point.

Thus the potential field of a single point charge, which we shall identify as Q1

and locate at r1, involves only the distance |r − r1| from Q1 to the point at r where

we are establishing the value of the potential. For a zero reference at infinity, we have

V (r) =
Q1

4πǫ0|r− r1|

The potential arising from two charges, Q1 at r1 and Q2 at r2, is a function only of

|r− r1| and |r− r2|, the distances from Q1 and Q2 to the field point, respectively.

V (r) =
Q1

4πǫ0|r− r1|
+

Q2

4πǫ0|r− r2|

Continuing to add charges, we find that the potential arising from n point charges is

V (r) =
n

∑

m=1

Qm

4πǫ0|r− rm |
(16)

If each point charge is now represented as a small element of a continuous volume

charge distribution ρν�ν, then

V (r) =
ρν(r1)�ν1

4πǫ0|r− r1|
+

ρν(r2)�ν2

4πǫ0|r− r2|
+ · · · +

ρν(rn)�νn

4πǫ0|r− rn|

As we allow the number of elements to become infinite, we obtain the integral

expression

V (r) =
∫

vol

ρν(r′) dv ′

4πǫ0|r− r′|
(17)

We have come quite a distance from the potential field of the single point charge,

and it might be helpful to examine Eq. (17) and refresh ourselves as to the meaning of

each term. The potential V (r) is determined with respect to a zero reference potential

at infinity and is an exact measure of the work done in bringing a unit charge from
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infinity to the field point at r where we are finding the potential. The volume charge

density ρv (r′) and differential volume element dv ′ combine to represent a differential

amount of charge ρν(r′) dv ′ located at r′. The distance |r − r′| is that distance from

the source point to the field point. The integral is a multiple (volume) integral.

If the charge distribution takes the form of a line charge or a surface charge, the

integration is along the line or over the surface:

V (r) =
∫

ρL (r′) d L ′

4πǫ0|r− r′|
(18)

V (r) =
∫

S

ρS(r′) d S′

4πǫ0|r− r′|
(19)

The most general expression for potential is obtained by combining Eqs.(16)–(19).

These integral expressions for potential in terms of the charge distribution should

be compared with similar expressions for the electric field intensity, such as Eq. (15)

in Section 2.3:

E(r) =
∫

vol

ρν(r′) dv ′

4πǫ0|r− r′|2
r− r′

|r− r′|

The potential again is inverse distance, and the electric field intensity, inverse-

square law. The latter, of course, is also a vector field.

EXAMPLE 4.3

To illustrate the use of one of these potential integrals, we will find V on the z axis for

a uniform line charge ρL in the form of a ring, ρ = a, in the z = 0 plane, as shown

in Figure 4.3.

Solution. Working with Eq. (18), we have d L ′ = adφ′, r = zaz , r′ = aaρ , |r−r′| =√
a2 + z2, and

V =
∫ 2π

0

ρLa dφ′

4πǫ0

√
a2 + z2

=
ρLa

2ǫ0

√
a2 + z2

For a zero reference at infinity, then:

1. The potential arising from a single point charge is the work done in carrying a

unit positive charge from infinity to the point at which we desire the potential,

and the work is independent of the path chosen between those two points.

2. The potential field in the presence of a number of point charges is the sum of

the individual potential fields arising from each charge.

3. The potential arising from a number of point charges or any continuous charge

distribution may therefore be found by carrying a unit charge from infinity to

the point in question along any path we choose.
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Figure 4.3 The potential field of a ring of uniform line

charge density is easily obtained from V =
∫

ρL (r′) dL ′/

(4πǫ0|r − r′|).

In other words, the expression for potential (zero reference at infinity),

VA = −
∫ A

∞

E · dL

or potential difference,

VAB = VA − VB = −

∫ A

B
E · dL

is not dependent on the path chosen for the line integral, regardless of the source of

the E field.

This result is often stated concisely by recognizing that no work is done in

carrying the unit charge around any closed path, or
∮

E · dL = 0 (20)

A small circle is placed on the integral sign to indicate the closed nature of the

path. This symbol also appeared in the formulation of Gauss’s law, where a closed

surface integral was used.

Equation (20) is true for static fields, but we will see in Chapter 9 that Faraday

demonstrated it was incomplete when time-varying magnetic fields were present. One

of Maxwell’s greatest contributions to electromagnetic theory was in showing that a

time-varying electric field produces a magnetic field, and therefore we should expect

to find later that Eq. (20) is not correct when either E or the magnetic field varies

with time.

Restricting our attention to the static case where E does not change with time,

consider the dc circuit shown in Figure 4.4. Two points, A and B, are marked, and
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Figure 4.4 A simple dc-circuit problem that must be

solved by applying
∮

E · dL = 0 in the form of Kirchhoff’s

voltage law.

(20) states that no work is involved in carrying a unit charge from A through R2 and

R3 to B and back to A through R1, or that the sum of the potential differences around

any closed path is zero.

Equation (20) is therefore just a more general form of Kirchhoff’s circuital law

for voltages, more general in that we can apply it to any region where an electric

field exists and we are not restricted to a conventional circuit composed of wires,

resistances, and batteries. Equation (20) must be amended before we can apply it to

time-varying fields.

Any field that satisfies an equation of the form of Eq. (20), (i.e., where the closed

line integral of the field is zero) is said to be a conservative fiel . The name arises from

the fact that no work is done (or that energy is conserved) around a closed path. The

gravitational field is also conservative, for any energy expended in moving (raising)

an object against the field is recovered exactly when the object is returned (lowered)

to its original position. A nonconservative gravitational field could solve our energy

problems forever.

Given a nonconservative field, it is of course possible that the line integral may

be zero for certain closed paths. For example, consider the force field, F = sin πρ aφ .

Around a circular path of radius ρ = ρ1, we have dL = ρ dφ aφ , and

∮

F · dL =
∫ 2π

0

sin πρ1aφ · ρ1dφ aφ =
∫ 2π

0

ρ1 sin πρ1 dφ

= 2πρ1 sin πρ1

The integral is zero if ρ1 = 1, 2, 3, . . . , etc., but it is not zero for other values of ρ1,

or for most other closed paths, and the given field is not conservative. A conservative

field must yield a zero value for the line integral around every possible closed path.

D4.6. If we take the zero reference for potential at infinity, find the potential

at (0, 0, 2) caused by this charge configuration in free space (a) 12 nC/m on the

line ρ = 2.5 m, z = 0; (b) point charge of 18 nC at (1, 2, −1); (c) 12 nC/m on

the line y = 2.5, z = 0, −1.0 < x < 1.0.

Ans. 529 V; 43.2 V; 66.3 V
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4.6 POTENTIAL GRADIENT

We now have two methods of determining potential, one directly from the electric field

intensity by means of a line integral, and another from the basic charge distribution

itself by a volume integral. Neither method is very helpful in determining the fields

in most practical problems, however, for as we will see later, neither the electric field

intensity nor the charge distribution is very often known. Preliminary information is

much more apt to consist of a description of two equipotential surfaces, such as the

statement that we have two parallel conductors of circular cross section at potentials

of 100 and −100 V. Perhaps we wish to find the capacitance between the conductors,

or the charge and current distribution on the conductors from which losses may be

calculated.

These quantities may be easily obtained from the potential field, and our im-

mediate goal will be a simple method of finding the electric field intensity from the

potential.

We already have the general line-integral relationship between these quantities,

V = −
∫

E · dL (21)

but this is much easier to use in the reverse direction: given E, find V .

However, Eq. (21) may be applied to a very short element of length �L along

which E is essentially constant, leading to an incremental potential difference �V,

�V =̇ −E · �L (22)

Now consider a general region of space, as shown in Figure 4.5, in which E and

V both change as we move from point to point. Equation (22) tells us to choose an

incremental vector element of length �L = �L aL and multiply its magnitude by

Figure 4.5 A vector incremental element of

length �L is shown making an angle of θ with an

E field, indicated by its streamlines. The sources

of the field are not shown.
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the component of E in the direction of aL (one interpretation of the dot product) to

obtain the small potential difference between the final and initial points of �L.

If we designate the angle between �L and E as θ , then

�V =̇ −E�L cos θ

We now pass to the limit and consider the derivative dV/d L . To do this, we need

to show that V may be interpreted as a function V (x, y, z). So far, V is merely the

result of the line integral (21). If we assume a specified starting point or zero reference

and then let our end point be (x, y, z), we know that the result of the integration is a

unique function of the end point (x, y, z) because E is a conservative field. Therefore

V is a single-valued function V (x, y, z). We may then pass to the limit and obtain

dV
d L

= −E cos θ

In which direction should �L be placed to obtain a maximum value of �V ?

Remember that E is a definite value at the point at which we are working and is

independent of the direction of �L. The magnitude �L is also constant, and our

variable is aL , the unit vector showing the direction of �L. It is obvious that the

maximum positive increment of potential, �Vmax, will occur when cos θ is −1, or

�L points in the direction opposite to E. For this condition,

dV
d L

∣

∣

∣

∣

max

= E

This little exercise shows us two characteristics of the relationship between E
and V at any point:

1. The magnitude of the electric field intensity is given by the maximum value of

the rate of change of potential with distance.

2. This maximum value is obtained when the direction of the distance increment is

opposite to E or, in other words, the direction of E is opposite to the direction in

which the potential is increasing the most rapidly.

We now illustrate these relationships in terms of potential. Figure 4.6 is intended

to show the information we have been given about some potential field. It does this by

showing the equipotential surfaces (shown as lines in the two-dimensional sketch).

We desire information about the electric field intensity at point P . Starting at P , we lay

off a small incremental distance �L in various directions, hunting for that direction

in which the potential is changing (increasing) the most rapidly. From the sketch, this

direction appears to be left and slightly upward. From our second characteristic above,

the electric field intensity is therefore oppositely directed, or to the right and slightly

downward at P . Its magnitude is given by dividing the small increase in potential by

the small element of length.

It seems likely that the direction in which the potential is increasing the most

rapidly is perpendicular to the equipotentials (in the direction of increasing potential),

and this is correct, for if �L is directed along an equipotential, �V = 0 by our
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Figure 4.6 A potential field is shown by its equipotential

surfaces. At any point the E field is normal to the

equipotential surface passing through that point and is

directed toward the more negative surfaces.

definition of an equipotential surface. But then

�V = −E · �L = 0

and as neither E nor �L is zero, E must be perpendicular to this �L or perpendicular

to the equipotentials.

Because the potential field information is more likely to be determined first, let

us describe the direction of �L, which leads to a maximum increase in potential

mathematically in terms of the potential field rather than the electric field intensity.

We do this by letting aN be a unit vector normal to the equipotential surface and

directed toward the higher potentials. The electric field intensity is then expressed in

terms of the potential,

E = −
dV
d L

∣

∣

∣

∣

max

aN (23)

which shows that the magnitude of E is given by the maximum space rate of change

of V and the direction of E is normal to the equipotential surface (in the direction of

decreasing potential).

Because dV/d L|max occurs when �L is in the direction of aN , we may remind

ourselves of this fact by letting

dV
d L

∣

∣

∣

∣

max

=
dV
d N

and

E = −
dV
d N

aN (24)

Either Eq. (23) or Eq. (24) provides a physical interpretation of the process of

finding the electric field intensity from the potential. Both are descriptive of a general

procedure, and we do not intend to use them directly to obtain quantitative information.
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This procedure leading from V to E is not unique to this pair of quantities, however,

but has appeared as the relationship between a scalar and a vector field in hydraulics,

thermodynamics, and magnetics, and indeed in almost every field to which vector

analysis has been applied.

The operation on V by which −E is obtained is known as the gradient, and the

gradient of a scalar field T is defined as

Gradient of T = grad T =
dT
d N

aN (25)

where aN is a unit vector normal to the equipotential surfaces, and that normal is

chosen, which points in the direction of increasing values of T .

Using this new term, we now may write the relationship between V and E as

E = −grad V (26)

Because we have shown that V is a unique function of x, y, and z, we may take

its total differential

dV =
∂V
∂x

dx +
∂V
∂y

dy +
∂V
∂z

dz

But we also have

dV = −E · dL = −Ex dx − Ey dy − Ez dz

Because both expressions are true for any dx, dy, and dz, then

Ex = −
∂V
∂x

Ey = −
∂V
∂y

Ez = −
∂V
∂z

These results may be combined vectorially to yield

E = −
(

∂V
∂x

ax +
∂V
∂y

ay +
∂V
∂z

az

)

(27)

and comparing Eqs. (26) and (27) provides us with an expression which may be used

to evaluate the gradient in rectangular coordinates,

grad V =
∂V
∂x

ax +
∂V
∂y

ay +
∂V
∂z

az (28)

The gradient of a scalar is a vector, and old quizzes show that the unit vectors

that are often incorrectly added to the divergence expression appear to be those that
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were incorrectly removed from the gradient. Once the physical interpretation of the

gradient, expressed by Eq. (25), is grasped as showing the maximum space rate of

change of a scalar quantity and the direction in which this maximum occurs, the vector

nature of the gradient should be self-evident.

The vector operator

∇ =
∂

∂x
ax +

∂

∂y
ay +

∂

∂z
az

may be used formally as an operator on a scalar, T , ∇T , producing

∇T =
∂T
∂x

ax +
∂T
∂y

ay +
∂T
∂z

az

from which we see that

∇T = grad T

This allows us to use a very compact expression to relate E and V,

E = −∇V (29)

The gradient may be expressed in terms of partial derivatives in other coordinate

systems through the application of its definition Eq. (25). These expressions are

derived in Appendix A and repeated here for convenience when dealing with problems

having cylindrical or spherical symmetry. They also appear inside the back cover.

∇V =
∂V
∂x

ax +
∂V
∂y

ay +
∂V
∂z

az (rectangular) (30)

∇V =
∂V
∂ρ

aρ +
1

ρ

∂V
∂φ

aφ +
∂V
∂z

az (cylindrical) (31)

∇V =
∂V
∂r

ar +
1

r
∂V
∂θ

aθ +
1

r sin θ

∂V
∂φ

aφ (spherical) (32)

Note that the denominator of each term has the form of one of the components of dL in

that coordinate system, except that partial differentials replace ordinary differentials;

for example, r sin θ dφ becomes r sin θ ∂φ.

We now illustrate the gradient concept with an example.

EXAMPLE 4.4

Given the potential field, V = 2x2 y − 5z, and a point P(−4, 3, 6), we wish to find

several numerical values at point P: the potential V , the electric field intensity E, the

direction of E, the electric flux density D, and the volume charge density ρν .

Solution. The potential at P(−4, 5, 6) is

VP = 2(−4)2(3) − 5(6) = 66 V
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Next, we may use the gradient operation to obtain the electric field intensity,

E = −∇V = −4xyax − 2x2ay + 5az V/m

The value of E at point P is

EP = 48ax − 32ay + 5az V/m

and

|EP | =
√

482 + (−32)2 + 52 = 57.9 V/m

The direction of E at P is given by the unit vector

aE,P = (48ax − 32ay + 5az)/57.9

= 0.829ax − 0.553ay + 0.086az

If we assume these fields exist in free space, then

D = ǫ0E = −35.4xy ax − 17.71x2 ay + 44.3 az pC/m3

Finally, we may use the divergence relationship to find the volume charge density that

is the source of the given potential field,

ρν = ∇ ·D = −35.4y pC/m3

At P , ρν = −106.2 pC/m3.

D4.7. A portion of a two-dimensional (Ez = 0) potential field is shown in

Figure 4.7. The grid lines are 1 mm apart in the actual field. Determine approx-

imate values for E in rectangular coordinates at: (a) a; (b) b; (c) c.

Ans. −1075ay V/m; −600ax − 700ay V/m; −500ax − 650ay V/m

D4.8. Given the potential field in cylindrical coordinates, V =
100

z2 + 1
ρ cos φV,

and point P at ρ = 3 m, φ = 60◦, z = 2 m, find values at P for (a) V ; (b) E;

(c) E ; (d) dV/d N ; (e) aN ; ( f ) ρν in free space.

Ans. 30.0 V; −10.00aρ +17.3aφ +24.0azV/m; 31.2 V/m; 31.2 V/m; 0.32aρ −0.55aφ

− 0.77az ; −234 pC/m3

4.7 THE ELECTRIC DIPOLE

The dipole fields that we develop in this section are quite important because they

form the basis for the behavior of dielectric materials in electric fields, as discussed

in Chapter 6, as well as justifying the use of images, as described in Section 5.5 of

Chapter 5. Moreover, this development will serve to illustrate the importance of the

potential concept presented in this chapter.

An electric dipole, or simply a dipole, is the name given to two point charges of

equal magnitude and opposite sign, separated by a distance that is small compared to
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Figure 4.7 See Problem D4.7.

the distance to the point P at which we want to know the electric and potential fields.

The dipole is shown in Figure 4.8a. The distant point P is described by the spherical

coordinates r, θ, and φ = 90◦, in view of the azimuthal symmetry. The positive and

negative point charges have separation d and rectangular coordinates (0, 0, 1
2
d) and

(0, 0, − 1
2
d), respectively.

So much for the geometry. What would we do next? Should we find the total

electric field intensity by adding the known fields of each point charge? Would it be

easier to find the total potential field first? In either case, having found one, we will

find the other from it before calling the problem solved.

If we choose to find E first, we will have two components to keep track of in

spherical coordinates (symmetry shows Eφ is zero), and then the only way to find V
fromE is by use of the line integral. This last step includes establishing a suitable zero

reference for potential, since the line integral gives us only the potential difference

between the two points at the ends of the integral path.

On the other hand, the determination of V first is a much simpler problem.

This is because we find the potential as a function of position by simply adding the

scalar potentials from the two charges. The position-dependent vector magnitude and

direction of E are subsequently evaluated with relative ease by taking the negative

gradient of V.

Choosing this simpler method, we let the distances from Q and −Q to P be R1

and R2, respectively, and write the total potential as

V =
Q

4πǫ0

(

1

R1

−
1

R2

)

=
Q

4πǫ0

R2 − R1

R1 R2
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Figure 4.8 (a) The geometry of the problem of an

electric dipole. The dipole moment p = Qd is in the az

direction. (b) For a distant point P, R1 is essentially

parallel to R2, and we find that R2 − R1 = d cos θ.

Note that the plane z = 0, midway between the two point charges, is the locus of

points for which R1 = R2, and is therefore at zero potential, as are all points at

infinity.

For a distant point, R1 =̇ R2, and the R1 R2 product in the denominator may be

replaced by r2. The approximation may not be made in the numerator, however,

without obtaining the trivial answer that the potential field approaches zero as we go

very far away from the dipole. Coming back a little closer to the dipole, we see from

Figure 4.8b that R2 − R1 may be approximated very easily if R1 and R2 are assumed

to be parallel,

R2 − R1 =̇ d cos θ
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The final result is then

V =
Qd cos θ

4πǫ0r2
(33)

Again, we note that the plane z = 0 (θ = 90◦) is at zero potential.

Using the gradient relationship in spherical coordinates,

E = −∇V = −

(

∂V
∂r

ar +
1

r
∂V
∂θ

aθ +
1

r sin θ

∂V
∂φ

aφ

)

we obtain

E = −

(

−
Qd cos θ

2πǫ0r3
ar −

Qd sin θ

4πǫ0r3
aθ

)

(34)

or

E =
Qd

4πǫ0r3
(2 cos θ ar + sin θ aθ ) (35)

These are the desired distant fields of the dipole, obtained with a very small

amount of work. Any student who has several hours to spend may try to work the

problem in the reverse direction—the authors consider the process too long and de-

tailed to include here, even for effect.

To obtain a plot of the potential field, we choose a dipole such that

Qd/(4πǫ0) = 1, and then cos θ = V r2. The colored lines in Figure 4.9 indicate

equipotentials for which V = 0, +0.2, +0.4, +0.6, +0.8, and +1, as indicated.

The dipole axis is vertical, with the positive charge on the top. The streamlines for

the electric field are obtained by applying the methods of Section 2.6 in spherical

coordinates,

Eθ

Er
=

r dθ

dr
=

sin θ

2 cos θ

or

dr
r

= 2 cot θ dθ

from which we obtain

r = C1 sin2 θ

The black streamlines shown in Figure 4.9 are for C1 = 1, 1.5, 2, and 2.5.

The potential field of the dipole, Eq. (33), may be simplified by making use of

the dipole moment. We first identify the vector length directed from −Q to +Q as d
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Figure 4.9 The electrostatic field of a point dipole with its moment in the az

direction. Six equipotential surfaces are labeled with relative values of V .

and then define the dipole moment as Qd and assign it the symbol p. Thus

p = Qd (36)

The units of p are C · m.

Because d · ar = d cos θ , we then have

V =
p · ar

4πǫ0r2
(37)

This result may be generalized as

V =
1

4πǫ0|r− r′|2
p ·

r− r′

|r− r′|
(38)

where r locates the field point P , and r′ determines the dipole center. Equation (38)

is independent of any coordinate system.
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The dipole moment p will appear again when we discuss dielectric materials.

Since it is equal to the product of the charge and the separation, neither the dipole

moment nor the potential will change as Q increases and d decreases, provided the

product remains constant. The limiting case of a point dipole is achieved when we let

d approach zero and Q approach infinity such that the product p is finite.

Turning our attention to the resultant fields, it is interesting to note that the

potential field is now proportional to the inverse square of the distance, and the

electric field intensity is proportional to the inverse cube of the distance from

the dipole. Each field falls off faster than the corresponding field for the point charge,

but this is no more than we should expect because the opposite charges appear to

be closer together at greater distances and to act more like a single point charge

of zero Coulombs.

Symmetrical arrangements of larger numbers of point charges produce fields

proportional to the inverse of higher and higher powers of r . These charge distributions

are called multipoles, and they are used in infinite series to approximate more unwieldy

charge configurations.

D4.9. An electric dipole located at the origin in free space has a moment

p = 3ax − 2ay + az nC · m. (a) Find V at PA(2, 3, 4). (b) Find V at r = 2.5,

θ = 30◦, φ = 40◦.

Ans. 0.23 V; 1.97 V

D4.10. A dipole of moment p = 6az nC · m is located at the origin in free

space. (a) Find V at P(r = 4, θ = 20◦, φ = 0◦). (b) Find E at P.

Ans. 3.17 V; 1.58ar + 0.29aθ V/m

4.8 ENERGY DENSITY IN THE
ELECTROSTATIC FIELD

We have introduced the potential concept by considering the work done, or en-

ergy expended, in moving a point charge around in an electric field, and now we

must tie up the loose ends of that discussion by tracing the energy flow one step

further.

Bringing a positive charge from infinity into the field of another positive charge

requires work, the work being done by the external source moving the charge. Let

us imagine that the external source carries the charge up to a point near the fixed

charge and then holds it there. Energy must be conserved, and the energy expended in

bringing this charge into position now represents potential energy, for if the external

source released its hold on the charge, it would accelerate away from the fixed charge,

acquiring kinetic energy of its own and the capability of doing work.

In order to find the potential energy present in a system of charges, we must find

the work done by an external source in positioning the charges.
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We may start by visualizing an empty universe. Bringing a charge Q1 from infinity

to any position requires no work, for there is no field present.2 The positioning of

Q2 at a point in the field of Q1 requires an amount of work given by the product of

the charge Q2 and the potential at that point due to Q1. We represent this potential

as V2,1, where the first subscript indicates the location and the second subscript the

source. That is, V2,1 is the potential at the location of Q2 due to Q1. Then

Work to position Q2 = Q2V2,1

Similarly, we may express the work required to position each additional charge

in the field of all those already present:

Work to position Q3 = Q3V3,1 + Q3V3,2

Work to position Q4 = Q4V4,1 + Q4V4,2 + Q4V4,3

and so forth. The total work is obtained by adding each contribution:

Total positioning work = potential energy of field

= WE = Q2V2,1 + Q3V3,1 + Q3V3,2 + Q4V4,1

+Q4V4,2 + Q4V4,3 + · · · (39)

Noting the form of a representative term in the preceding equation,

Q3V3,1 = Q3

Q1

4πǫ0 R13

= Q1

Q3

4πǫ0 R31

where R13 and R31 each represent the scalar distance between Q1 and Q3, we see that

it might equally well have been written as Q1V1,3. If each term of the total energy

expression is replaced by its equal, we have

WE = Q1V1,2 + Q1V1,3 + Q2V2,3 + Q1V1,4 + Q2V2,4 + Q3V3,4 + · · · (40)

Adding the two energy expressions (39) and (40) gives us a chance to simplify the

result a little:

2WE = Q1(V1,2 + V1,3 + V1,4 + · · ·)
+ Q2(V2,1 + V2,3 + V2,4 + · · ·)
+ Q3(V3,1 + V3,2 + V3,4 + · · ·)
+ · · ·

Each sum of potentials in parentheses is the combined potential due to all the charges

except for the charge at the point where this combined potential is being found. In

other words,

V1,2 + V1,3 + V1,4 + · · · = V1

2 However, somebody in the workshop at infinity had to do an infinite amount of work to create the

point charge in the first place! How much energy is required to bring two half-charges into coincidence

to make a unit charge?
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V1 is the potential at the location of Q1 due to the presence of Q2, Q3, . . . . We

therefore have

WE = 1
2
(Q1V1 + Q2V2 + Q3V3 + · · ·) = 1

2

m=N
∑

m=1

Qm Vm (41)

In order to obtain an expression for the energy stored in a region of continuous

charge distribution, each charge is replaced by ρνdv , and the summation becomes an

integral,

WE = 1
2

∫

vol

ρνV dv (42)

Equations (41) and (42) allow us to find the total potential energy present in a

system of point charges or distributed volume charge density. Similar expressions

may be easily written in terms of line or surface charge density. Usually we prefer

to use Eq. (42) and let it represent all the various types of charge which may have to

be considered. This may always be done by considering point charges, line charge

density, or surface charge density to be continuous distributions of volume charge

density over very small regions. We will illustrate such a procedure with an example

shortly.

Before we undertake any interpretation of this result, we should consider a few

lines of more difficult vector analysis and obtain an expression equivalent to Eq. (42)

but written in terms of E and D.

We begin by making the expression a little bit longer. Using Maxwell’s first

equation, replace ρν by its equal ∇ ·D and make use of a vector identity which is true

for any scalar function V and any vector function D,

∇ · (VD) ≡ V (∇ ·D) + D · (∇V ) (43)

This may be proved readily by expansion in rectangular coordinates. We then have,

successively,

WE = 1
2

∫

vol

ρνV dv = 1
2

∫

vol

(∇ ·D)V dv

= 1
2

∫

vol

[∇ · (VD) − D · (∇V )] dv

Using the divergence theorem from Chapter 3, the first volume integral of the last

equation is changed into a closed surface integral, where the closed surface surrounds

the volume considered. This volume, first appearing in Eq. (42), must contain every
charge, and there can then be no charges outside of the volume. We may therefore

consider the volume as infinit in extent if we wish. We have

WE = 1
2

∮

S
(VD) · dS− 1

2

∫

vol

D · (∇V ) dv

The surface integral is equal to zero, for over this closed surface surrounding the

universe we see that V is approaching zero at least as rapidly as 1/r (the charges

look like point charges from there), and D is approaching zero at least as rapidly as

1/r2. The integrand therefore approaches zero at least as rapidly as 1/r3, while the
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differential area of the surface, looking more and more like a portion of a sphere,

is increasing only as r2. Consequently, in the limit as r → ∞, the integrand and

the integral both approach zero. Substituting E = −∇V in the remaining volume

integral, we have our answer,

WE = 1
2

∫

vol

D ·E dv = 1
2

∫

vol

ǫ0 E2 dv (44)

We may now use this last expression to calculate the energy stored in the elec-

trostatic field of a section of a coaxial cable or capacitor of length L . We found in

Section 3.3 that

Dρ =
aρS

ρ

Hence,

E =
aρS

ǫ0ρ
aρ

where ρS is the surface charge density on the inner conductor, whose radius is a.

Thus,

WE = 1
2

∫ L

0

∫ 2π

0

∫ b

a
ǫ0

a2ρ2
S

ǫ2
0ρ

2
ρ dρ dφ dz =

π L a2ρ2
S

ǫ0

ln
b
a

This same result may be obtained from Eq. (42). We choose the outer conductor

as our zero-potential reference, and the potential of the inner cylinder is then

Va = −
∫ a

b
Eρ dρ = −

∫ a

b

aρS

ǫ0ρ
dρ =

aρS

ǫ0

ln
b
a

The surface charge density ρS at ρ = a can be interpreted as a volume charge density

ρν = ρS/t , extending from ρ = a − 1
2
t to ρ = a + 1

2
t , where t ≪ a. The integrand

in Eq. (42) is therefore zero everywhere between the cylinders (where the volume

charge density is zero), as well as at the outer cylinder (where the potential is zero).

The integration is therefore performed only within the thin cylindrical shell at ρ = a,

WE = 1
2

∫

vol

ρν V dV = 1
2

∫ L

0

∫ 2π

0

∫ a+t/2

a−t/2

ρS

t
a

ρS

ǫ0

ln
b
a

ρ dρ dφ dz

from which

WE =
a2ρ2

S ln(b/a)

ǫ0

πL

once again.

This expression takes on a more familiar form if we recognize the total charge

on the inner conductor as Q = 2πaLρS . Combining this with the potential difference

between the cylinders, Va , we see that

WE = 1
2

QVa

which should be familiar as the energy stored in a capacitor.
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The question of where the energy is stored in an electric field has not yet been

answered. Potential energy can never be pinned down precisely in terms of physical

location. Someone lifts a pencil, and the pencil acquires potential energy. Is the energy

stored in the molecules of the pencil, in the gravitational field between the pencil and

the earth, or in some obscure place? Is the energy in a capacitor stored in the charges

themselves, in the field, or where? No one can offer any proof for his or her own

private opinion, and the matter of deciding may be left to the philosophers.

Electromagnetic field theory makes it easy to believe that the energy of an electric

field or a charge distribution is stored in the field itself, for if we take Eq. (44), an

exact and rigorously correct expression,

WE = 1
2

∫

vol

D ·E dv

and write it on a differential basis,

dWE = 1
2
D ·E dv

or

dWE

dv
= 1

2
D ·E (45)

we obtain a quantity 1
2
D ·E, which has the dimensions of an energy density, or joules

per cubic meter. We know that if we integrate this energy density over the entire field-

containing volume, the result is truly the total energy present, but we have no more

justification for saying that the energy stored in each differential volume element dv
is 1

2
D ·E dv than we have for looking at Eq. (42) and saying that the stored energy is

1
2
ρνV dv . The interpretation afforded by Eq. (45), however, is a convenient one, and

we will use it until proved wrong.

D4.11. Find the energy stored in free space for the region 2 mm < r < 3

mm, 0 < θ < 90◦, 0 < φ < 90◦, given the potential field V = : (a)
200

r
V;

(b)
300 cos θ

r2
V.

Ans. 46.4 µJ; 36.7 J
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CHAPTER 4 PROBLEMS

4.1 The value of E at P(ρ = 2, φ = 40◦, z = 3) is given as E = 100aρ

− 200aφ + 300az V/m. Determine the incremental work required to move a

20 µC charge a distance of 6 µm: (a) in the direction of aρ ; (b) in the

direction of aφ ; (c) in the direction of az ; (d) in the direction of E; (e) in the

direction of G = 2ax − 3ay + 4az .

4.2 A positive point charge of magnitude q1 lies at the origin. Derive an

expression for the incremental work done in moving a second point charge q2

through a distance dx from the starting position (x, y, z), in the direction

of −ax .

4.3 If E = 120aρV/m, find the incremental amount of work done in moving

a 50-µC charge a distance of 2 mm from (a) P(1, 2, 3) toward Q(2, 1, 4); (b)

Q(2, 1, 4) toward P(1, 2, 3).

4.4 An electric field in free space is given by E = xax + yay + zaz V/m. Find

the work done in moving a 1-µC charge through this field (a) from (1, 1, 1)

to (0, 0, 0); (b) from (ρ = 2, φ = 0) to (ρ = 2, φ = 90◦); (c) from (r = 10,

θ = θ0) to (r = 10, θ = θ0 + 180◦).

4.5 Compute the value of
∫ P

A G · dL for G = 2yax with A(1, −1, 2) and

P(2, 1, 2) using the path (a) straight-line segments A(1, −1, 2) to B(1, 1, 2)

to P(2, 1, 2); (b) straight-line segments A(1, −1, 2) to C(2, −1, 2) to

P(2, 1, 2).

4.6 An electric field in free space is given as E = x âx + 4z ây + 4y âz . Given

V (1, 1, 1) = 10 V, determine V (3, 3, 3).

4.7 Let G = 3xy2ax + 2zay Given an initial point P(2, 1, 1) and a final point

Q(4, 3, 1), find
∫

G · dL using the path (a) straight line: y = x − 1,

z = 1; (b) parabola: 6y = x2 + 2, z = 1.

4.8 Given E = −xax + yay , (a) find the work involved in moving a unit positive

charge on a circular arc, the circle centered at the origin, from x = a to

x = y = a/
√

2; (b) verify that the work done in moving the charge around

the full circle from x = a is zero.

4.9 A uniform surface charge density of 20 nC/m2 is present on the spherical

surface r = 0.6 cm in free space. (a) Find the absolute potential at

P(r = 1 cm, θ = 25◦, φ = 50◦). (b) Find VAB , given points A(r = 2 cm,

θ = 30◦, φ = 60◦) and B(r = 3 cm, θ = 45◦, φ = 90◦).

4.10 A sphere of radius a carries a surface charge density of ρs0 C/m2. (a) Find

the absolute potential at the sphere surface. (b) A grounded conducting shell

of radius b where b > a is now positioned around the charged sphere. What

is the potential at the inner sphere surface in this case?

4.11 Let a uniform surface charge density of 5 nC/m2 be present at the z = 0

plane, a uniform line charge density of 8 nC/m be located at x = 0, z = 4,
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and a point charge of 2 µC be present at P(2, 0, 0). If V = 0 at M(0, 0, 5),

find V at N (1, 2, 3).

4.12 In spherical coordinates, E = 2r/(r2 + a2)2ar V/m. Find the potential at any

point, using the reference (a)V = 0 at infinity; (b) V = 0 at r = 0;

(c)V = 100 V at r = a.

4.13 Three identical point charges of 4 pC each are located at the corners of an

equilateral triangle 0.5 mm on a side in free space. How much work must be

done to move one charge to a point equidistant from the other two and on the

line joining them?

4.14 Given the electric field E = (y + 1)ax + (x − 1)ay + 2az find the potential

difference between the points (a) (2, −2, −1) and (0, 0, 0); (b) (3, 2, −1) and

(−2, −3, 4).

4.15 Two uniform line charges, 8 nC/m each, are located at x = 1, z = 2, and at

x = −1, y = 2 in free space. If the potential at the origin is 100 V, find V at

P(4, 1, 3).

4.16 A spherically symmetric charge distribution in free space (with 0 < r < ∞)

is known to have a potential function V (r ) = V0a2/r2, where V0 and a are

constants. (a) Find the electric field intensity. (b) Find the volume charge

density. (c) Find the charge contained inside radius a. (d) Find the total

energy stored in the charge (or equivalently, in its electric field).

4.17 Uniform surface charge densities of 6 and 2 nC/m2 are present at ρ = 2 and

6 cm, respectively, in free space. Assume V = 0 at ρ = 4 cm, and calculate

V at (a) ρ = 5 cm; (b) ρ = 7 cm.

4.18 Find the potential at the origin produced by a line charge ρL = kx/(x2 + a2)

extending along the x axis from x = a to +∞, where a > 0. Assume a zero

reference at infinity.

4.19 The annular surface 1 cm < ρ < 3 cm, z = 0, carries the nonuniform surface

charge density ρs = 5ρ nC/m2. Find V at P(0, 0, 2 cm) if V = 0 at infinity.

4.20 In a certain medium, the electric potential is given by

V (x) =
ρ0

aǫ0

(

1 − e−ax)

where ρ0 and a are constants. (a) Find the electric field intensity, E. (b) Find

the potential difference between the points x = d and x = 0. (c) If the

medium permittivity is given by ǫ(x) = ǫ0eax , find the electric flux density,

D, and the volume charge density, ρv , in the region. (d) Find the stored

energy in the region (0 < x < d), (0 < y < 1), (0 < z < 1).

4.21 Let V = 2xy2z3 + 3 ln(x2 + 2y2 + 3z2) V in free space. Evaluate each of the

following quantities at P(3, 2, −1) (a) V ; (b) |V |; (c) E; (d) |E|; (e) aN ;

( f ) D.
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4.22 A line charge of infinite length lies along the z axis and carries a uniform

linear charge density of ρℓ C/m. A perfectly conducting cylindrical shell,

whose axis is the z axis, surrounds the line charge. The cylinder (of radius b),

is at ground potential. Under these conditions, the potential function inside

the cylinder (ρ < b) is given by

V (ρ) = k −
ρℓ

2πǫ0

ln(ρ)

where k is a constant. (a) Find k in terms of given or known parameters.

(b) Find the electric field strength, E, for ρ < b. (c) Find the electric field

strength, E, for ρ > b. (d) Find the stored energy in the electric field per unit
length in the z direction within the volume defined by ρ > a, where a < b.

4.23 It is known that the potential is given as V = 80ρ0.6 V. Assuming free space

conditions, find. (a) E; (b) the volume charge density at ρ = 0.5 m; (c) the

total charge lying within the closed surface ρ = 0.6, 0 < z < 1.

4.24 A certain spherically symmetric charge configuration in free space produces

an electric field given in spherical coordinates by

E(r ) =
{

(ρ0r2)/(100ǫ0) ar V/m (r ≤ 10)

(100ρ0)/(ǫ0r2) ar V/m (r ≥ 10)

where ρ0 is a constant. (a) Find the charge density as a function of position.

(b) Find the absolute potential as a function of position in the two regions,

r ≤ 10 and r ≥ 10. (c) Check your result of part b by using the gradient.

(d) Find the stored energy in the charge by an integral of the form of Eq. (43).

(e) Find the stored energy in the field by an integral of the form of Eq. (45).

4.25 Within the cylinder ρ = 2, 0 < z < 1, the potential is given by V = 100 +
50ρ + 150ρ sin φV. (a) Find V,E,D, and ρν at P(1, 60◦, 0.5) in free space.

(b) How much charge lies within the cylinder?

4.26 Let us assume that we have a very thin, square, imperfectly conducting plate

2 m on a side, located in the plane z = 0 with one corner at the origin such

that it lies entirely within the first quadrant. The potential at any point in

the plate is given as V = −e−x sin y. (a) An electron enters the plate at

x = 0, y = π/3 with zero initial velocity; in what direction is its initial

movement? (b) Because of collisions with the particles in the plate, the

electron achieves a relatively low velocity and little acceleration (the work

that the field does on it is converted largely into heat). The electron therefore

moves approximately along a streamline. Where does it leave the plate and in

what direction is it moving at the time?

4.27 Two point charges, 1 nC at (0, 0, 0.1) and −1 nC at (0, 0, −0.1), are in free

space. (a) Calculate V at P(0.3, 0, 0.4). (b) Calculate |E| at P . (c) Now treat

the two charges as a dipole at the origin and find V at P.

4.28 Use the electric field intensity of the dipole [Section 4.7, Eq. (35)] to find the

difference in potential between points at θa and θb, each point having the



108 ENGINEERING ELECTROMAGNETICS

same r and φ coordinates. Under what conditions does the answer agree with

Eq. (33), for the potential at θa?

4.29 A dipole having a moment p = 3ax − 5ay + 10az nC · m is located at

Q(1, 2, −4) in free space. Find V at P(2, 3, 4).

4.30 A dipole for which p = 10ǫ0az C · m is located at the origin. What is the

equation of the surface on which Ez = 0 but E �= 0?

4.31 A potential field in free space is expressed as V = 20/(xyz) V. (a) Find the

total energy stored within the cube 1 < x, y, z < 2. (b) What value would be

obtained by assuming a uniform energy density equal to the value at the

center of the cube?

4.32 (a) Using Eq. (35), find the energy stored in the dipole field in the region

r > a. (b) Why can we not let a approach zero as a limit?

4.33 A copper sphere of radius 4 cm carries a uniformly distributed total charge

of 5 µC in free space. (a) Use Gauss’s law to find D external to the sphere.

(b) Calculate the total energy stored in the electrostatic field. (c) Use WE =
Q2/(2C) to calculate the capacitance of the isolated sphere.

4.34 A sphere of radius a contains volume charge of uniform density ρ0 C/m3.

Find the total stored energy by applying (a) Eq. (42); (b) Eq. (44).

4.35 Four 0.8 nC point charges are located in free space at the corners of a square

4 cm on a side. (a) Find the total potential energy stored. (b) A fifth 0.8 nC

charge is installed at the center of the square. Again find the total stored

energy.

4.36 Surface charge of uniform density ρs lies on a spherical shell of radius b,

centered at the origin in free space. (a) Find the absolute potential

everywhere, with zero reference at infinity. (b) Find the stored energy in the

sphere by considering the charge density and the potential in a

two-dimensional version of Eq. (42). (c) Find the stored energy in the electric

field and show that the results of parts (b) and (c) are identical.
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Conductors and
Dielectrics

I
n this chapter, we apply the methods we have learned to some of the materials

with which an engineer must work. In the first part of the chapter, we consider

conducting materials by describing the parameters that relate current to an applied

electric field. This leads to a general definition of Ohm’s law. We then develop methods

of evaluating resistances of conductors in a few simple geometric forms. Conditions

that must be met at a conducting boundary are obtained next, and this knowledge

leads to a discussion of the method of images. The properties of semiconductors are

described to conclude the discussion of conducting media.

In the second part of the chapter, we consider insulating materials, or dielectrics.

Such materials differ from conductors in that ideally, there is no free charge that can be

transported within them to produce conduction current. Instead, all charge is confined

to molecular or lattice sites by coulomb forces. An applied electric field has the effect

of displacing the charges slightly, leading to the formation of ensembles of electric

dipoles. The extent to which this occurs is measured by the relative permittivity, or

dielectric constant. Polarization of the medium may modify the electric field, whose

magnitude and direction may differ from the values it would have in a different

medium or in free space. Boundary conditions for the fields at interfaces between

dielectrics are developed to evaluate these differences.

It should be noted that most materials will possess both dielectric and conductive

properties; that is, a material considered a dielectric may be slightly conductive, and

a material that is mostly conductive may be slightly polarizable. These departures

from the ideal cases lead to some interesting behavior, particularly as to the effects

on electromagnetic wave propagation, as we will see later. ■
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5.1 CURRENT AND CURRENT DENSITY

Electric charges in motion constitute a current. The unit of current is the ampere (A),

defined as a rate of movement of charge passing a given reference point (or crossing

a given reference plane) of one coulomb per second. Current is symbolized by I , and

therefore

I =
d Q
dt

(1)

Current is thus defined as the motion of positive charges, even though conduction in

metals takes place through the motion of electrons, as we will see shortly.

In field theory, we are usually interested in events occurring at a point rather

than within a large region, and we find the concept of current density, measured in

amperes per square meter (A/m2), more useful. Current density is a vector1 represented

by J.
The increment of current �I crossing an incremental surface �S normal to the

current density is

�I = JN �S

and in the case where the current density is not perpendicular to the surface,

�I = J · �S

Total current is obtained by integrating,

I =
∫

S
J · dS (2)

Current density may be related to the velocity of volume charge density at a point.

Consider the element of charge �Q = ρν�ν = ρν �S �L , as shown in Figure 5.1a.

To simplify the explanation, assume that the charge element is oriented with its edges

parallel to the coordinate axes and that it has only an x component of velocity. In

the time interval �t , the element of charge has moved a distance �x , as indicated in

Figure 5.1b. We have therefore moved a charge �Q = ρν �S �x through a reference

plane perpendicular to the direction of motion in a time increment �t , and the resulting

current is

�I =
�Q
�t

= ρν �S
�x
�t

As we take the limit with respect to time, we have

�I = ρν �S vx

1 Current is not a vector, for it is easy to visualize a problem in which a total current I in a conductor of

nonuniform cross section (such as a sphere) may have a different direction at each point of a given

cross section. Current in an exceedingly fine wire, or a filamentar current, is occasionally defined as a

vector, but we usually prefer to be consistent and give the direction to the filament, or path, and not to

the current.
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Figure 5.1 An increment of charge, �Q = ρν�S�L, which moves a distance �x in

a time �t, produces a component of current density in the limit of Jx = ρννx .

where νx represents the x component of the velocity v.2 In terms of current density,

we find

Jx = ρν νx

and in general

J = ρνv (3)

This last result shows clearly that charge in motion constitutes a current. We

call this type of current a convection current, and J or ρνv is the convection current
density. Note that the convection current density is related linearly to charge density

as well as to velocity. The mass rate of flow of cars (cars per square foot per second)

in the Holland Tunnel could be increased either by raising the density of cars per

cubic foot, or by going to higher speeds, if the drivers were capable of doing so.

D5.1. Given the vector current density J = 10ρ2zaρ − 4ρ cos2 φ aφ mA/m2:

(a) find the current density at P(ρ = 3, φ = 30◦, z = 2); (b) determine the

total current flowing outward through the circular band ρ = 3, 0 < φ < 2π,

2 < z < 2.8.

Ans. 180aρ − 9aφ mA/m2; 3.26 A

5.2 CONTINUITY OF CURRENT

The introduction of the concept of current is logically followed by a discussion of the

conservation of charge and the continuity equation. The principle of conservation of

charge states simply that charges can be neither created nor destroyed, although equal

2The lowercase ν is used both for volume and velocity. Note, however, that velocity always appears as

a vector v, a component νx , or a magnitude |v|, whereas volume appears only in differential form as dν

or �ν.
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amounts of positive and negative charge may be simultaneously created, obtained by

separation, or lost by recombination.

The continuity equation follows from this principle when we consider any region

bounded by a closed surface. The current through the closed surface is

I =
∮

S
J · dS

and this outward flo of positive charge must be balanced by a decrease of positive

charge (or perhaps an increase of negative charge) within the closed surface. If the

charge inside the closed surface is denoted by Qi , then the rate of decrease is −d Qi/dt
and the principle of conservation of charge requires

I =
∮

S
J · dS = −

d Qi

dt
(4)

It might be well to answer here an often-asked question. “Isn’t there a sign error?

I thought I = dQ/dt .” The presence or absence of a negative sign depends on what

current and charge we consider. In circuit theory we usually associate the current flow

into one terminal of a capacitor with the time rate of increase of charge on that plate.

The current of (4), however, is an outward-flowin current.

Equation (4) is the integral form of the continuity equation; the differential, or

point, form is obtained by using the divergence theorem to change the surface integral

into a volume integral:
∮

S
J · dS =

∫

vol

(∇ · J) dv

We next represent the enclosed charge Qi by the volume integral of the charge density,
∫

vol

(∇ · J) dv = −
d
dt

∫

vol

ρν dv

If we agree to keep the surface constant, the derivative becomes a partial derivative

and may appear within the integral,
∫

vol

(∇ · J) dv =

∫

vol

−
∂ρν

∂t
dv

from which we have our point form of the continuity equation,

(∇ · J) = −
∂ρν

∂t
(5)

Remembering the physical interpretation of divergence, this equation indicates

that the current, or charge per second, diverging from a small volume per unit volume

is equal to the time rate of decrease of charge per unit volume at every point.

As a numerical example illustrating some of the concepts from the last two sec-

tions, let us consider a current density that is directed radially outward and decreases

exponentially with time,

J =
1

r
e−tar A/m2
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Selecting an instant of time t = 1 s, we may calculate the total outward current at

r = 5 m:

I = Jr S =
(

1
5
e−1

)

(4π52) = 23.1 A

At the same instant, but for a slightly larger radius, r = 6 m, we have

I = Jr S =
(

1
6
e−1

)(

4π62
)

= 27.7 A

Thus, the total current is larger at r = 6 than it is at r = 5.

To see why this happens, we need to look at the volume charge density and the

velocity. We use the continuity equation first:

−
∂ρν

∂t
= ∇ · J = ∇ ·

(

1

r
e−tar

)

=
1

r2

∂

∂r

(

r2 1

r
e−t

)

=
1

r2
e−t

We next seek the volume charge density by integrating with respect to t . Because ρν

is given by a partial derivative with respect to time, the “constant” of integration may

be a function of r :

ρν = −

∫

1

r2
e−t dt + K(r ) =

1

r2
e−t + K(r )

If we assume that ρν → 0 as t → ∞, then K(r ) = 0, and

ρν =
1

r2
e−t C/m3

We may now use J = ρνv to find the velocity,

νr =
Jr

ρν

=

1

r
e−t

1

r2
e−t

= r m/s

The velocity is greater at r = 6 than it is at r = 5, and we see that some (unspecified)

force is accelerating the charge density in an outward direction.

In summary, we have a current density that is inversely proportional to r , a charge

density that is inversely proportional to r2, and a velocity and total current that are

proportional to r . All quantities vary as e−t.

D5.2. Current density is given in cylindrical coordinates as J = −106z1.5az
A/m2 in the region 0 ≤ ρ ≤ 20 µm; for ρ ≥ 20 µm, J = 0. (a) Find the total

current crossing the surface z = 0.1 m in the az direction. (b) If the charge

velocity is 2 × 106 m/s at z = 0.1 m, find ρν there. (c) If the volume charge

density at z = 0.15 m is −2000 C/m3, find the charge velocity there.

Ans. −39.7 µA; −15.8 mC/m3; 29.0 m/s
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5.3 METALLIC CONDUCTORS

Physicists describe the behavior of the electrons surrounding the positive atomic

nucleus in terms of the total energy of the electron with respect to a zero reference

level for an electron at an infinite distance from the nucleus. The total energy is the

sum of the kinetic and potential energies, and because energy must be given to an

electron to pull it away from the nucleus, the energy of every electron in the atom is

a negative quantity. Even though this picture has some limitations, it is convenient to

associate these energy values with orbits surrounding the nucleus, the more negative

energies corresponding to orbits of smaller radius. According to the quantum theory,

only certain discrete energy levels, or energy states, are permissible in a given atom,

and an electron must therefore absorb or emit discrete amounts of energy, or quanta,

in passing from one level to another. A normal atom at absolute zero temperature has

an electron occupying every one of the lower energy shells, starting outward from the

nucleus and continuing until the supply of electrons is exhausted.

In a crystalline solid, such as a metal or a diamond, atoms are packed closely

together, many more electrons are present, and many more permissible energy levels

are available because of the interaction forces between adjacent atoms. We find that

the allowed energies of electrons are grouped into broad ranges, or “bands,” each band

consisting of very numerous, closely spaced, discrete levels. At a temperature of abso-

lute zero, the normal solid also has every level occupied, starting with the lowest and

proceeding in order until all the electrons are located. The electrons with the highest

(least negative) energy levels, the valence electrons, are located in the valence band. If

there are permissible higher-energy levels in the valence band, or if the valence band

merges smoothly into a conduction band, then additional kinetic energy may be given

to the valence electrons by an external field, resulting in an electron flow. The solid is

called a metallic conductor. The filled valence band and the unfilled conduction band

for a conductor at absolute zero temperature are suggested by the sketch in Figure 5.2a.

If, however, the electron with the greatest energy occupies the top level in the

valence band and a gap exists between the valence band and the conduction band, then

Figure 5.2 The energy-band structure in three different types of materials

at 0 K. (a) The conductor exhibits no energy gap between the valence and

conduction bands. (b) The insulator shows a large energy gap. (c) The

semiconductor has only a small energy gap.
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the electron cannot accept additional energy in small amounts, and the material is an

insulator. This band structure is indicated in Figure 5.2b. Note that if a relatively large

amount of energy can be transferred to the electron, it may be sufficiently excited to

jump the gap into the next band where conduction can occur easily. Here the insulator

breaks down.

An intermediate condition occurs when only a small “forbidden region” separates

the two bands, as illustrated by Figure 5.2c. Small amounts of energy in the form of

heat, light, or an electric field may raise the energy of the electrons at the top of the

filled band and provide the basis for conduction. These materials are insulators which

display many of the properties of conductors and are called semiconductors.

Let us first consider the conductor. Here the valence electrons, or conduction,
or free, electrons, move under the influence of an electric field. With a field E, an

electron having a charge Q = −e will experience a force

F = −eE

In free space, the electron would accelerate and continuously increase its velocity

(and energy); in the crystalline material, the progress of the electron is impeded

by continual collisions with the thermally excited crystalline lattice structure, and a

constant average velocity is soon attained. This velocity vd is termed the drift velocity,
and it is linearly related to the electric field intensity by the mobility of the electron

in the given material. We designate mobility by the symbol µ (mu), so that

vd = −µeE (6)

where µǫ is the mobility of an electron and is positive by definition. Note that the

electron velocity is in a direction opposite to the direction of E. Equation (6) also

shows that mobility is measured in the units of square meters per volt-second; typical

values3 are 0.0012 for aluminum, 0.0032 for copper, and 0.0056 for silver.

For these good conductors, a drift velocity of a few centimeters per second is

sufficient to produce a noticeable temperature rise and can cause the wire to melt if

the heat cannot be quickly removed by thermal conduction or radiation.

Substituting (6) into Eq. (3) of Section 5.1, we obtain

J = −ρeµeE (7)

where ρe is the free-electron charge density, a negative value. The total charge density

ρν is zero because equal positive and negative charges are present in the neutral

material. The negative value of ρe and the minus sign lead to a current density J that

is in the same direction as the electric field intensity E.

The relationship between J and E for a metallic conductor, however, is also

specified by the conductivity σ (sigma),

J = σE (8)

3 Wert and Thomson, p. 238, listed in the References at the end of this chapter.
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where σ is measured is siemens4 per meter (S/m). One siemens (1 S) is the basic

unit of conductance in the SI system and is defined as one ampere per volt. Formerly,

the unit of conductance was called the mho and was symbolized by an inverted 	.

Just as the siemens honors the Siemens brothers, the reciprocal unit of resistance that

we call the ohm (1 	 is one volt per ampere) honors Georg Simon Ohm, a German

physicist who first described the current-voltage relationship implied by Eq. (8). We

call this equation the point form of Ohm’s law; we will look at the more common

form of Ohm’s law shortly.

First, however, it is informative to note the conductivity of several metallic con-

ductors; typical values (in siemens per meter) are 3.82×107 for aluminum, 5.80×107

for copper, and 6.17 × 107 for silver. Data for other conductors may be found in

Appendix C. On seeing data such as these, it is only natural to assume that we are be-

ing presented with constant values; this is essentially true. Metallic conductors obey

Ohm’s law quite faithfully, and it is a linear relationship; the conductivity is constant

over wide ranges of current density and electric field intensity. Ohm’s law and the

metallic conductors are also described as isotropic, or having the same properties in

every direction. A material which is not isotropic is called anisotropic, and we shall

mention such a material in Chapter 6.

The conductivity is a function of temperature, however. The resistivity, which

is the reciprocal of the conductivity, varies almost linearly with temperature in the

region of room temperature, and for aluminum, copper, and silver it increases about

0.4 percent for a 1-K rise in temperature.5 For several metals the resistivity drops

abruptly to zero at a temperature of a few kelvin; this property is termed super-
conductivity. Copper and silver are not superconductors, although aluminum is (for

temperatures below 1.14 K).

If we now combine Equations (7) and (8), conductivity may be expressed in terms

of the charge density and the electron mobility,

σ = −ρeµe (9)

From the definition of mobility (6), it is now satisfying to note that a higher temperature

infers a greater crystalline lattice vibration, more impeded electron progress for a given

electric field strength, lower drift velocity, lower mobility, lower conductivity from

Eq. (9), and higher resistivity as stated.

The application of Ohm’s law in point form to a macroscopic (visible to the naked

eye) region leads to a more familiar form. Initially, assume that J and E are uniform,
as they are in the cylindrical region shown in Figure 5.3. Because they are uniform,

I =
∫

S
J · dS = JS (10)

4 This is the family name of two German-born brothers, Karl Wilhelm and Werner von Siemens, who

were famous engineer-inventors in the nineteenth century. Karl became a British subject and was

knighted, becoming Sir William Siemens.
5 Copious temperature data for conducting materials are available in the Standard Handbook for
Electrical Engineers, listed among the References at the end of this chapter.
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Figure 5.3 Uniform current density J and electric field

intensity E in a cylindrical region of length L and cross-

sectional area S. Here V = I R, where R = L/σ S.

and

Vab = −
∫ a

b
E · dL = −E ·

∫ a

b
dL = −E · Lba

= E · Lab (11)

or

V = E L

Thus

J =
I
S

= σE = σ
V
L

or

V =
L

σ S
I

The ratio of the potential difference between the two ends of the cylinder to

the current entering the more positive end, however, is recognized from elementary

circuit theory as the resistance of the cylinder, and therefore

V = I R (12)

where

R =
L

σ S
(13)

Equation (12) is, of course, known as Ohm’s law, and Eq. (13) enables us to compute

the resistance R, measured in ohms (abbreviated as 	), of conducting objects which

possess uniform fields. If the fields are not uniform, the resistance may still be defined

as the ratio of V to I , where V is the potential difference between two specified

equipotential surfaces in the material and I is the total current crossing the more

positive surface into the material. From the general integral relationships in Eqs. (10)

and (11), and from Ohm’s law (8), we may write this general expression for resistance
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when the fields are nonuniform,

R =
Vab

I
=

−
∫ a

b E · dL
∫

S σE · dS
(14)

The line integral is taken between two equipotential surfaces in the conductor, and

the surface integral is evaluated over the more positive of these two equipotentials.

We cannot solve these nonuniform problems at this time, but we should be able to

solve several of them after reading Chapter 6.

EXAMPLE 5.1

As an example of the determination of the resistance of a cylinder, we find the resis-

tance of a 1-mile length of #16 copper wire, which has a diameter of 0.0508 in.

Solution. The diameter of the wire is 0.0508×0.0254 = 1.291×10−3 m, the area of

the cross section is π (1.291×10−3/2)2 = 1.308×10−6 m2, and the length is 1609 m.

Using a conductivity of 5.80 × 107 S/m, the resistance of the wire is, therefore,

R =
1609

(5.80 × 107)(1.308 × 10−6)
= 21.2 	

This wire can safely carry about 10 A dc, corresponding to a current density of

10/(1.308×10−6) = 7.65×106 A/m2, or 7.65 A/mm2. With this current, the potential

difference between the two ends of the wire is 212 V, the electric field intensity is

0.312 V/m, the drift velocity is 0.000 422 m/s, or a little more than one furlong a week,

and the free-electron charge density is −1.81 × 1010 C/m3, or about one electron

within a cube two angstroms on a side.

D5.3. Find the magnitude of the current density in a sample of silver for

which σ = 6.17 × 107 S/m and µe = 0.0056 m2/V · s if (a) the drift velocity

is 1.5 µm/s ; (b) the electric field intensity is 1 mV/m; (c) the sample is a cube

2.5 mm on a side having a voltage of 0.4 mV between opposite faces; (d) the

sample is a cube 2.5 mm on a side carrying a total current of 0.5 A.

Ans. 16.5 kA/m2; 61.7 kA/m2; 9.9 MA/m2; 80.0 kA/m2

D5.4. A copper conductor has a diameter of 0.6 in. and it is 1200 ft long.

Assume that it carries a total dc current of 50 A. (a) Find the total resistance of

the conductor. (b) What current density exists in it? (c) What is the dc voltage

between the conductor ends? (d) How much power is dissipated in the wire?

Ans. 0.035 	; 2.74 × 105 A/m2; 1.73 V; 86.4 W
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5.4 CONDUCTOR PROPERTIES
AND BOUNDARY CONDITIONS

Once again, we must temporarily depart from our assumed static conditions and let

time vary for a few microseconds to see what happens when the charge distribution is

suddenly unbalanced within a conducting material. Suppose, for the sake of argument,

that there suddenly appear a number of electrons in the interior of a conductor. The

electric fields set up by these electrons are not counteracted by any positive charges,

and the electrons therefore begin to accelerate away from each other. This continues

until the electrons reach the surface of the conductor or until a number of electrons

equal to the number injected have reached the surface.

Here, the outward progress of the electrons is stopped, for the material surround-

ing the conductor is an insulator not possessing a convenient conduction band. No

charge may remain within the conductor. If it did, the resulting electric field would

force the charges to the surface.

Hence the final result within a conductor is zero charge density, and a surface

charge density resides on the exterior surface. This is one of the two characteristics

of a good conductor.

The other characteristic, stated for static conditions in which no current may flow,

follows directly from Ohm’s law: the electric field intensity within the conductor is

zero. Physically, we see that if an electric field were present, the conduction electrons

would move and produce a current, thus leading to a nonstatic condition.

Summarizing for electrostatics, no charge and no electric field may exist at any

point within a conducting material. Charge may, however, appear on the surface as a

surface charge density, and our next investigation concerns the fields external to the

conductor.

We wish to relate these external fields to the charge on the surface of the conductor.

The problem is a simple one, and we may first talk our way to the solution with a

little mathematics.

If the external electric field intensity is decomposed into two components, one

tangential and one normal to the conductor surface, the tangential component is seen

to be zero. If it were not zero, a tangential force would be applied to the elements of

the surface charge, resulting in their motion and nonstatic conditions. Because static

conditions are assumed, the tangential electric field intensity and electric flux density

are zero.

Gauss’s law answers our questions concerning the normal component. The elec-

tric flux leaving a small increment of surface must be equal to the charge residing on

that incremental surface. The flux cannot penetrate into the conductor, for the total

field there is zero. It must then leave the surface normally. Quantitatively, we may

say that the electric flux density in coulombs per square meter leaving the surface

normally is equal to the surface charge density in coulombs per square meter, or

DN = ρS.

If we use some of our previously derived results in making a more careful analysis

(and incidentally introducing a general method which we must use later), we should set

up a boundary between a conductor and free space (Figure 5.4) showing tangential
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n

Figure 5.4 An appropriate closed path and gaussian surface are used to

determine boundary conditions at a boundary between a conductor and free

space; E t = 0 and DN = ρS.

and normal components of D and E on the free-space side of the boundary. Both

fields are zero in the conductor. The tangential field may be determined by applying

Section 4.5, Eq. (21),
∮

E · dL = 0

around the small closed path abcda. The integral must be broken up into four parts
∫ b

a
+

∫ c

b
+

∫ d

c
+

∫ a

d
= 0

Remembering that E = 0 within the conductor, we let the length from a to b or c to

d be �w and from b to c or d to a be �h, and obtain

Et�w − EN ,at b
1
2
�h + EN ,at a

1
2
�h = 0

As we allow �h to approach zero, keeping �w small but finite, it makes no

difference whether or not the normal fields are equal at a and b, for �h causes these

products to become negligibly small. Hence, Et�w = 0 and, therefore, Et = 0.

The condition on the normal field is found most readily by considering DN rather

than EN and choosing a small cylinder as the gaussian surface. Let the height be �h
and the area of the top and bottom faces be �S. Again, we let �h approach zero.

Using Gauss’s law,

∮

S
D · dS = Q

we integrate over the three distinct surfaces

∫

top

+
∫

bottom

+
∫

sides

= Q

and find that the last two are zero (for different reasons). Then

DN �S = Q = ρS�S



CHAPTER 5 Conductors and Dielectrics 121

or

DN = ρS

These are the desired boundary conditions for the conductor-to-free-space bound-

ary in electrostatics,

Dt = Et = 0 (15)

DN = ǫ0 EN = ρS (16)

The electric flux leaves the conductor in a direction normal to the surface, and the

value of the electric flux density is numerically equal to the surface charge density.

Equations (15) and (16) can be more formally expressed using the vector fields

E× n
∣

∣

s = 0 (17)

D · n
∣

∣

s = ρs (18)

where n is the unit normal vector at the surface that points away from the conductor,

as shown in Figure 5.4, and where both operations are evaluated at the conductor

surface, s. Taking the cross product or the dot product of either field quantity with n
gives the tangential or the normal component of the field, respectively.

An immediate and important consequence of a zero tangential electric field in-

tensity is the fact that a conductor surface is an equipotential surface. The evaluation

of the potential difference between any two points on the surface by the line integral

leads to a zero result, because the path may be chosen on the surface itself where

E · dL = 0.

To summarize the principles which apply to conductors in electrostatic fields, we

may state that

1. The static electric field intensity inside a conductor is zero.

2. The static electric field intensity at the surface of a conductor is everywhere

directed normal to that surface.

3. The conductor surface is an equipotential surface.

Using these three principles, there are a number of quantities that may be calcu-

lated at a conductor boundary, given a knowledge of the potential field.

EXAMPLE 5.2

Given the potential,

V = 100(x2 − y2)

and a point P(2, −1, 3) that is stipulated to lie on a conductor-to-free-space boundary,

find V , E, D, and ρS at P , and also the equation of the conductor surface.

Solution. The potential at point P is

VP = 100[22 − (−1)2] = 300 V
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Figure 5.5 Given point P(2,−1, 3) and the

potential field, V = 100(x2 − y2), we find the

equipotential surface through P is x2 − y2 = 3,

and the streamline through P is xy = −2.

Because the conductor is an equipotential surface, the potential at the entire sur-

face must be 300 V. Moreover, if the conductor is a solid object, then the potential

everywhere in and on the conductor is 300 V, for E = 0 within the conductor.

The equation representing the locus of all points having a potential of 300 V is

300 = 100(x2 − y2)

or

x2 − y2 = 3

This is therefore the equation of the conductor surface; it happens to be a hyperbolic

cylinder, as shown in Figure 5.5. Let us assume arbitrarily that the solid conductor

lies above and to the right of the equipotential surface at point P , whereas free space

is down and to the left.

Next, we find E by the gradient operation,

E = −100∇(x2 − y2) = −200xax + 200yay

At point P,

Ep = −400ax − 200ay V/m
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Because D = ǫ0E, we have

DP = 8.854 × 10−12EP = −3.54ax − 1.771ay nC/m2

The field is directed downward and to the left at P; it is normal to the equipotential

surface. Therefore,

DN = |DP | = 3.96 nC/m2

Thus, the surface charge density at P is

ρS,P = DN = 3.96 nC/m2

Note that if we had taken the region to the left of the equipotential surface as the

conductor, the E field would terminate on the surface charge and we would let

ρS = −3.96 nC/m2.

EXAMPLE 5.3

Finally, let us determine the equation of the streamline passing through P.

Solution. We see that

Ey

Ex
=

200y
−200x

= −
y
x

=
dy
dx

Thus,

dy
y

+
dx
x

= 0

and

ln y + ln x = C1

Therefore,

xy = C2

The line (or surface) through P is obtained when C2 = (2)(−1) = −2. Thus, the

streamline is the trace of another hyperbolic cylinder,

xy = −2

This is also shown on Figure 5.5.

D5.5. Given the potential field in free space, V = 100 sinh 5x sin 5y V , and

a point P(0.1, 0.2, 0.3), find at P: (a) V ; (b) E; (c) |E|; (d) |ρS| if it is known

that P lies on a conductor surface.

Ans. 43.8 V; −474ax − 140.8ay V/m; 495 V/m; 4.38 nC/m2
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5.5 THE METHOD OF IMAGES

One important characteristic of the dipole field that we developed in Chapter 4 is

the infinite plane at zero potential that exists midway between the two charges. Such

a plane may be represented by a vanishingly thin conducting plane that is infinite

in extent. The conductor is an equipotential surface at a potential V = 0, and the

electric field intensity is therefore normal to the surface. Thus, if we replace the

dipole configuration shown in Figure 5.6a with the single charge and conducting

plane shown in Figure 5.6b, the fields in the upper half of each figure are the same.

Below the conducting plane, all fields are zero, as we have not provided any charges

in that region. Of course, we might also substitute a single negative charge below a

conducting plane for the dipole arrangement and obtain equivalence for the fields in

the lower half of each region.

If we approach this equivalence from the opposite point of view, we begin with a

single charge above a perfectly conducting plane and then see that we may maintain

the same fields above the plane by removing the plane and locating a negative charge

at a symmetrical location below the plane. This charge is called the image of the

original charge, and it is the negative of that value.

If we can do this once, linearity allows us to do it again and again, and thus any
charge configuration above an infinite ground plane may be replaced by an arrange-

ment composed of the given charge configuration, its image, and no conducting plane.

This is suggested by the two illustrations of Figure 5.7. In many cases, the potential

field of the new system is much easier to find since it does not contain the conducting

plane with its unknown surface charge distribution.

As an example of the use of images, let us find the surface charge density at

P(2, 5, 0) on the conducting plane z = 0 if there is a line charge of 30 nC/m located

at x = 0, z = 3, as shown in Figure 5.8a. We remove the plane and install an

image line charge of −30 nC/m at x = 0, z = −3, as illustrated in Figure 5.8b.

The field at P may now be obtained by superposition of the known fields of the line

Figure 5.6 (a) Two equal but opposite charges may be replaced by (b) a single charge

and a conducting plane without affecting the fields above the V = 0 surface.
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Figure 5.7 (a) A given charge configuration above an infinite conducting plane may

be replaced by (b) the given charge configuration plus the image configuration, without

the conducting plane.

charges. The radial vector from the positive line charge to P is R+ = 2ax − 3az ,

while R− = 2ax + 3az . Thus, the individual fields are

E+ =
ρL

2πǫ0 R+
aR+ =

30 × 10−9

2πǫ0

√
13

2ax − 3az√
13

and

E− =
30 × 10−9

2πǫ0

√
13

2ax + 3az√
13

Adding these results, we have

E =
−180 × 10−9az

2πǫ0(13)
= −249az V/m

This then is the field at (or just above) P in both the configurations of Figure 5.8, and

it is certainly satisfying to note that the field is normal to the conducting plane, as it

must be. Thus, D = ǫ0E = −2.20az nC/m2, and because this is directed toward the

conducting plane, ρS is negative and has a value of −2.20 nC/m2 at P.

Figure 5.8 (a) A line charge above a conducting plane. (b) The conductor is

removed, and the image of the line charge is added.
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D5.6. A perfectly conducting plane is located in free space at x = 4, and

a uniform infinite line charge of 40 nC/m lies along the line x = 6, y = 3. Let

V = 0 at the conducting plane. At P(7, −1, 5) find: (a) V ; (b) E.

Ans. 317 V; −45.3ax − 99.2ay V/m

5.6 SEMICONDUCTORS

If we now turn our attention to an intrinsic semiconductor material, such as pure

germanium or silicon, two types of current carriers are present, electrons and holes.

The electrons are those from the top of the filled valence band that have received

sufficient energy (usually thermal) to cross the relatively small forbidden band into

the conduction band. The forbidden-band energy gap in typical semiconductors is of

the order of one electronvolt. The vacancies left by these electrons represent unfilled

energy states in the valence band which may also move from atom to atom in the

crystal. The vacancy is called a hole, and many semiconductor properties may be

described by treating the hole as if it had a positive charge of e, a mobility, µh , and

an effective mass comparable to that of the electron. Both carriers move in an electric

field, and they move in opposite directions; hence each contributes a component of

the total current which is in the same direction as that provided by the other. The

conductivity is therefore a function of both hole and electron concentrations and

mobilities,

σ = −ρeµe + ρhµh (19)

For pure, or intrinsic, silicon, the electron and hole mobilities are 0.12 and 0.025,

respectively, whereas for germanium, the mobilities are, respectively, 0.36 and 0.17.

These values are given in square meters per volt-second and range from 10 to 100

times as large as those for aluminum, copper, silver, and other metallic conductors.6

These mobilities are given for a temperature of 300 K.

The electron and hole concentrations depend strongly on temperature. At 300 K

the electron and hole volume charge densities are both 0.0024 C/m3in magnitude in

intrinsic silicon and 3.0 C/m3 in intrinsic germanium. These values lead to conductiv-

ities of 0.000 35 S/m in silicon and 1.6 S/m in germanium. As temperature increases,

the mobilities decrease, but the charge densities increase very rapidly. As a result, the

conductivity of silicon increases by a factor of 10 as the temperature increases from

300 to about 330 K and decreases by a factor of 10 as the temperature drops from 300

to about 275 K. Note that the conductivity of the intrinsic semiconductor increases

with temperature, whereas that of a metallic conductor decreases with temperature;

this is one of the characteristic differences between the metallic conductors and the

intrinsic semiconductors.

6 Mobility values for semiconductors are given in References 2, 3, and 5 listed at the end of this chapter.
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Intrinsic semiconductors also satisfy the point form of Ohm’s law; that is, the

conductivity is reasonably constant with current density and with the direction of the

current density.

The number of charge carriers and the conductivity may both be increased dramat-

ically by adding very small amounts of impurities. Donor materials provide additional

electrons and form n-type semiconductors, whereas acceptors furnish extra holes and

form p-type materials. The process is known as doping, and a donor concentration in

silicon as low as one part in 107 causes an increase in conductivity by a factor of 105.

The range of value of the conductivity is extreme as we go from the best insulating

materials to semiconductors and the finest conductors. In siemens per meter, σ ranges

from 10−17 for fused quartz, 10−7 for poor plastic insulators, and roughly unity for

semiconductors to almost 108 for metallic conductors at room temperature. These

values cover the remarkably large range of some 25 orders of magnitude.

D5.7. Using the values given in this section for the electron and hole mo-

bilities in silicon at 300 K, and assuming hole and electron charge densities

are 0.0029 C/m3 and −0.0029 C/m3, respectively, find: (a) the component of

the conductivity due to holes; (b) the component of the conductivity due to

electrons; (c) the conductivity.

Ans. 72.5 µS/m; 348 µS/m; 421 µS/m

5.7 THE NATURE OF DIELECTRIC
MATERIALS

A dielectric in an electric field can be viewed as a free-space arrangement of mi-

croscopic electric dipoles, each of which is composed of a positive and a negative

charge whose centers do not quite coincide.These are not free charges, and they cannot

contribute to the conduction process. Rather, they are bound in place by atomic and

molecular forces and can only shift positions slightly in response to external fields.

They are called bound charges, in contrast to the free charges that determine conduc-

tivity. The bound charges can be treated as any other sources of the electrostatic field.

Therefore, we would not need to introduce the dielectric constant as a new parameter

or to deal with permittivities different from the permittivity of free space; however,

the alternative would be to consider every charge within a piece of dielectric material.
This is too great a price to pay for using all our previous equations in an unmodified

form, and we shall therefore spend some time theorizing about dielectrics in a quali-

tative way; introducing polarization P, permittivity ǫ, and relative permittivity ǫr; and

developing some quantitative relationships involving these new parameters.

The characteristic that all dielectric materials have in common, whether they are

solid, liquid, or gas, and whether or not they are crystalline in nature, is their ability

to store electric energy. This storage takes place by means of a shift in the relative

positions of the internal, bound positive and negative charges against the normal

molecular and atomic forces.
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This displacement against a restraining force is analogous to lifting a weight

or stretching a spring and represents potential energy. The source of the energy is

the external field, the motion of the shifting charges resulting perhaps in a transient

current through a battery that is producing the field.

The actual mechanism of the charge displacement differs in the various dielectric

materials. Some molecules, termed polar molecules, have a permanent displacement

existing between the centers of “gravity” of the positive and negative charges, and

each pair of charges acts as a dipole. Normally the dipoles are oriented in a random

way throughout the interior of the material, and the action of the external field is to

align these molecules, to some extent, in the same direction. A sufficiently strong

field may even produce an additional displacement between the positive and negative

charges.

A nonpolar molecule does not have this dipole arrangement until after a field is

applied. The negative and positive charges shift in opposite directions against their

mutual attraction and produce a dipole that is aligned with the electric field.

Either type of dipole may be described by its dipole moment p, as developed in

Section 4.7, Eq. (36),

p= Qd (20)

where Q is the positive one of the two bound charges composing the dipole, and d is

the vector from the negative to the positive charge. We note again that the units of p
are coulomb-meters.

If there are n dipoles per unit volume and we deal with a volume �ν, then there

are n �ν dipoles, and the total dipole moment is obtained by the vector sum,

ptotal =
n �ν
∑

i=1

pi

If the dipoles are aligned in the same general direction, ptotal may have a significant

value. However, a random orientation may cause ptotal to be essentially zero.

We now define the polarization P as the dipole moment per unit volume,

P= lim
�ν→0

1

�ν

n �ν
∑

i=1

pi (21)

with units of coulombs per square meter. We will treat P as a typical continuous field,

even though it is obvious that it is essentially undefined at points within an atom

or molecule. Instead, we should think of its value at any point as an average value

taken over a sample volume �ν—large enough to contain many molecules (n �ν in

number), but yet sufficiently small to be considered incremental in concept.

Our immediate goal is to show that the bound-volume charge density acts like

the free-volume charge density in producing an external field; we will obtain a result

similar to Gauss’s law.

To be specific, assume that we have a dielectric containing nonpolar molecules.

No molecule has a dipole moment, and P = 0 throughout the material. Somewhere in

the interior of the dielectric we select an incremental surface element �S, as shown

in Figure 5.9a, and apply an electric field E. The electric field produces a moment
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Figure 5.9 (a) An incremental surface element �S is shown in the interior of a

dielectric in which an electric field E is present. (b) The nonpolar molecules form dipole

moments p and a polarization P. There is a net transfer of bound charge across �S.

p = Qd in each molecule, such that p and d make an angle θ with �S, as indicated

in Figure 5.9b.

The bound charges will now move across �S. Each of the charges associated

with the creation of a dipole must have moved a distance 1
2
d cos θ in the direction

perpendicular to �S. Thus, any positive charges initially lying below the surface �S
and within the distance 1

2
d cos θ of the surface must have crossed �S going upward.

Also, any negative charges initially lying above the surface and within that distance

( 1
2
d cos θ ) from �Smust have crossed �S going downward. Therefore, because there

are n molecules/m3, the net total charge that crosses the elemental surface in an upward

direction is equal to nQd cos θ�S, or

�Qb = nQd · �S

where the subscript on Qb reminds us that we are dealing with a bound charge and

not a free charge. In terms of the polarization, we have

�Qb = P · �S

If we interpret �S as an element of a closed surface inside the dielectric material,

then the direction of �S is outward, and the net increase in the bound charge within
the closed surface is obtained through the integral

Qb = −
∮

S
P · dS (22)
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This last relationship has some resemblance to Gauss’s law, and we may now gener-

alize our definition of electric flux density so that it applies to media other than free

space. We first write Gauss’s law in terms of ǫ0E and QT, the total enclosed charge,

bound plus free:

QT =
∮

S
ǫ0E · dS (23)

where

QT = Qb + Q

and Q is the total free charge enclosed by the surface S. Note that the free charge

appears without a subscript because it is the most important type of charge and will

appear in Maxwell’s equations.

Combining these last three equations, we obtain an expression for the free charge

enclosed,

Q = QT − Qb =
∮

S
(ǫ0E+ P) · dS (24)

D is now defined in more general terms than was done in Chapter 3,

D = ǫ0E+ P (25)

There is thus an added term to D that appears when polarizable material is present.

Thus,

Q =
∮

S
D · dS (26)

where Q is the free charge enclosed.

Utilizing the several volume charge densities, we have

Qb =
∫

ν

ρb dv

Q =
∫

ν

ρν dv

QT =
∫

ν

ρT dv

With the help of the divergence theorem, we may therefore transform Eqs. (22), (23),

and (26) into the equivalent divergence relationships,

∇ ·P = −ρb

∇ · ǫ0E = ρT

∇ ·D = ρν (27)

We will emphasize only Eq. (26) and (27), the two expressions involving the free

charge, in the work that follows.
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In order to make any real use of these new concepts, it is necessary to know the

relationship between the electric field intensity E and the polarization P that results.

This relationship will, of course, be a function of the type of material, and we will

essentially limit our discussion to those isotropic materials for which E and P are

linearly related. In an isotropic material, the vectors E and P are always parallel,

regardless of the orientation of the field. Although most engineering dielectrics are

linear for moderate-to-large field strengths and are also isotropic, single crystals may

be anisotropic. The periodic nature of crystalline materials causes dipole moments to

be formed most easily along the crystal axes, and not necessarily in the direction of

the applied field.

In ferroelectric materials, the relationship between P and E not only is nonlin-

ear, but also shows hysteresis effects; that is, the polarization produced by a given

electric field intensity depends on the past history of the sample. Important examples

of this type of dielectric are barium titanate, often used in ceramic capacitors, and

Rochelle salt.

The linear relationship between P and E is

P= χeǫ0E (28)

where χe (chi) is a dimensionless quantity called the electric susceptibility of the

material.

Using this relationship in Eq. (25), we have

D = ǫ0E+ χeǫ0E = (χe + 1)ǫ0E
The expression within the parentheses is now defined as

ǫr = χe + 1 (29)

This is another dimensionless quantity, and it is known as the relative permittivity, or

dielectric constant of the material. Thus,

D = ǫ0ǫrE = ǫE (30)

where

ǫ = ǫ0ǫr (31)

and ǫ is the permittivity. The dielectric constants are given for some representative

materials in Appendix C.

Anisotropic dielectric materials cannot be described in terms of a simple suscep-

tibility or permittivity parameter. Instead, we find that each component of D may be

a function of every component of E, and D = ǫE becomes a matrix equation where

D and E are each 3 × 1 column matrices and ǫ is a 3 × 3 square matrix. Expanding

the matrix equation gives

Dx = ǫxx Ex + ǫxy Ey + ǫxz Ez

Dy = ǫyx Ex + ǫyy Ey + ǫyz Ez

Dz = ǫzx Ex + ǫzy Ey + ǫzz Ez
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Note that the elements of the matrix depend on the selection of the coordinate axes in

the anisotropic material. Certain choices of axis directions lead to simpler matrices.7

D and E (and P) are no longer parallel, and although D = ǫ0E + P remains

a valid equation for anisotropic materials, we may continue to use D = ǫE only

by interpreting it as a matrix equation. We will concentrate our attention on linear

isotropic materials and reserve the general case for a more advanced text.

In summary, then, we now have a relationship between D and E that depends on

the dielectric material present,

D = ǫE (30)

where

ǫ = ǫ0ǫr (31)

This electric flux density is still related to the free charge by either the point or integral

form of Gauss’s law:

∇ ·D = ρν (27)

∮

S
D · dS = Q (26)

Use of the relative permittivity, as indicated by Eq. (31), makes consideration

of the polarization, dipole moments, and bound charge unnecessary. However, when

anisotropic or nonlinear materials must be considered, the relative permittivity, in the

simple scalar form that we have discussed, is no longer applicable.

EXAMPLE 5.4

We locate a slab of Teflon in the region 0 ≤ x ≤ a, and assume free space where

x < 0 and x > a. Outside the Teflon there is a uniform field Eout = E0ax V/m. We

seek values for D, E, and P everywhere.

Solution. The dielectric constant of the Teflon is 2.1, and thus the electric suscepti-

bility is 1.1.

Outside the slab, we have immediately Dout = ǫ0 E0ax. Also, as there is no

dielectric material there, Pout = 0. Now, any of the last four or five equations will

enable us to relate the several fields inside the material to each other. Thus

Din = 2.1ǫ0Ein (0 ≤ x ≤ a)

Pin = 1.1ǫ0Ein (0 ≤ x ≤ a)

7 A more complete discussion of this matrix may be found in the Ramo, Whinnery, and Van Duzer

reference listed at the end of this chapter.
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As soon as we establish a value for any of these three fields within the dielectric, the

other two can be found immediately. The difficulty lies in crossing over the boundary

from the known fields external to the dielectric to the unknown ones within it. To do

this we need a boundary condition, and this is the subject of the next section. We will

complete this example then.

In the remainder of this text we will describe polarizable materials in terms of D
and ǫ rather than P and χe. We will limit our discussion to isotropic materials.

D5.8. A slab of dielectric material has a relative dielectric constant of 3.8 and

contains a uniform electric flux density of 8 nC/m2. If the material is lossless,

find: (a) E ; (b) P; (c) the average number of dipoles per cubic meter if the

average dipole moment is 10−29C · m.

Ans. 238 V/m; 5.89 nC/m2; 5.89 × 1020 m−3

5.8 BOUNDARY CONDITIONS FOR PERFECT
DIELECTRIC MATERIALS

How do we attack a problem in which there are two different dielectrics, or a dielectric

and a conductor? This is another example of a boundary condition, such as the condi-

tion at the surface of a conductor whereby the tangential fields are zero and the normal

electric flux density is equal to the surface charge density on the conductor. Now we

take the first step in solving a two-dielectric problem, or a dielectric-conductor prob-

lem, by determining the behavior of the fields at the dielectric interface.

Let us first consider the interface between two dielectrics having permittivities

ǫ1 and ǫ2 and occupying regions 1 and 2, as shown in Figure 5.10. We first examine

n

Figure 5.10 The boundary between perfect dielectrics of permittivities ǫ1

and ǫ2. The continuity of DN is shown by the gaussian surface on the right,

and the continuity of E tan is shown by the line integral about the closed path

at the left.



134 ENGINEERING ELECTROMAGNETICS

the tangential components by using
∮

E · dL = 0

around the small closed path on the left, obtaining

Etan 1 �w − Etan 2 �w = 0

The small contribution to the line integral by the normal component of E along

the sections of length �h becomes negligible as �h decreases and the closed path

crowds the surface. Immediately, then,

Etan 1 = Etan 2 (32)

Evidently, Kirchhoff’s voltage law is still applicable to this case. Certainly we have

shown that the potential difference between any two points on the boundary that are

separated by a distance �w is the same immediately above or below the boundary.

If the tangential electric field intensity is continuous across the boundary, then

tangential D is discontinuous, for

Dtan 1

ǫ1

= Etan 1 = Etan 2 =
Dtan 2

ǫ2

or

Dtan 1

Dtan 2

=
ǫ1

ǫ2

(33)

The boundary conditions on the normal components are found by applying

Gauss’s law to the small “pillbox” shown at the right in Figure 5.10. The sides are

again very short, and the flux leaving the top and bottom surfaces is the difference

DN1�S − DN2�S = �Q = ρS�S

from which

DN1 − DN2 = ρS (34)

What is this surface charge density? It cannot be a bound surface charge density,

because we are taking the polarization of the dielectric into effect by using a dielectric

constant different from unity; that is, instead of considering bound charges in free

space, we are using an increased permittivity. Also, it is extremely unlikely that any

free charge is on the interface, for no free charge is available in the perfect dielectrics

we are considering. This charge must then have been placed there deliberately, thus

unbalancing the total charge in and on this dielectric body. Except for this special

case, then, we may assume ρS is zero on the interface and

DN1 = DN2 (35)
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or the normal component of D is continuous. It follows that

ǫ1 EN1 = ǫ2 EN2 (36)

and normal E is discontinuous.

Equations (32) and (34) can be written in terms of field vectors in any direction,

along with the unit normal to the surface as shown in Figure 5.10. Formally stated,

the boundary conditions for the electric flux density and the electric field strength at

the surface of a perfect dielectric are

(D1 − D2) · n = ρs (37)

which is the general statement of Eq. (32), and

(E1 − E2) × n = 0 (38)

generally states Eq. (34). This construction was used previously in Eqs. (17) and (18)

for a conducting surface, in which the normal or tangential components of the fields

are obtained through the dot product or cross product with the normal, respectively.

These conditions may be used to show the change in the vectors D and

E at the surface. Let D1 (and E1) make an angle θ1 with a normal to the surface

(Figure 5.11). Because the normal components of D are continuous,

DN1 = D1 cos θ1 = D2 cos θ2 = DN2 (39)

The ratio of the tangential components is given by (33) as

Dtan 1

Dtan 2

=
D1 sin θ1

D2 sin θ2

=
ǫ1

ǫ2

or

ǫ2 D1 sin θ1 = ǫ1 D2 sin θ2 (40)

n

Figure 5.11 The refraction of D at a

dielectric interface. For the case shown,

ǫ1 > ǫ2; E1 and E2 are directed along D1

and D2, with D1 > D2 and E1 < E2.
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and the division of this equation by (39) gives

tan θ1

tan θ2

=
ǫ1

ǫ2

(41)

In Figure 5.11 we have assumed that ǫ1 > ǫ2, and therefore θ1 > θ2.

The direction of E on each side of the boundary is identical with the direction of

D, because D = ǫE.

The magnitude of D in region 2 may be found from Eq. (39) and (40),

D2 = D1

√

cos2 θ1 +
(

ǫ2

ǫ1

)2

sin2 θ1 (42)

and the magnitude of E2 is

E2 = E1

√

sin2 θ1 +
(

ǫ1

ǫ2

)2

cos2 θ1 (43)

An inspection of these equations shows that D is larger in the region of larger permit-

tivity (unless θ1 = θ2 = 0◦ where the magnitude is unchanged) and that E is larger

in the region of smaller permittivity (unless θ1 = θ2 = 90◦, where its magnitude is

unchanged).

EXAMPLE 5.5

Complete Example 5.4 by finding the fields within the Teflon (ǫr = 2.1), given the

uniform external field Eout = E0ax in free space.

Solution. We recall that we had a slab of Teflon extending from x = 0 to x = a,

as shown in Figure 5.12, with free space on both sides of it and an external field

Eout = E0ax . We also have Dout = ǫ0 E0ax and Pout = 0.

Inside, the continuity of DN at the boundary allows us to find that Din = Dout =

ǫ0 E0ax. This gives us Ein = Din/ǫ = ǫ0 E0ax/(ǫrǫ0) = 0.476E0ax. To get the polar-

ization field in the dielectric, we use D = ǫ0E+ P and obtain

Pin = Din − ǫ0Ein = ǫ0 E0ax − 0.476ǫ0 E0ax = 0.524ǫ0 E0ax

Summarizing then gives

Din = ǫ0 E0ax (0 ≤ x ≤ a)

Ein = 0.476E0ax (0 ≤ x ≤ a)

Pin = 0.524ǫ0 E0ax (0 ≤ x ≤ a)

A practical problem most often does not provide us with a direct knowledge of

the field on either side of the boundary. The boundary conditions must be used to help

us determine the fields on both sides of the boundary from the other information that

is given.
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Figure 5.12 A knowledge of the electric field external to the dielectric

enables us to find the remaining external fields first and then to use the

continuity of normal D to begin finding the internal fields.

D5.9. Let Region 1 (z < 0) be composed of a uniform dielectric material

for which ǫr = 3.2, while Region 2 (z > 0) is characterized by ǫr = 2. Let

D1 = −30ax + 50ay + 70az nC/m2 and find: (a) DN1; (b) Dt1; (c) Dt1; (d) D1;

(e) θ1; ( f ) P1.

Ans. 70 nC/m2; −30ax + 50ay nC/m2; 58.3 nC/m2; 91.1 nC/m2; 39.8◦; −20.6ax +

34.4ay + 48.1az nC/m2

D5.10. Continue Problem D5.9 by finding: (a) DN2; (b) Dt2; (c) D2; (d) P2;

(e) θ2.

Ans. 70az nC/m2; −18.75ax + 31.25ay nC/m2; −18.75ax + 31.25ay + 70az nC/m2;

−9.38ax + 15.63ay + 35az nC/m2; 27.5◦
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CHAPTER 5 PROBLEMS

5.1 Given the current density J = −104[sin(2x)e−2yax + cos(2x)e−2yay] kA/m2

(a) Find the total current crossing the plane y = 1 in the ay direction in the

region 0 < x < 1, 0 < z < 2. (b) Find the total current leaving the region

0 < x, y < 1, 2 < z < 3 by integrating J · dS over the surface of the cube.

(c) Repeat part (b), but use the divergence theorem.

5.2 Given J = −10−4(yax + xay) A/m2, find the current crossing the y = 0

plane in the −ay direction between z = 0 and 1, and x = 0 and 2.

5.3 Let J = 400 sin θ/(r2 + 4) ar A/m2. (a) Find the total current flowing

through that portion of the spherical surface r = 0.8, bounded by

0.1π < θ < 0.3π, 0 < φ < 2π. (b) Find the average value of J over the

defined area.

5.4 If volume charge density is given as ρv = (cos ωt)/r2 C/m2 in spherical

coordinates, find J. It is reasonable to assume that J is not a function of θ or φ.

5.5 Let J = 25/ρaρ − 20/(ρ2 + 0.01) az A/m2. (a) Find the total current

crossing the plane z = 0.2 in the az direction for ρ < 0.4. (b) Calculate

∂ρν/∂t. (c) Find the outward current crossing the closed surface defined by

ρ = 0.01, ρ = 0.4, z = 0, and z = 0.2. (d) Show that the divergence

theorem is satisified for J and the surface specified in part (c).

5.6 In spherical coordinates, a current density J = −k/(r sin θ ) aθ A/m2 exists in

a conducting medium, where k is a constant. Determine the total current in

the az direction that crosses a circular disk of radius R, centered on the z axis

and located at (a) z = 0; (b) z = h.

5.7 Assuming that there is no transformation of mass to energy or vice versa, it is

possible to write a continuity equation for mass. (a) If we use the continuity

equation for charge as our model, what quantities correspond to J and ρν?

(b) Given a cube 1 cm on a side, experimental data show that the rates at

which mass is leaving each of the six faces are 10.25, −9.85, 1.75, −2.00,

−4.05, and 4.45 mg/s. If we assume that the cube is an incremental volume

element, determine an approximate value for the time rate of change of

density at its center.

5.8 A truncated cone has a height of 16 cm. The circular faces on the top and

bottom have radii of 2 mm and 0.1 mm, respectively. If the material from



CHAPTER 5 Conductors and Dielectrics 139

which this solid cone is constructed has a conductivity of 2 × 106 S/m, use

some good approximations to determine the resistance between the two

circular faces.

5.9 (a) Using data tabulated in Appendix C, calculate the required diameter for a

2-m-long nichrome wire that will dissipate an average power of 450 W when

120 V rms at 60 Hz is applied to it. (b) Calculate the rms current density in

the wire.

5.10 A large brass washer has a 2-cm inside diameter, a 5-cm outside diameter,

and is 0.5 cm thick. Its conductivity is σ = 1.5 × 107 S/m. The washer is cut

in half along a diameter, and a voltage is applied between the two rectangular

faces of one part. The resultant electric field in the interior of the half-washer

is E = (0.5/ρ) aφ V/m in cylindrical coordinates, where the z axis is the axis

of the washer. (a) What potential difference exists between the two

rectangular faces? (b) What total current is flowing? (c) What is the

resistance between the two faces?

5.11 Two perfectly conducting cylindrical surfaces of length ℓ are located at

ρ = 3 and ρ = 5 cm. The total current passing radially outward through the

medium between the cylinders is 3 A dc. (a) Find the voltage and resistance

between the cylinders, and E in the region between the cylinders, if a

conducting material having σ = 0.05 S/m is present for 3 < ρ < 5 cm.

(b) Show that integrating the power dissipated per unit volume over the

volume gives the total dissipated power.

5.12 Two identical conducting plates, each having area A, are located at z = 0 and

z = d . The region between plates is filled with a material having z-dependent

conductivity, σ (z) = σ0e−z/d , where σ0 is a constant. Voltage V0 is applied to

the plate at z = d; the plate at z = 0 is at zero potential. Find, in terms of the

given parameters, (a) the resistance of the material; (b) the total current

flowing between plates; (c) the electric field intensity E within the material.

5.13 A hollow cylindrical tube with a rectangular cross section has external

dimensions of 0.5 in. by 1 in. and a wall thickness of 0.05 in. Assume that the

material is brass, for which σ = 1.5 × 107 S/m. A current of 200 A dc is

flowing down the tube. (a) What voltage drop is present across a 1 m length

of the tube? (b) Find the voltage drop if the interior of the tube is filled with

a conducting material for which σ = 1.5 × 105 S/m.

5.14 A rectangular conducting plate lies in the xy plane, occupying the region

0 < x < a, 0 < y < b. An identical conducting plate is positioned directly

above and parallel to the first, at z = d . The region between plates is filled

with material having conductivity σ (x) = σ0e−x/a , where σ0 is a constant.

Voltage V0 is applied to the plate at z = d; the plate at z = 0 is at zero

potential. Find, in terms of the given parameters, (a) the electric field

intensity E within the material; (b) the total current flowing between plates;

(c) the resistance of the material.
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5.15 Let V = 10(ρ + 1)z2 cos φ V in free space. (a) Let the equipotential surface

V = 20 V define a conductor surface. Find the equation of the conductor

surface. (b) Find ρ and E at that point on the conductor surface where φ =
0.2π and z = 1.5. (c) Find |ρS| at that point.

5.16 A coaxial transmission line has inner and outer conductor radii a and b.

Between conductors (a < ρ < b) lies a conductive medium whose

conductivity is σ (ρ) = σ0/ρ, where σ0 is a constant. The inner conductor is

charged to potential V0, and the outer conductor is grounded. (a) Assuming

dc radial current I per unit length in z, determine the radial current density

field J in A/m2. (b) Determine the electric field intensity E in terms of I and

other parameters, given or known. (c) By taking an appropriate line integral

of E as found in part (b), find an expression that relates V0 to I . (d) Find an

expression for the conductance of the line per unit length, G.

5.17 Given the potential field V = 100xz/(x2 + 4) V in free space: (a) Find D at

the surface z = 0. (b) Show that the z = 0 surface is an equipotential surface.

(c) Assume that the z = 0 surface is a conductor and find the total charge on

that portion of the conductor defined by 0 < x < 2, −3 < y < 0.

5.18 Two parallel circular plates of radius a are located at z = 0 and z = d . The

top plate (z = d) is raised to potential V0; the bottom plate is grounded.

Between the plates is a conducting material having radial-dependent

conductivity, σ (ρ) = σ0ρ, where σ0 is a constant. (a) Find the ρ-independent
electric field strength, E, between plates. (b) Find the current density, J
between plates. (c) Find the total current, I , in the structure. (d) Find the

resistance between plates.

5.19 Let V = 20x2 yz − 10z2 V in free space. (a) Determine the equations of the

equipotential surfaces on which V = 0 and 60 V. (b) Assume these are

conducting surfaces and find the surface charge density at that point on the

V = 60 V surface where x = 2 and z = 1. It is known that 0 ≤ V ≤ 60 V is

the field-containing region. (c) Give the unit vector at this point that is

normal to the conducting surface and directed toward the V = 0 surface.

5.20 Two point charges of −100πµC are located at (2, −1, 0) and (2, 1, 0). The

surface x = 0 is a conducting plane. (a) Determine the surface charge

density at the origin. (b) Determine ρS at P(0, h, 0).

5.21 Let the surface y = 0 be a perfect conductor in free space. Two uniform

infinite line charges of 30 nC/m each are located at x = 0, y = 1, and

x = 0, y = 2. (a) Let V = 0 at the plane y = 0, and find V at P(1, 2, 0).

(b) Find E at P .

5.22 The line segment x = 0, −1 ≤ y ≤ 1, z = 1, carries a linear charge density

ρL = π |y| µC/m. Let z = 0 be a conducting plane and determine the surface

charge density at: (a) (0, 0, 0); (b) (0, 1, 0).



CHAPTER 5 Conductors and Dielectrics 141

5.23 A dipole with p = 0.1az µC · m is located at A(1, 0, 0) in free space, and the

x = 0 plane is perfectly conducting. (a) Find V at P(2, 0, 1). (b) Find the

equation of the 200 V equipotential surface in rectangular coordinates.

5.24 At a certain temperature, the electron and hole mobilities in intrinsic

germanium are given as 0.43 and 0.21 m2/V · s, respectively. If the electron

and hole concentrations are both 2.3 × 1019 m−3, find the conductivity at this

temperature.

5.25 Electron and hole concentrations increase with temperature. For pure

silicon, suitable expressions are ρh = −ρe = 6200T 1.5e−7000/T C/m3.

The functional dependence of the mobilities on temperature is given by

µh = 2.3 × 105T −2.7 m2/V · s and µe = 2.1 × 105T −2.5 m2/V · s, where the

temperature, T , is in degrees Kelvin. Find σ at: (a) 0◦C; (b) 40◦C; (c) 80◦C.

5.26 A semiconductor sample has a rectangular cross section 1.5 by 2.0 mm, and a

length of 11.0 mm. The material has electron and hole densities of 1.8 × 1018

and 3.0 × 1015 m−3, respectively. If µe = 0.082 m2/V · s and µh = 0.0021

m2/ V · s, find the resistance offered between the end faces of the sample.

5.27 Atomic hydrogen contains 5.5 × 1025 atoms/m3at a certain temperature and

pressure. When an electric field of 4 kV/m is applied, each dipole formed by

the electron and positive nucleus has an effective length of 7.1 × 10−19 m.

(a) Find P . (b) Find ǫr .

5.28 Find the dielectric constant of a material in which the electric flux density is

four times the polarization.

5.29 A coaxial conductor has radii a = 0.8 mm and b = 3 mm and a polystyrene

dielectric for which ǫr = 2.56. If P = (2/ρ)aρ nC/m2 in the dielectric, find

(a) D and E as functions of ρ; (b) Vab and χe. (c) If there are 4 × 1019

molecules per cubic meter in the dielectric, find p(ρ).

5.30 Consider a composite material made up of two species, having number

densities N1 and N2 molecules/m3, respectively. The two materials are

uniformly mixed, yielding a total number density of N = N1 + N2. The

presence of an electric field E induces molecular dipole moments p1 and p2

within the individual species, whether mixed or not. Show that the dielectric

constant of the composite material is given by ǫr = f ǫr1 + (1 − f )ǫr2, where

f is the number fraction of species 1 dipoles in the composite, and where ǫr1

and ǫr2 are the dielectric constants that the unmixed species would have if

each had number density N .

5.31 The surface x = 0 separates two perfect dielectrics. For x > 0, let ǫr =

ǫr1 = 3, while ǫr2 = 5 where x < 0. If E1 = 80ax − 60ay − 30az V/m, find

(a) EN1; (b) ET 1; (c) E1; (d) the angle θ1 between E1 and a normal to the

surface; (e) DN2; ( f ) DT 2; (g) D2; (h) P2; (i) the angle θ2 between E2 and a

normal to the surface.
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5.32 Two equal but opposite-sign point charges of 3 µC are held x meters apart by

a spring that provides a repulsive force given by Fsp = 12(0.5 − x) N.

Without any force of attraction, the spring would be fully extended to 0.5 m.

(a) Determine the charge separation. (b) What is the dipole moment?

5.33 Two perfect dielectrics have relative permittivities ǫr1 = 2 and ǫr2 = 8. The

planar interface between them is the surface x − y + 2z = 5. The origin lies

in region 1. If E1 = 100ax + 200ay − 50az V/m, find E2.

5.34 Region 1 (x ≥ 0) is a dielectric with ǫr1 = 2, while region 2(x < 0) has

ǫr2 = 5. Let E1 = 20ax − 10ay + 50az V/m. (a) Find D2. (b) Find the energy

density in both regions.

5.35 Let the cylindrical surfaces ρ = 4 cm and ρ = 9 cm enclose two wedges of

perfect dielectrics, ǫr1 = 2 for 0 < φ < π/2 and ǫr2 = 5 for π/2 < φ < 2π.

If E1 = (2000/ρ)aρ V/m, find (a) E2; (b) the total electrostatic energy stored

in a 1 m length of each region.
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Capacitance

C
apacitance measures the capability of energy storage in electrical devices.

It can be deliberately designed for a specific purpose, or it may exist as

an unavoidable by-product of the device structure that one must live with.

Understanding capacitance and its impact on device or system operation is critical in

every aspect of electrical engineering.

A capacitor is a device that stores energy; energy thus stored can either be as-

sociated with accumulated charge or it can be related to the stored electric field,

as was discussed in Section 4.8. In fact, one can think of a capacitor as a device

that stores electric flu , in a similar way that an inductor — an analogous device —

stores magnetic flux (or ultimately magnetic field energy). We will explore this in

Chapter 8. A primary goal in this chapter is to present the methods for calculating

capacitance for a number of cases, including transmission line geometries, and to be

able to make judgments on how capacitance will be altered by changes in materials

or their configuration. ■

6.1 CAPACITANCE DEFINED

Consider two conductors embedded in a homogeneous dielectric (Figure 6.1). Con-

ductor M2 carries a total positive charge Q, and M1 carries an equal negative charge.

There are no other charges present, and the total charge of the system is zero.

We now know that the charge is carried on the surface as a surface charge density

and also that the electric field is normal to the conductor surface. Each conductor

is, moreover, an equipotential surface. Because M2 carries the positive charge, the

electric flux is directed from M2 to M1, and M2 is at the more positive potential. In

other words, work must be done to carry a positive charge from M1 to M2.

Let us designate the potential difference between M2 and M1 as V0. We may now

define the capacitance of this two-conductor system as the ratio of the magnitude

143
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Figure 6.1 Two oppositely charged

conductors M1 and M2 surrounded by a uniform

dielectric. The ratio of the magnitude of the

charge on either conductor to the magnitude of

the potential difference between them is the

capacitance C.

of the total charge on either conductor to the magnitude of the potential difference

between conductors,

C =
Q
V0

(1)

In general terms, we determine Q by a surface integral over the positive conductors,

and we find V0 by carrying a unit positive charge from the negative to the positive

surface,

C =
∮

S ǫE · dS
−

∫ +
− E · dL

(2)

The capacitance is independent of the potential and total charge, for their ratio

is constant. If the charge density is increased by a factor of N, Gauss’s law indicates

that the electric flux density or electric field intensity also increases by N, as does the

potential difference. The capacitance is a function only of the physical dimensions of

the system of conductors and of the permittivity of the homogeneous dielectric.

Capacitance is measured in farads (F), where a farad is defined as one coulomb

per volt. Common values of capacitance are apt to be very small fractions of a farad,

and consequently more practical units are the microfarad (µF), the nanofarad (nF),

and the picofarad (pF).
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6.2 PARALLEL-PLATE CAPACITOR

We can apply the definition of capacitance to a simple two-conductor system in which

the conductors are identical, infinite parallel planes with separation d (Figure 6.2).

Choosing the lower conducting plane at z = 0 and the upper one at z = d , a uniform

sheet of surface charge ±ρS on each conductor leads to the uniform field [Section

2.5, Eq. (18)]

E =
ρS

ǫ
az

where the permittivity of the homogeneous dielectric is ǫ, and

D = ρSaz

Note that this result could be obtained by applying the boundary condition at a

conducting surface (Eq. (18), Chapter 5) at either one of the plate surfaces. Referring

to the surfaces and their unit normal vectors in Fig. 6.2, where nℓ = az and nu = −az ,

we find on the lower plane:

D · nℓ

∣
∣
z=0

= D · az = ρs ⇒ D = ρs az

On the upper plane, we get the same result

D · nu
∣
∣
z=d = D · (−az) = −ρs ⇒ D = ρs az

This is a key advantage of the conductor boundary condition, in that we need to

apply it only to a single boundary to obtain the total field there (arising from all other

sources).

The potential difference between lower and upper planes is

V0 = −
∫ lower

upper

E · dL = −
∫ 0

d

ρS

ǫ
dz =

ρS

ǫ
d

Since the total charge on either plane is infinite, the capacitance is infinite. A more

practical answer is obtained by considering planes, each of area S, whose linear

dimensions are much greater than their separation d . The electric field and charge

nu

nl

Figure 6.2 The problem of the parallel-plate

capacitor. The capacitance per square meter of

surface area is ǫ/d.
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distribution are then almost uniform at all points not adjacent to the edges, and this

latter region contributes only a small percentage of the total capacitance, allowing us

to write the familiar result

Q = ρS S

V0 =
ρS

ǫ
d

C =
Q
V0

=
ǫS
d

(3)

More rigorously, we might consider Eq. (3) as the capacitance of a portion of the

infinite-plane arrangement having a surface area S. Methods of calculating the effect

of the unknown and nonuniform distribution near the edges must wait until we are

able to solve more complicated potential problems.

EXAMPLE 6.1

Calculate the capacitance of a parallel-plate capacitor having a mica dielectric, ǫr = 6,

a plate area of 10 in.2, and a separation of 0.01 in.

Solution. We may find that

S = 10 × 0.02542 = 6.45 × 10−3 m2

d = 0.01 × 0.0254 = 2.54 × 10−4 m

and therefore

C =
6 × 8.854 × 10−12 × 6.45 × 10−3

2.54 × 10−4
= 1.349 nF

A large plate area is obtained in capacitors of small physical dimensions by

stacking smaller plates in 50- or 100-decker sandwiches, or by rolling up foil plates

separated by a flexible dielectric.

Table C.1 in Appendix C also indicates that materials are available having di-

electric constants greater than 1000.

Finally, the total energy stored in the capacitor is

WE = 1
2

∫

vol

ǫE2 dv = 1
2

∫ S

0

∫ d

0

ǫρ2
S

ǫ2 dz dS = 1
2

ρ2
S
ǫ

Sd = 1
2

ǫS
d

ρ2
Sd2

ǫ2

or

WE = 1
2
C V 2

0 = 1
2

Q V0 = 1
2

Q2

C
(4)

which are all familiar expressions. Equation (4) also indicates that the energy stored

in a capacitor with a fixed potential difference across it increases as the dielectric

constant of the medium increases.



CHAPTER 6 Capacitance 147

D6.1. Find the relative permittivity of the dielectric material present in a

parallel-plate capacitor if: (a) S = 0.12 m2, d = 80 µm, V0 = 12 V, and the

capacitor contains 1 µJ of energy; (b) the stored energy density is 100 J/m3,

V0 = 200 V, and d = 45 µm; (c) E = 200 kV/m and ρS = 20 µC/m2.

Ans. 1.05; 1.14; 11.3

6.3 SEVERAL CAPACITANCE EXAMPLES

As a first brief example, we choose a coaxial cable or coaxial capacitor of inner

radius a, outer radius b, and length L . No great derivational struggle is required,

because the potential difference is given as Eq. (11) in Section 4.3, and we find the

capacitance very simply by dividing this by the total charge ρL L in the length L .

Thus,

C =
2πǫL

ln(b/a)
(5)

Next we consider a spherical capacitor formed of two concentric spherical con-

ducting shells of radius a and b, b > a. The expression for the electric field was

obtained previously by Gauss’s law,

Er =
Q

4πǫr2

where the region between the spheres is a dielectric with permittivity ǫ. The expression

for potential difference was found from this by the line integral [Section 4.3, Eq. (12)].

Thus,

Vab =
Q

4πǫ

(
1

a
−

1

b

)

Here Q represents the total charge on the inner sphere, and the capacitance becomes

C =
Q

Vab
=

4πǫ

1

a
−

1

b

(6)

If we allow the outer sphere to become infinitely large, we obtain the capacitance

of an isolated spherical conductor,

C = 4πǫa (7)

For a diameter of 1 cm, or a sphere about the size of a marble,

C = 0.556 pF

in free space.
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Area, S

e2 d2
d

d1e1

Conducting

plates

C  = 
1

d1

e1S
+

d2

e2S

Figure 6.3 A parallel-plate capacitor containing two

dielectrics with the dielectric interface parallel to the conducting

plates.

Coating this sphere with a different dielectric layer, for which ǫ = ǫ1, extending

from r = a to r = r1,

Dr =
Q

4πr2

Er =
Q

4πǫ1r2
(a < r < r1)

=
Q

4πǫ0r2
(r1 < r )

and the potential difference is

Va − V∞ = −
∫ a

r1

Q dr
4πǫ1r2

−
∫ r1

∞

Q dr
4πǫ0r2

=
Q
4π

[
1

ǫ1

(
1

a
−

1

r1

)

+
1

ǫ0r1

]

Therefore,

C =
4π

1

ǫ1

(
1

a
−

1

r1

)

+
1

ǫ0r1

(8)

In order to look at the problem of multiple dielectrics a little more thoroughly,

let us consider a parallel-plate capacitor of area S and spacing d , with the usual

assumption that d is small compared to the linear dimensions of the plates. The

capacitance is ǫ1S/d , using a dielectric of permittivity ǫ1. Now replace a part of

this dielectric by another of permittivity ǫ2, placing the boundary between the two

dielectrics parallel to the plates (Figure 6.3).

Some of us may immediately suspect that this combination is effectively two

capacitors in series, yielding a total capacitance of

C =
1

1

C1

+
1

C2
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where C1 = ǫ1S/d1 and C2 = ǫ2S/d2. This is the correct result, but we can obtain it

using less intuition and a more basic approach.

Because the capacitance definition, C = Q/V , involves a charge and a voltage,

we may assume either and then find the other in terms of it. The capacitance is not a

function of either, but only of the dielectrics and the geometry. Suppose we assume

a potential difference V0 between the plates. The electric field intensities in the two

regions, E2 and E1, are both uniform, and V0 = E1d1 + E2d2. At the dielectric

interface, E is normal, and our boundary condition, Eq. (35) Chapter 5, tells us that

DN1 = DN2, or ǫ1 E1 = ǫ2 E2. This assumes (correctly) that there is no surface charge

at the interface. Eliminating E2 in our V0 relation, we have

E1 =
V0

d1 + d2(ǫ1/ǫ2)

and the surface charge density on the lower plate therefore has the magnitude

ρS1 = D1 = ǫ1 E1 =
V0

d1

ǫ1

+
d2

ǫ2

Because D1 = D2, the magnitude of the surface charge is the same on each plate.

The capacitance is then

C =
Q
V0

=
ρS S
V0

=
1

d1

ǫ1S
+

d2

ǫ2S

=
1

1

C1

+
1

C2

As an alternate (and slightly simpler) solution, we might assume a charge Q on

one plate, leading to a charge density Q/S and a value of D that is also Q/S. This is

true in both regions, as DN1 = DN2 and D is normal. Then E1 = D/ǫ1 = Q/(ǫ1S),

E2 = D/ǫ2 = Q/(ǫ2S), and the potential differences across the regions are V1 =
E1d1 = Qd1/(ǫ1S), and V2 = E2d2 = Qd2/(ǫ2S). The capacitance is

C =
Q
V

=
Q

V1 + V2

=
1

d1

ǫ1S
+

d2

ǫ2S

(9)

How would the method of solution or the answer change if there were a third

conducting plane along the interface? We would now expect to find surface charge on

each side of this conductor, and the magnitudes of these charges should be equal. In

other words, we think of the electric lines not as passing directly from one outer plate

to the other, but as terminating on one side of this interior plane and then continuing

on the other side. The capacitance is unchanged, provided, of course, that the added

conductor is of negligible thickness. The addition of a thick conducting plate will

increase the capacitance if the separation of the outer plates is kept constant, and this

is an example of a more general theorem which states that the replacement of any

portion of the dielectric by a conducting body will cause an increase in the capacitance.

If the dielectric boundary were placed normal to the two conducting plates and

the dielectrics occupied areas of S1 and S2, then an assumed potential difference V0

would produce field strengths E1 = E2 = V0/d . These are tangential fields at the
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interface, and they must be equal. Then we may find in succession D1, D2, ρS1, ρS2,

and Q, obtaining a capacitance

C =
ǫ1S1 + ǫ2S2

d
= C1 + C2 (10)

as we should expect.

At this time we can do very little with a capacitor in which two dielectrics

are used in such a way that the interface is not everywhere normal or parallel to

the fields. Certainly we know the boundary conditions at each conductor and at the

dielectric interface; however, we do not know the fields to which to apply the boundary

conditions. Such a problem must be put aside until our knowledge of field theory has

increased and we are willing and able to use more advanced mathematical techniques.

D6.2. Determine the capacitance of: (a) a 1-ft length of 35B/U coaxial cable,

which has an inner conductor 0.1045 in. in diameter, a polyethylene dielectric

(ǫr = 2.26 from Table C.1), and an outer conductor that has an inner diameter of

0.680 in.; (b) a conducting sphere of radius 2.5 mm, covered with a polyethylene

layer 2 mm thick, surrounded by a conducting sphere of radius 4.5 mm; (c) two

rectangular conducting plates, 1 cm by 4 cm, with negligible thickness, between

which are three sheets of dielectric, each 1 cm by 4 cm, and 0.1 mm thick, having

dielectric constants of 1.5, 2.5, and 6.

Ans. 20.5 pF; 1.41 pF; 28.7 pF

6.4 CAPACITANCE OF A TWO-WIRE LINE

We next consider the problem of the two-wire line. The configuration consists of two

parallel conducting cylinders, each of circular cross section, and we will find complete

information about the electric field intensity, the potential field, the surface-charge-

density distribution, and the capacitance. This arrangement is an important type of

transmission line, as is the coaxial cable.

We begin by investigating the potential field of two infinite line charges. Figure 6.4

shows a positive line charge in the xz plane at x = a and a negative line charge at

x = −a. The potential of a single line charge with zero reference at a radius of R0 is

V =
ρL

2πǫ
ln

R0

R

We now write the expression for the combined potential field in terms of the radial

distances from the positive and negative lines, R1 and R2, respectively,

V =
ρL

2πǫ

(

ln
R10

R1

− ln
R20

R2

)

=
ρL

2πǫ
ln

R10 R2

R20 R1
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(−a, 0, 0)

−rL +rLz

(a, 0, 0)

P(x, y, 0)

2a

R2

R1

y

x

Figure 6.4 Two parallel infinite line charges carrying opposite

charge. The positive line is at x = a, y = 0, and the negative line

is at x = −a, y = 0. A general point P(x, y, 0) in the xy plane is

radially distant R1 and R2 from the positive and negative lines,

respectively. The equipotential surfaces are circular cylinders.

We choose R10 = R20, thus placing the zero reference at equal distances from each

line. This surface is the x = 0 plane. Expressing R1 and R2 in terms of x and y,

V =
ρL

2πǫ
ln

√

(x + a)2 + y2

(x − a)2 + y2
=

ρL

4πǫ
ln

(x + a)2 + y2

(x − a)2 + y2
(11)

In order to recognize the equipotential surfaces and adequately understand the

problem we are going to solve, some algebraic manipulations are necessary. Choosing

an equipotential surface V = V1, we define K1 as a dimensionless parameter that is

a function of the potential V1,

K1 = e4πǫV1/ρL (12)

so that

K1 =
(x + a)2 + y2

(x − a)2 + y2

After multiplying and collecting like powers, we obtain

x2 − 2ax
K1 + 1

K1 − 1
+ y2 + a2 = 0

We next work through a couple of lines of algebra and complete the square,
(

x − a
K1 + 1

K1 − 1

)2

+ y2 =
(

2a
√

K1

K1 − 1

)2

This shows that the V = V1 equipotential surface is independent of z (or is a cylinder)

and intersects the xy plane in a circle of radius b,

b =
2a

√
K1

K1 − 1
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which is centered at x = h, y = 0, where

h = a
K1 + 1

K1 − 1

Now let us attack a physical problem by considering a zero-potential conducting

plane located at x = 0, and a conducting cylinder of radius b and potential V0 with

its axis located a distance h from the plane. We solve the last two equations for a and

K1 in terms of the dimensions b and h,

a =
√

h2 − b2 (13)

and

√

K1 =
h +

√
h2 − b2

b
(14)

But the potential of the cylinder is V0, so Eq. (12) leads to
√

K1 = e2πǫV0/ρL

Therefore,

ρL =
4πǫV0

lnK1

(15)

Thus, given h, b, and V0, we may determine a, ρL , and the parameter K1. The

capacitance between the cylinder and plane is now available. For a length L in the z
direction, we have

C =
ρL L
V0

=
4πǫL
lnK1

=
2πǫL

ln
√

K1

or

C =
2πǫL

ln[(h +
√

h2 − b2)/b]
=

2πǫL
cosh−1(h/b)

(16)

The solid line in Figure 6.5 shows the cross section of a cylinder of 5 m radius

at a potential of 100 V in free space, with its axis 13 m distant from a plane at zero

potential. Thus, b = 5, h = 13, V0 = 100, and we rapidly find the location of the

equivalent line charge from Eq. (13),

a =
√

h2 − b2 =
√

132 − 52 = 12 m

the value of the potential parameter K1 from Eq. (14),

√

K1 =
h +

√
h2 − b2

b
=

13 + 12

5
= 5 K1 = 25

the strength of the equivalent line charge from Eq. (15),

ρL =
4πǫV0

lnK1

=
4π × 8.854 × 10−12 × 100

ln 25
= 3.46 nC/m

and the capacitance between cylinder and plane from Eq. (16),

C =
2πǫ

cosh−1(h/b)
=

2π × 8.854 × 10−12

cosh−1(13/5)
= 34.6 pF/m
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y

x

V = 0

h = 13
b = 5

Equivalent

line charge

Center, x = 13,

y = 0, V = 100

Center, x = 18, y = 0

radius = 13.42

V = 50

Figure 6.5 A numerical example of the

capacitance, linear charge density, position of an

equivalent line charge, and characteristics of the

mid-equipotential surface for a cylindrical

conductor of 5 m radius at a potential of 100 V,

parallel to and 13 m from a conducting plane at

zero potential.

We may also identify the cylinder representing the 50 V equipotential surface by

finding new values for K1, h, and b. We first use Eq. (12) to obtain

K1 = e4πǫV1/ρL = e4π×8.854×10−12×50/3.46×10−9 = 5.00

Then the new radius is

b =
2a

√
K1

K1 − 1
=

2 × 12
√

5

5 − 1
= 13.42 m

and the corresponding value of h becomes

h = a
K1 + 1

K1 − 1
= 12

5 + 1

5 − 1
= 18 m

This cylinder is shown in color in Figure 6.5.

The electric field intensity can be found by taking the gradient of the potential

field, as given by Eq. (11),

E = −∇
[

ρL

4πǫ
ln

(x + a)2 + y2

(x − a)2 + y2

]

Thus,

E = −
ρL

4πǫ

[
2(x + a)ax + 2yay

(x + a)2 + y2
−

2(x − a)ax + 2yay

(x − a)2 + y2

]

and

D = ǫE = −
ρL

2π

[
(x + a)ax + yay

(x + a)2 + y2
−

(x − a)ax + yay

(x − a)2 + y2

]
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If we evaluate Dx at x = h − b, y = 0, we may obtain ρS,max

ρS,max = −Dx,x=h−b,y=0 =
ρL

2π

[
h − b + a

(h − b + a)2
−

h − b − a
(h − b − a)2

]

For our example,

ρS,max =
3.46 × 10−9

2π

[
13 − 5 + 12

(13 − 5 + 12)2
−

13 − 5 − 12

(13 − 5 − 12)2

]

= 0.165 nC/m2

Similarly, ρS,min = Dx,x=h+b,y=0, and

ρS,min =
3.46 × 10−9

2π

[
13 + 5 + 12

302
−

13 + 5 − 12

62

]

= 0.073 nC/m2

Thus,

ρS,max = 2.25ρS,min

If we apply Eq. (16) to the case of a conductor for which b ≪ h, then

ln
[(

h +
√

h2 − b2
)

/b
]

=̇ ln[(h + h)/b] =̇ ln(2h/b)

and

C =
2πǫL

ln(2h/b)
(b ≪ h) (17)

The capacitance between two circular conductors separated by a distance 2h
is one-half the capacitance given by Eqs. (16) or (17). This last answer is of inter-

est because it gives us an expression for the capacitance of a section of two-wire

transmission line, one of the types of transmission lines studied later in Chapter 13.

D6.3. A conducting cylinder with a radius of 1 cm and at a potential of 20 V is

parallel to a conducting plane which is at zero potential. The plane is 5 cm distant

from the cylinder axis. If the conductors are embedded in a perfect dielectric

for which ǫr = 4.5, find: (a) the capacitance per unit length between cylinder

and plane; (b) ρS,max on the cylinder.

Ans. 109.2 pF/m; 42.6 nC/m2

6.5 USING FIELD SKETCHES TO ESTIMATE
CAPACITANCE IN TWO-DIMENSIONAL
PROBLEMS

In capacitance problems in which the conductor configurations cannot be easily de-

scribed using a single coordinate system, other analysis techniques are usually applied.

Such methods typically involve a numerical determination of field or potential values

over a grid within the region of interest. In this section, another approach is described

that involves making sketches of field lines and equipotential surfaces in a manner

that follows a few simple rules. This approach, although lacking the accuracy of more
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elegant methods, allows fairly quick estimates of capacitance while providing a useful

visualization of the field configuration.

The method, requiring only pencil and paper, is capable of yielding good accu-

racy if used skillfully and patiently. Fair accuracy (5 to 10 percent on a capacitance

determination) may be obtained by a beginner who does no more than follow the

few rules and hints of the art. The method to be described is applicable only to fields

in which no variation exists in the direction normal to the plane of the sketch. The

procedure is based on several facts that we have already demonstrated:

1. A conductor boundary is an equipotential surface.

2. The electric field intensity and electric flux density are both perpendicular to the

equipotential surfaces.

3. E and D are therefore perpendicular to the conductor boundaries and possess

zero tangential values.

4. The lines of electric flux, or streamlines, begin and terminate on charge and

hence, in a charge-free, homogeneous dielectric, begin and terminate only on

the conductor boundaries.

We consider the implications of these statements by drawing the streamlines on

a sketch that already shows the equipotential surfaces. In Figure 6.6a, two conductor

boundaries are shown, and equipotentials are drawn with a constant potential differ-

ence between lines. We should remember that these lines are only the cross sections

of the equipotential surfaces, which are cylinders (although not circular). No variation

in the direction normal to the surface of the paper is permitted. We arbitrarily choose

to begin a streamline, or flux line, at A on the surface of the more positive conductor.

It leaves the surface normally and must cross at right angles the undrawn but very

real equipotential surfaces between the conductor and the first surface shown. The

line is continued to the other conductor, obeying the single rule that the intersection

with each equipotential must be square.

In a similar manner, we may start at B and sketch another streamline ending

at B ′. We need to understand the meaning of this pair of streamlines. The streamline,

Figure 6.6 (a) Sketch of the equipotential surfaces between two conductors. The

increment of potential between each of the two adjacent equipotentials is the same.

(b) One flux line has been drawn from A to A′, and a second from B to B′.
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by definition, is everywhere tangent to the electric field intensity or to the electric flux

density. Because the streamline is tangent to the electric flux density, the flux density

is tangent to the streamline, and no electric flux may cross any streamline. In other

words, if there is a charge of 5 µC on the surface between A and B (and extending

1 m into the paper), then 5 µC of flux begins in this region, and all must terminate

between A′ and B ′. Such a pair of lines is sometimes called a flux tube, because it

physically seems to carry flux from one conductor to another without losing any.

We next construct a third streamline, and both the mathematical and visual in-

terpretations we may make from the sketch will be greatly simplified if we draw this

line starting from some point C chosen so that the same amount of flux is carried in

the tube BC as is contained in AB. How do we choose the position of C?

The electric field intensity at the midpoint of the line joining A to B may be

found approximately by assuming a value for the flux in the tube AB, say ��, which

allows us to express the electric flux density by ��/�L t , where the depth of the tube

into the paper is 1 m and �L t is the length of the line joining A to B. The magnitude

of E is then

E =
1

ǫ

��

�L t

We may also find the magnitude of the electric field intensity by dividing the

potential difference between points A and A1, lying on two adjacent equipotential

surfaces, by the distance from A to A1. If this distance is designated �L N and an

increment of potential between equipotentials of �V is assumed, then

E =
�V
�L N

This value applies most accurately to the point at the middle of the line segment

from A to A1, while the previous value was most accurate at the midpoint of the line

segment from A to B. If, however, the equipotentials are close together (�V small)

and the two streamlines are close together (�� small), the two values found for the

electric field intensity must be approximately equal,

1

ǫ

��

�L t
=

�V
�L N

(18)

Throughout our sketch we have assumed a homogeneous medium (ǫ constant), a

constant increment of potential between equipotentials (�V constant), and a constant

amount of flux per tube (�� constant). To satisfy all these conditions, Eq. (18) shows

that

�L t

�L N
= constant =

1

ǫ

��

�V
(19)

A similar argument might be made at any point in our sketch, and we are therefore

led to the conclusion that a constant ratio must be maintained between the distance

between streamlines as measured along an equipotential, and the distance between

equipotentials as measured along a streamline. It is this ratio that must have the same

value at every point, not the individual lengths. Each length must decrease in regions

of greater field strength, because �V is constant.
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Figure 6.7 The remaining of the

streamlines have been added to

Fig. 6.6b by beginning each new line

normally to the conductor and

maintaining curvilinear squares

throughout the sketch.

The simplest ratio we can use is unity, and the streamline from B to B ′ shown in

Figure 6.6b was started at a point for which �L t = �L N . Because the ratio of these

distances is kept at unity, the streamlines and equipotentials divide the field-containing

region into curvilinear squares, a term implying a planar geometric figure that differs

from a true square in having slightly curved and slightly unequal sides but which

approaches a square as its dimensions decrease. Those incremental surface elements

in our three coordinate systems which are planar may also be drawn as curvilinear

squares.

We may now sketch in the remainder of the streamlines by keeping each small

box as square as possible. One streamline is begun, an equipotential line is roughed

in, another streamline is added, forming a curvilinear square, and the map is gradually

extended throughout the desired region. The complete sketch is shown in Figure 6.7.

The construction of a useful field map is an art; the science merely furnishes

the rules. Proficiency in any art requires practice. A good problem for beginners is

the coaxial cable or coaxial capacitor, since all the equipotentials are circles while the

flux lines are straight lines. The next sketch attempted should be two parallel circular

conductors, where the equipotentials are again circles but with different centers. Each

of these is given as a problem at the end of the chapter.

Figure 6.8 shows a completed map for a cable containing a square inner conductor

surrounded by a circular conductor. The capacitance is found from C = Q/V0 by

replacing Q by NQ�Q = NQ��, where NQ is the number of flux tubes joining

the two conductors, and letting V0 = NV �V, where NV is the number of potential

increments between conductors,

C =
NQ�Q
NV �V

and then using Eq. (19),

C =
NQ

NV
ǫ

�L t

�L N
= ǫ

NQ

NV
(20)
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Figure 6.8 An example of a curvilinear-square

field map. The side of the square is two-thirds the

radius of the circle. NV = 4 and NQ = 8 × 3.25

× 26, and therefore C = ǫ0 NQ/NV = 57.6 pF/m.

since �L t/�L N = 1. The determination of the capacitance from a flux plot merely

consists of counting squares in two directions, between conductors and around either

conductor. From Figure 6.8 we obtain

C = ǫ0

8 × 3.25

4
= 57.6 pF/m

Ramo, Whinnery, and Van Duzer have an excellent discussion with examples

of the construction of field maps by curvilinear squares. They offer the following

suggestions:1

1. Plan on making a number of rough sketches, taking only a minute or so apiece,

before starting any plot to be made with care. The use of transparent paper over

the basic boundary will speed up this preliminary sketching.

2. Divide the known potential difference between electrodes into an equal number

of divisions, say four or eight to begin with.

3. Begin the sketch of equipotentials in the region where the field is known best,

for example, in some region where it approaches a uniform field. Extend the

equipotentials according to your best guess throughout the plot. Note that they

should tend to hug acute angles of the conducting boundary and be spread out

in the vicinity of obtuse angles of the boundary.

1 By permission from S. Ramo, J. R. Whinnery, and T. Van Duzer, pp. 51–52. See References at the end

of this chapter. Curvilinear maps are discussed on pp. 50–52.
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4. Draw in the orthogonal set of field lines. As these are started, they should form

curvilinear squares, but, as they are extended, the condition of orthogonality

should be kept paramount, even though this will result in some rectangles with

ratios other than unity.

5. Look at the regions with poor side ratios and try to see what was wrong with the

first guess of equipotentials. Correct them and repeat the procedure until

reasonable curvilinear squares exist throughout the plot.

6. In regions of low field intensity, there will be large figures, often of five or six

sides. To judge the correctness of the plot in this region, these large units should

be subdivided. The subdivisions should be started back away from the region

needing subdivision, and each time a flux tube is divided in half, the potential

divisions in this region must be divided by the same factor.

D6.4. Figure 6.9 shows the cross section of two circular cylinders at potentials

of 0 and 60 V. The axes are parallel and the region between the cylinders is air-

filled. Equipotentials at 20 V and 40 V are also shown. Prepare a curvilinear-

square map on the figure and use it to establish suitable values for: (a) the

capacitance per meter length; (b) E at the left side of the 60 V conductor if its

true radius is 2 mm; (c) ρS at that point.

Ans. 69 pF/m; 60 kV/m; 550 nC/m2

Figure 6.9 See Problem D6.4.
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6.6 POISSON’S AND LAPLACE’S EQUATIONS

In preceding sections, we have found capacitance by first assuming a known charge

distribution on the conductors and then finding the potential difference in terms of

the assumed charge. An alternate approach would be to start with known potentials

on each conductor, and then work backward to find the charge in terms of the known

potential difference. The capacitance in either case is found by the ratio Q/V .

The first objective in the latter approach is thus to find the potential function

between conductors, given values of potential on the boundaries, along with possible

volume charge densities in the region of interest. The mathematical tools that enable

this to happen are Poisson’s and Laplace’s equations, to be explored in the remainder

of this chapter. Problems involving one to three dimensions can be solved either ana-

lytically or numerically. Laplace’s and Poisson’s equations, when compared to other

methods, are probably the most widely useful because many problems in engineering

practice involve devices in which applied potential differences are known, and in

which constant potentials occur at the boundaries.

Obtaining Poisson’s equation is exceedingly simple, for from the point form of

Gauss’s law,

∇ ·D = ρν (21)

the definition of D,

D = ǫE (22)

and the gradient relationship,

E = −∇V (23)

by substitution we have

∇ ·D = ∇ · (ǫE) = −∇ · (ǫ∇V ) = ρν

or

∇ · ∇V = −
ρν

ǫ
(24)

for a homogeneous region in which ǫ is constant.

Equation (24) is Poisson’s equation, but the “double ∇” operation must be inter-

preted and expanded, at least in rectangular coordinates, before the equation can be

useful. In rectangular coordinates,

∇ ·A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z

∇V =
∂V
∂x

ax +
∂V
∂y

ay +
∂V
∂z

az
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and therefore

∇ · ∇V =
∂

∂x

(
∂V
∂x

)

+
∂

∂y

(
∂V
∂y

)

+
∂

∂z

(
∂V
∂z

)

=
∂2V
∂x2

+
∂2V
∂y2

+
∂2V
∂z2

(25)

Usually the operation ∇ · ∇ is abbreviated ∇2 (and pronounced “del squared”), a good

reminder of the second-order partial derivatives appearing in Eq. (5), and we have

∇2V =
∂2V
∂x2

+
∂2V
∂y2

+
∂2V
∂z2

= −
ρν

ǫ
(26)

in rectangular coordinates.

If ρν = 0, indicating zero volume charge density, but allowing point charges,

line charge, and surface charge density to exist at singular locations as sources of the

field, then

∇2V = 0 (27)

which is Laplace’s equation. The ∇2 operation is called the Laplacian of V.

In rectangular coordinates Laplace’s equation is

∇2V =
∂2V
∂x2

+
∂2V
∂y2

+
∂2V
∂z2

= 0 (rectangular) (28)

and the form of ∇2V in cylindrical and spherical coordinates may be obtained by using

the expressions for the divergence and gradient already obtained in those coordinate

systems. For reference, the Laplacian in cylindrical coordinates is

∇2V =
1

ρ

∂

∂ρ

(

ρ
∂V
∂ρ

)

+
1

ρ2

(
∂2V
∂φ2

)

+
∂2V
∂z2

(cylindrical) (29)

and in spherical coordinates is

∇2V =
1

r2

∂

∂r

(

r2 ∂V
∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂V
∂θ

)

+
1

r2 sin2 θ

∂2V
∂φ2

(spherical)

(30)

These equations may be expanded by taking the indicated partial derivatives, but it is

usually more helpful to have them in the forms just given; furthermore, it is much easier

to expand them later if necessary than it is to put the broken pieces back together again.

Laplace’s equation is all-embracing, for, applying as it does wherever volume

charge density is zero, it states that every conceivable configuration of electrodes
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or conductors produces a field for which ∇2V = 0. All these fields are different,

with different potential values and different spatial rates of change, yet for each

of them ∇2V = 0. Because every field (if ρν = 0) satisfies Laplace’s equation,

how can we expect to reverse the procedure and use Laplace’s equation to find one

specific field in which we happen to have an interest? Obviously, more information is

required, and we shall find that we must solve Laplace’s equation subject to certain

boundary conditions.

Every physical problem must contain at least one conducting boundary and usu-

ally contains two or more. The potentials on these boundaries are assigned values,

perhaps V0, V1, . . . , or perhaps numerical values. These definite equipotential sur-

faces will provide the boundary conditions for the type of problem to be solved. In

other types of problems, the boundary conditions take the form of specified values of

E (alternatively, a surface charge density, ρS) on an enclosing surface, or a mixture

of known values of V and E .

Before using Laplace’s equation or Poisson’s equation in several examples, we

must state that if our answer satisfies Laplace’s equation and also satisfies the boundary

conditions, then it is the only possible answer. This is a statement of the Uniqueness

Theorem, the proof of which is presented in Appendix D.

D6.5. Calculate numerical values for V and ρν at point P in free space if:

(a) V =
4yz

x2 + 1
, at P(1, 2, 3); (b) V = 5ρ2 cos 2φ, at P(ρ = 3, φ =

π

3
,

z = 2); (c) V =
2 cos φ

r2
, at P(r = 0.5, θ = 45◦, φ = 60◦).

Ans. 12 V, −106.2 pC/m3; −22.5 V, 0; 4 V, 0

6.7 EXAMPLES OF THE SOLUTION
OF LAPLACE’S EQUATION

Several methods have been developed for solving Laplace’s equation. The simplest

method is that of direct integration. We will use this technique to work several exam-

ples involving one-dimensional potential variation in various coordinate systems in

this section.

The method of direct integration is applicable only to problems that are “one-

dimensional,” or in which the potential field is a function of only one of the three

coordinates. Since we are working with only three coordinate systems, it might seem,

then, that there are nine problems to be solved, but a little reflection will show that

a field that varies only with x is fundamentally the same as a field that varies only

with y. Rotating the physical problem a quarter turn is no change. Actually, there are

only five problems to be solved, one in rectangular coordinates, two in cylindrical,

and two in spherical. We will solve them all.

First, let us assume that V is a function only of x and worry later about which

physical problem we are solving when we have a need for boundary conditions.

Laplace’s equation reduces to

∂2V
∂x2

= 0
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and the partial derivative may be replaced by an ordinary derivative, since V is not a

function of y or z,

d2V
dx2

= 0

We integrate twice, obtaining

dV
dx

= A

and

V = Ax + B (31)

where A and B are constants of integration. Equation (31) contains two such constants,

as we would expect for a second-order differential equation. These constants can be

determined only from the boundary conditions.

Since the field varies only with x and is not a function of y and z, then V is a

constant if x is a constant or, in other words, the equipotential surfaces are parallel

planes normal to the x axis. The field is thus that of a parallel-plate capacitor, and as

soon as we specify the potential on any two planes, we may evaluate our constants of

integration.

EXAMPLE 6.2

Start with the potential function, Eq. (31), and find the capacitance of a parallel-plate

capacitor of plate area S, plate separation d , and potential difference V0 between

plates.

Solution. Take V = 0 at x = 0 and V = V0 at x = d . Then from Eq. (31),

A =
V0

d
B = 0

and

V =
V0x
d

(32)

We still need the total charge on either plate before the capacitance can be found.

We should remember that when we first solved this capacitor problem, the sheet of

charge provided our starting point. We did not have to work very hard to find the

charge, for all the fields were expressed in terms of it. The work then was spent in

finding potential difference. Now the problem is reversed (and simplified).

The necessary steps are these, after the choice of boundary conditions has been

made:

1. Given V, use E = −∇V to find E.

2. Use D = ǫE to find D.

3. Evaluate D at either capacitor plate, D = DS = DNaN.

4. Recognize that ρS = DN.

5. Find Q by a surface integration over the capacitor plate, Q =
∫

S ρS dS.
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Here we have

V = V0

x
d

E = −
V0

d
ax

D = −ǫ
V0

d
ax

DS = D
∣
∣
x=0

= −ǫ
V0

d
ax

aN = ax

DN = −ǫ
V0

d
= ρS

Q =
∫

S

−ǫV0

d
dS = −ǫ

V0S
d

and the capacitance is

C =
|Q|
V0

=
ǫS
d

(33)

We will use this procedure several times in the examples to follow.

EXAMPLE 6.3

Because no new problems are solved by choosing fields which vary only with y or

with z in rectangular coordinates, we pass on to cylindrical coordinates for our next

example. Variations with respect to z are again nothing new, and we next assume

variation with respect to ρ only. Laplace’s equation becomes

1

ρ

∂

∂ρ

(

ρ
∂V
∂ρ

)

= 0

Noting the ρ in the denominator, we exclude ρ = 0 from our solution and then

multiply by ρ and integrate,

ρ
dV
dρ

= A

where a total derivative replaces the partial derivative because V varies only with ρ.

Next, rearrange, and integrate again,

V = A ln ρ + B (34)

The equipotential surfaces are given by ρ = constant and are cylinders, and the

problem is that of the coaxial capacitor or coaxial transmission line. We choose a
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potential difference of V0 by letting V = V0 at ρ = a, V = 0 at ρ = b, b > a, and

obtain

V = V0

ln(b/ρ)

ln(b/a)
(35)

from which

E =
V0

ρ

1

ln(b/a)
aρ

DN (ρ=a) =
ǫV0

a ln(b/a)

Q =
ǫV02πaL
a ln(b/a)

C =
2πǫL

ln(b/a)
(36)

which agrees with our result in Section 6.3 (Eq. (5)).

EXAMPLE 6.4

Now assume that V is a function only of φ in cylindrical coordinates. We might look

at the physical problem first for a change and see that equipotential surfaces are given

by φ = constant. These are radial planes. Boundary conditions might be V = 0 at

φ = 0 and V = V0 at φ = α, leading to the physical problem detailed in Figure 6.10.

Figure 6.10 Two infinite radial planes with an

interior angle α. An infinitesimal insulating gap exists

at ρ = 0. The potential field may be found by applying

Laplace’s equation in cylindrical coordinates.
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Laplace’s equation is now

1

ρ2

∂2V
∂φ2

= 0

We exclude ρ = 0 and have

d2V
dφ2

= 0

The solution is

V = Aφ + B

The boundary conditions determine A and B, and

V = V0

φ

α
(37)

Taking the gradient of Eq. (37) produces the electric field intensity,

E = −
V0aφ

αρ
(38)

and it is interesting to note that E is a function of ρ and not of φ. This does not

contradict our original assumptions, which were restrictions only on the potential

field. Note, however, that the vector field E is in the φ direction.

A problem involving the capacitance of these two radial planes is included at the

end of the chapter.

EXAMPLE 6.5

We now turn to spherical coordinates, dispose immediately of variations with respect

to φ only as having just been solved, and treat first V = V (r ).

The details are left for a problem later, but the final potential field is given by

V = V0

1

r
−

1

b
1

a
−

1

b
(39)

where the boundary conditions are evidently V = 0 at r = b and V = V0 at r = a,

b > a. The problem is that of concentric spheres. The capacitance was found previ-

ously in Section 6.3 (by a somewhat different method) and is

C =
4πǫ

1

a
−

1

b
(40)
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EXAMPLE 6.6

In spherical coordinates we now restrict the potential function to V = V (θ ), obtaining

1

r2 sin θ

d
dθ

(

sin θ
dV
dθ

)

= 0

We exclude r = 0 and θ = 0 or π and have

sin θ
dV
dθ

= A

The second integral is then

V =
∫ A dθ

sin θ
+ B

which is not as obvious as the previous ones. From integral tables (or a good memory)

we have

V = A ln

(

tan
θ

2

)

+ B (41)

The equipotential surfaces of Eq. (41) are cones. Figure 6.11 illustrates the case

where V = 0 at θ = π/2 and V = V0 at θ = α, α < π/2. We obtain

V = V0

ln

(

tan
θ

2

)

ln

(

tan
α

2

) (42)

Figure 6.11 For the cone θ = α at V0 and the

plane θ = π/2 at V = 0, the potential field is given by

V = V0[ln(tan θ/2)]/[ln(tan α/2)].
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In order to find the capacitance between a conducting cone with its vertex sepa-

rated from a conducting plane by an infinitesimal insulating gap and its axis normal

to the plane, we first find the field strength:

E = −∇V =
−1

r
∂V
∂θ

aθ = −
V0

r sin θ ln

(

tan
α

2

)aθ

The surface charge density on the cone is then

ρS =
−ǫV0

r sin α ln

(

tan
α

2

)

producing a total charge Q,

Q =
−ǫV0

sin α ln

(

tan
α

2

)

∫ ∞

0

∫ 2π

0

r sin α dφ dr
r

=
−2πǫ0V0

ln

(

tan
α

2

)

∫ ∞

0

dr

This leads to an infinite value of charge and capacitance, and it becomes necessary to

consider a cone of finite size. Our answer will now be only an approximation because

the theoretical equipotential surface is θ = α, a conical surface extending from r = 0

to r = ∞, whereas our physical conical surface extends only from r = 0 to, say,

r = r1. The approximate capacitance is

C =̇
2πǫr1

ln

(

cot
α

2

) (43)

If we desire a more accurate answer, we may make an estimate of the capacitance

of the base of the cone to the zero-potential plane and add this amount to our answer.

Fringing, or nonuniform, fields in this region have been neglected and introduce an

additional source of error.

D6.6. Find |E| at P(3, 1, 2) in rectangular coordinates for the field of: (a)

two coaxial conducting cylinders, V = 50 V at ρ = 2 m, and V = 20 V

at ρ = 3 m; (b) two radial conducting planes, V = 50 V at φ = 10◦, and

V = 20 V at φ = 30◦.

Ans. 23.4 V/m; 27.2 V/m
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6.8 EXAMPLE OF THE SOLUTION
OF POISSON’S EQUATION: THE P-N
JUNCTION CAPACITANCE

To select a reasonably simple problem that might illustrate the application of Poisson’s

equation, we must assume that the volume charge density is specified. This is not

usually the case, however; in fact, it is often the quantity about which we are seeking

further information. The type of problem which we might encounter later would

begin with a knowledge only of the boundary values of the potential, the electric

field intensity, and the current density. From these we would have to apply Poisson’s

equation, the continuity equation, and some relationship expressing the forces on

the charged particles, such as the Lorentz force equation or the diffusion equation,

and solve the whole system of equations simultaneously. Such an ordeal is beyond

the scope of this text, and we will therefore assume a reasonably large amount of

information.

As an example, let us select a pn junction between two halves of a semiconductor

bar extending in the x direction. We will assume that the region for x < 0 is doped p
type and that the region for x > 0 is n type. The degree of doping is identical on each

side of the junction. To review some of the facts about the semiconductor junction,

we note that initially there are excess holes to the left of the junction and excess

electrons to the right. Each diffuses across the junction until an electric field is built

up in such a direction that the diffusion current drops to zero. Thus, to prevent more

holes from moving to the right, the electric field in the neighborhood of the junction

must be directed to the left; Ex is negative there. This field must be produced by a net

positive charge to the right of the junction and a net negative charge to the left. Note

that the layer of positive charge consists of two parts—the holes which have crossed

the junction and the positive donor ions from which the electrons have departed.

The negative layer of charge is constituted in the opposite manner by electrons and

negative acceptor ions.

The type of charge distribution that results is shown in Figure 6.12a, and the

negative field which it produces is shown in Figure 6.12b. After looking at these two

figures, one might profitably read the previous paragraph again.

A charge distribution of this form may be approximated by many different

expressions. One of the simpler expressions is

ρν = 2ρν0 sech
x
a

tanh
x
a

(44)

which has a maximum charge density ρv,max = ρv0 that occurs at x = 0.881a. The

maximum charge density ρv0 is related to the acceptor and donor concentrations Na
and Nd by noting that all the donor and acceptor ions in this region (the depletion
layer) have been stripped of an electron or a hole, and thus

ρv0 = eNa = eNd

We now solve Poisson’s equation,

∇2V = −
ρν

ǫ
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Figure 6.12 (a) The charge density, (b) the electric field intensity, and

(c) the potential are plotted for a pn junction as functions of distance from

the center of the junction. The p-type material is on the left, and the n-type

is on the right.
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subject to the charge distribution assumed above,

d2V
dx2

= −
2ρv0

ǫ
sech

x
a

tanh
x
a

in this one-dimensional problem in which variations with y and z are not present. We

integrate once,

dV
dx

=
2ρv0a

ǫ
sech

x
a

+ C1

and obtain the electric field intensity,

Ex = −
2ρv0a

ǫ
sech

x
a

− C1

To evaluate the constant of integration C1, we note that no net charge density and no

fields can exist far from the junction. Thus, as x → ±∞, Ex must approach zero.

Therefore C1 = 0, and

Ex = −
2ρv0a

ǫ
sech

x
a

(45)

Integrating again,

V =
4ρv0a2

ǫ
tan−1 ex/a + C2

Let us arbitrarily select our zero reference of potential at the center of the junction,

x = 0,

0 =
4ρv0a2

ǫ

π

4
+ C2

and finally,

V =
4ρv0a2

ǫ

(

tan−1 ex/a −
π

4

)

(46)

Figure 6.12 shows the charge distribution (a), electric field intensity (b), and the

potential (c), as given by Eqs. (44), (45), and (46), respectively.

The potential is constant once we are a distance of about 4a or 5a from the

junction. The total potential difference V0 across the junction is obtained from Eq. (46),

V0 = Vx→∞ − Vx→−∞ =
2πρv0a2

ǫ
(47)

This expression suggests the possibility of determining the total charge on one side of

the junction and then using Eq. (47) to find a junction capacitance. The total positive

charge is

Q = S
∫ ∞

0

2ρν0sech
x
a

tanh
x
a

dx = 2ρν0aS

where S is the area of the junction cross section. If we make use of Eq. (47) to eliminate

the distance parameter a, the charge becomes

Q = S
√

2ρν0ǫV0

π
(48)
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Because the total charge is a function of the potential difference, we have to be careful

in defining a capacitance. Thinking in “circuit” terms for a moment,

I =
d Q
dt

= C
dV0

dt
and thus

C =
d Q
dV0

By differentiating Eq. (48), we therefore have the capacitance

C =
√

ρν0ǫ

2πV0

S =
ǫS
2πa

(49)

The first form of Eq. (49) shows that the capacitance varies inversely as the square

root of the voltage. That is, a higher voltage causes a greater separation of the charge

layers and a smaller capacitance. The second form is interesting in that it indicates

that we may think of the junction as a parallel-plate capacitor with a “plate” separation

of 2πa. In view of the dimensions of the region in which the charge is concentrated,

this is a logical result.

Poisson’s equation enters into any problem involving volume charge density.

Besides semiconductor diode and transistor models, we find that vacuum tubes, mag-

netohydrodynamic energy conversion, and ion propulsion require its use in construct-

ing satisfactory theories.

D6.7. In the neighborhood of a certain semiconductor junction, the volume

charge density is given by ρν = 750 sech 106πx tanh 106πx C/m3. The di-

electric constant of the semiconductor material is 10 and the junction area is

2 × 10−7 m2. Find: (a) V0; (b) C ; (c) E at the junction.

Ans. 2.70 V; 8.85 pF; 2.70 MV/m

D6.8. Given the volume charge density ρν = −2 × 107ǫ0

√
x C/m3 in free

space, let V = 0 at x = 0 and let V = 2 V at x = 2.5 mm. At x = 1 mm, find:

(a) V ; (b) Ex .

Ans. 0.302 V; −555 V/m
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CHAPTER 6 PROBLEMS

6.1 Consider a coaxial capacitor having inner radius a, outer radius b, unit

length, and filled with a material with dielectric constant, ǫr . Compare this to

a parallel-plate capacitor having plate width w , plate separation d , filled with

the same dielectric, and having unit length. Express the ratio b/a in terms of

the ratio d/w , such that the two structures will store the same energy for a

given applied voltage.

6.2 Let S = 100 mm2, d = 3 mm, and ǫr = 12 for a parallel-plate capacitor.

(a) Calculate the capacitance. (b) After connecting a 6-V battery across the

capacitor, calculate E , D, Q, and the total stored electrostatic energy.

(c) With the source still connected, the dielectric is carefully withdrawn

from between the plates. With the dielectric gone, recalculate E , D, Q, and

the energy stored in the capacitor. (d) If the charge and energy found in

part (c) are less than the values found in part (b) (which you should have

discovered), what became of the missing charge and energy?

6.3 Capacitors tend to be more expensive as their capacitance and

maximum voltage Vmax increase. The voltage Vmax is limited by the field

strength at which the dielectric breaks down, EBD. Which of these dielectrics

will give the largest CVmax product for equal plate areas? (a) Air: ǫr = 1,

EBD = 3 MV/m. (b) Barium titanate: ǫr = 1200, EBD = 3 MV/m. (c) Silicon

dioxide: ǫr = 3.78, EBD = 16 MV/m. (d) Polyethylene: ǫr = 2.26, EBD =
4.7 MV/m.

6.4 An air-filled parallel-plate capacitor with plate separation d and plate

area A is connected to a battery that applies a voltage V0 between

plates. With the battery left connected, the plates are moved apart to a

distance of 10d . Determine by what factor each of the following

quantities changes: (a) V0; (b) C ; (c) E ; (d) D; (e) Q; ( f ) ρS; (g) WE .

6.5 A parallel-plate capacitor is filled with a nonuniform dielectric characterized

by ǫr = 2 + 2 × 106x2, where x is the distance from one plate in meters.

If S = 0.02 m2 and d = 1 mm, find C.

6.6 Repeat Problem 6.4, assuming the battery is disconnected before the plate

separation is increased.

6.7 Let ǫr1 = 2.5 for 0 < y < 1 mm, ǫr2 = 4 for 1 < y < 3 mm, and ǫr3 for

3 < y < 5 mm (region 3). Conducting surfaces are present at y = 0 and
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y = 5 mm. Calculate the capacitance per square meter of surface area

if (a) region 3 is air; (b) ǫr3 = ǫr1; (c) ǫr3 = ǫr2; (d) region 3 is silver.

6.8 A parallel-plate capacitor is made using two circular plates of radius a, with

the bottom plate on the xy plane, centered at the origin. The top plate is

located at z = d , with its center on the z axis. Potential V0 is on the top plate;

the bottom plate is grounded. Dielectric having radially dependent
permittivity fills the region between plates. The permittivity is given by

ǫ(ρ) = ǫ0(1 + ρ2/a2). Find (a) E; (b) D; (c) Q; (d) C .

6.9 Two coaxial conducting cylinders of radius 2 cm and 4 cm have a length

of 1 m. The region between the cylinders contains a layer of dielectric from

ρ = c to ρ = d with ǫr = 4. Find the capacitance if (a) c = 2 cm, d = 3 cm;

(b) d = 4 cm, and the volume of the dielectric is the same as in part (a).

6.10 A coaxial cable has conductor dimensions of a = 1.0 mm and b = 2.7 mm.

The inner conductor is supported by dielectric spacers (ǫr = 5) in the

form of washers with a hole radius of 1 mm and an outer radius of 2.7 mm,

and with a thickness of 3.0 mm. The spacers are located every 2 cm down

the cable. (a) By what factor do the spacers increase the capacitance per

unit length? (b) If 100 V is maintained across the cable, find E at all points.

6.11 Two conducting spherical shells have radii a = 3 cm and b = 6 cm. The

interior is a perfect dielectric for which ǫr = 8. (a) Find C . (b) A portion of

the dielectric is now removed so that ǫr = 1.0, 0 < φ < π/2, and ǫr = 8,

π/2 < φ < 2π . Again find C.

6.12 (a) Determine the capacitance of an isolated conducting sphere of radius a in

free space (consider an outer conductor existing at r → ∞). (b) The sphere is

to be covered with a dielectric layer of thickness d and dielectric contant ǫr . If

ǫr = 3, find d in terms of a such that the capacitance is twice that of part (a).

6.13 With reference to Figure 6.5, let b = 6 m, h = 15 m, and the conductor

potential be 250 V. Take ǫ = ǫ0. Find values for K1, ρL , a, and C.

6.14 Two #16 copper conductors (1.29 mm diameter) are parallel with a separation

d between axes. Determine d so that the capacitance between wires in air

is 30 pF/m.

6.15 A 2-cm-diameter conductor is suspended in air with its axis 5 cm from a

conducting plane. Let the potential of the cylinder be 100 V and that of the

plane be 0 V. (a) Find the surface charge density on the cylinder at a point

nearest the plane. (b) Plane at a point nearest the cylinder; (c) find

the capacitance per unit length.

6.16 Consider an arrangement of two isolated conducting

surfaces of any shape that form a capacitor. Use the definitions of capacitance

(Eq. (2) in this chapter) and resistance (Eq. (14) in Chapter 5) to show

that when the region between the conductors is filled with either conductive

material (conductivity σ ) or a perfect dielectric (permittivity ǫ), the resulting
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resistance and capacitance of the structures are related through the simple

formula RC = ǫ/σ . What basic properties must be true about both the

dielectric and the conducting medium for this condition to hold for certain?

6.17 Construct a curvilinear-square map for a coaxial capacitor of 3 cm inner

radius and 8 cm outer radius. These dimensions are suitable for the drawing.

(a) Use your sketch to calculate the capacitance per meter length, assuming

ǫr = 1. (b) Calculate an exact value for the capacitance per unit length.

6.18 Construct a curvilinear-square map of the potential field about two

parallel circular cylinders, each of 2.5 cm radius, separated by a center-

to-center distance of 13 cm. These dimensions are suitable for the actual

sketch if symmetry is considered. As a check, compute the capacitance

per meter both from your sketch and from the exact formula. Assume ǫr = 1.

6.19 Construct a curvilinear-square map of the potential field between two

parallel circular cylinders, one of 4 cm radius inside another of 8 cm radius.

The two axes are displaced by 2.5 cm. These dimensions are suitable for

the drawing. As a check on the accuracy, compute the capacitance per meter

from the sketch and from the exact expression:

C =
2πǫ

cosh−1 [(a2 + b2 − D2)/(2ab)]

where a and b are the conductor radii and D is the axis separation.

6.20 A solid conducting cylinder of 4 cm radius is centered within a rectangular

conducting cylinder with a 12 cm by 20 cm cross section. (a) Make a full-size

sketch of one quadrant of this configuration and construct a curvilinear-square

map for its interior. (b) Assume ǫ = ǫ0 and estimate C per meter length.

6.21 The inner conductor of the transmission line shown in Figure 6.13 has a

square cross section 2a × 2a, whereas the outer square is 4a × 5a. The axes

are displaced as shown. (a) Construct a good-sized drawing of this

transmission line, say with a = 2.5 cm, and then prepare a curvilinear-square

plot of the electrostatic field between the conductors. (b) Use the map to

calculate the capacitance per meter length if ǫ = 1.6ǫ0. (c) How would your

result to part (b) change if a = 0.6 cm?

6.22 Two conducting plates, each 3 × 6 cm, and three slabs of dielectric, each

1 × 3 × 6 cm, and having dielectric constants of 1, 2, and 3, are assembled

into a capacitor with d = 3 cm. Determine the two values of capacitance

obtained by the two possible methods of assembling the capacitor.

6.23 A two-wire transmission line consists of two parallel perfectly conducting

cylinders, each having a radius of 0.2 mm, separated by a center-to-center

distance of 2 mm. The medium surrounding the wires has ǫr = 3 and σ =
1.5 mS/m. A 100-V battery is connected between the wires. (a) Calculate

the magnitude of the charge per meter length on each wire. (b) Using

the result of Problem 6.16, find the battery current.
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Figure 6.13 See Problem 6.21.

6.24 A potential field in free space is given in spherical coordinates as

V (r ) =
{

[ρ0/(6ǫ0)] [3a2 − r2] (r ≤ a)

(a3ρ0)/(3ǫ0r ) (r ≥ a)

where ρ0 and a are constants. (a) Use Poisson’s equation to

find the volume charge density everywhere. (b) Find the total charge present.

6.25 Let V = 2xy2z3 and ǫ = ǫ0. Given point P(1, 2, −1), find. (a) V at P; (b)E at

P; (c) ρν at P; (d) the equation of the equipotential surface passing

through P; (e) the equation of the streamline passing through P . ( f ) Does V
satisfy Laplace’s equation?

6.26 Given the spherically symmetric potential field in free space, V = V0e−r/a ,

find. (a) ρν at r = a; (b) the electric field at r = a; (c) the total charge.

6.27 Let V (x, y) = 4e2x + f (x) − 3y2 in a region of free space where ρν = 0.

It is known that both Ex and V are zero at the origin. Find f (x) and V (x, y).
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6.28 Show that in a homogeneous medium of conductivity σ , the potential field

V satisfies Laplace’s equation if any volume charge density present does

not vary with time.

6.29 Given the potential field V = (Aρ4 + Bρ−4) sin 4φ: (a) Show that ∇2V = 0.

(b) Select A and B so that V = 100 V and |E| = 500 V/m at P(ρ = 1,

φ = 22.5◦, z = 2).

6.30 A parallel-plate capacitor has plates located at z = 0 and z = d. The region

between plates is filled with a material that contains volume charge of uniform

density ρ0 C/m3 and has permittivity ǫ. Both plates are held at ground

potential. (a) Determine the potential field between plates. (b) Determine the

electric field intensity E between plates. (c) Repeat parts (a) and (b) for the

case of the plate at z = d raised to potential V0, with the z = 0 plate grounded.

6.31 Let V = (cos 2φ)/ρ in free space. (a) Find the volume charge density at

point A(0.5, 60◦, 1). (b) Find the surface charge density on a conductor

surface passing through the point B(2, 30◦, 1).

6.32 A uniform volume charge has constant density ρν = ρ0 C/m3 and fills the

region r < a, in which permittivity ǫ is assumed. A conducting spherical

shell is located at r = a and is held at ground potential. Find (a) the

potential everywhere; (b) the electric field intensity, E, everywhere.

6.33 The functions V1(ρ, φ, z) and V2(ρ, φ, z) both satisfy Laplace’s equation

in the region a < ρ < b, 0 ≤ φ < 2π , −L < z < L; each is zero on

the surfaces ρ = b for −L < z < L; z = −L for a < ρ < b; and z = L for

a < ρ < b; and each is 100 V on the surface ρ = a for −L < z < L . (a) In

the region specified, is Laplace’s equation satisfied by the functions V1 + V2,

V1 − V2, V1 + 3, and V1V2? (b) On the boundary surfaces specified, are the

potential values given in this problem obtained from the functions V1 + V2,

V1 − V2, V1 + 3, and V1V2? (c) Are the functions V1 + V2, V1 − V2,

V1 + 3, and V1V2 identical with V1?

6.34 Consider the parallel-plate capacitor of Problem 6.30, but this time the

charged dielectric exists only between z = 0 and z = b, where b < d .

Free space fills the region b < z < d. Both plates are at ground

potential. By solving Laplace’s and Poisson’s equations, find (a) V (z)

for 0 < z < d; (b) the electric field intensity for 0 < z < d .

No surface charge exists at z = b, so both V and D are continuous there.

6.35 The conducting planes 2x + 3y = 12 and 2x + 3y = 18 are at potentials

of 100 V and 0, respectively. Let ǫ = ǫ0 and find (a) V at P(5, 2, 6); (b) E
at P.

6.36 The derivation of Laplace’s and Poisson’s equations assumed constant

permittivity, but there are cases of spatially varying permittivity in which the

equations will still apply. Consider the vector identity, ∇ · (ψG) = G · ∇ψ +
ψ∇ ·G, where ψ and G are scalar and vector functions, respectively.
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Figure 6.14 See Problem 6.39.

Determine a general rule on the allowed directions in which ǫ may vary

with respect to the local electric field.

6.37 Coaxial conducting cylinders are located at ρ = 0.5 cm and ρ = 1.2 cm.

The region between the cylinders is filled with a homogeneous perfect

dielectric. If the inner cylinder is at 100 V and the outer at 0 V, find

(a) the location of the 20 V equipotential surface; (b) Eρ max; (c) ǫr if the

charge per meter length on the inner cylinder is 20 nC/m.

6.38 Repeat Problem 6.37, but with the dielectric only partially filling

the volume, within 0 < φ < π , and with free space in the remaining volume.

6.39 The two conducting planes illustrated in Figure 6.14 are

defined by 0.001 < ρ < 0.120 m, 0 < z < 0.1 m, φ = 0.179 and 0.188 rad.

The medium surrounding the planes is air. For Region 1, 0.179 < φ < 0.188;

neglect fringing and find (a) V (φ); (b) E(ρ); (c) D(ρ); (d) ρs on the upper

surface of the lower plane; (e) Q on the upper surface of the lower plane.

( f ) Repeat parts (a) through (c) for Region 2 by letting the location of

the upper plane be φ = .188 − 2π , and then find ρs and Q on the lower

surface of the lower plane. (g) Find the total charge on the lower plane and

the capacitance between the planes.

6.40 A parallel-plate capacitor is made using two circular plates

of radius a, with the bottom plate on the xy plane, centered at the origin.

The top plate is located at z = d , with its center on the z axis. Potential V0

is on the top plate; the bottom plate is grounded. Dielectric having radially
dependent permittivity fills the region between plates. The permittivity

is given by ǫ(ρ) = ǫ0(1 + ρ2/a2). Find (a)V (z); (b)E; (c) Q; (d) C.

This is a reprise of Problem 6.8, but it starts with Laplace’s equation.

6.41 Concentric conducting spheres are located at r = 5 mm and r = 20 mm.

The region between the spheres is filled with a perfect dielectric. If

the inner sphere is at 100 V and the outer sphere is at 0 V (a) Find the
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location of the 20 V equipotential surface. (b) Find Er,max. (c) Find ǫr if

the surface charge density on the inner sphere is 1.0 µC/m2.

6.42 The hemisphere 0 < r < a, 0 < θ < π/2, is composed of homogeneous

conducting material of conductivity σ . The flat side of the hemisphere

rests on a perfectly conducting plane. Now, the material within the

conical region 0 < θ < α, 0 < r < a is drilled out and replaced with

material that is perfectly conducting. An air gap is maintained between the

r = 0 tip of this new material and the plane. What resistance

is measured between the two perfect conductors? Neglect fringing fields.

6.43 Two coaxial conducting cones have their vertices at the origin and the z axis

as their axis. Cone A has the point A(1, 0, 2) on its surface, while cone B
has the point B(0, 3, 2) on its surface. Let VA = 100 V and VB = 20 V. Find

(a) α for each cone; (b) V at P(1, 1, 1).

6.44 A potential field in free space is given as V = 100 ln tan(θ/2) + 50 V.

(a) Find the maximum value of |Eθ | on the surface θ = 40◦

for 0.1 < r < 0.8 m, 60◦ < φ < 90◦. (b) Describe the surface V = 80 V.

6.45 In free space, let ρν = 200ǫ0/r2.4. (a) Use Poisson’s equation to

find V (r ) if it is assumed that r2 Er → 0 when r → 0, and also that V → 0

as r → ∞. (b) Now find V (r ) by using Gauss’s law and a line integral.

6.46 By appropriate solution of Laplace’s and Poisson’s equations, determine

the absolute potential at the center of a sphere of radius a, containing

uniform volume charge of density ρ0. Assume permittivity ǫ0 everywhere.

Hint: What must be true about the potential and the electric

field at r = 0 and at r = a?
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The Steady Magnetic Field

A
t this point, the concept of a field should be a familiar one. Since we first

accepted the experimental law of forces existing between two point charges

and defined electric field intensity as the force per unit charge on a test charge

in the presence of a second charge, we have discussed numerous fields. These fields

possess no real physical basis, for physical measurements must always be in terms

of the forces on the charges in the detection equipment. Those charges that are the

source cause measurable forces to be exerted on other charges, which we may think

of as detector charges. The fact that we attribute a field to the source charges and then

determine the effect of this field on the detector charges amounts merely to a division

of the basic problem into two parts for convenience.

We will begin our study of the magnetic field with a definition of the magnetic

field itself and show how it arises from a current distribution. The effect of this field

on other currents, or the second half of the physical problem, will be discussed in

Chapter 8. As we did with the electric field, we confine our initial discussion to free-

space conditions, and the effect of material media will also be saved for discussion

in Chapter 8.

The relation of the steady magnetic field to its source is more complicated than

is the relation of the electrostatic field to its source. We will find it necessary to

accept several laws temporarily on faith alone. The proof of the laws does exist and

is available on the Web site for the disbelievers or the more advanced student. ■

7.1 BIOT-SAVART LAW

The source of the steady magnetic field may be a permanent magnet, an electric field

changing linearly with time, or a direct current. We will largely ignore the permanent

magnet and save the time-varying electric field for a later discussion. Our present study

will concern the magnetic field produced by a differential dc element in free space.

We may think of this differential current element as a vanishingly small section of

a current-carrying filamentary conductor, where a filamentary conductor is the limiting

180
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Figure 7.1 The law of Biot-Savart

expresses the magnetic field intensity dH2

produced by a differential current element

I 1dL1. The direction of dH2 is into the

page.

case of a cylindrical conductor of circular cross section as the radius approaches zero.

We assume a current I flowing in a differential vector length of the filament dL. The

law of Biot-Savart1 then states that at any point P the magnitude of the magnetic

field intensity produced by the differential element is proportional to the product of

the current, the magnitude of the differential length, and the sine of the angle lying

between the filament and a line connecting the filament to the point P at which

the field is desired; also, the magnitude of the magnetic field intensity is inversely

proportional to the square of the distance from the differential element to the point P.

The direction of the magnetic field intensity is normal to the plane containing the

differential filament and the line drawn from the filament to the point P . Of the two

possible normals, that one to be chosen is the one which is in the direction of progress

of a right-handed screw turned from dL through the smaller angle to the line from the

filament to P. Using rationalized mks units, the constant of proportionality is 1/4π .

The Biot-Savart law, just described in some 150 words, may be written concisely

using vector notation as

dH =
I dL× aR

4πR2
=

I dL×R
4πR3

(1)

The units of the magnetic fiel intensity H are evidently amperes per meter (A/m).

The geometry is illustrated in Figure 7.1. Subscripts may be used to indicate the point

to which each of the quantities in (1) refers. If we locate the current element at point 1

and describe the point P at which the field is to be determined as point 2, then

dH2 =
I1dL1 × aR12

4πR2
12

(2)

1 Biot and Savart were colleagues of Ampère, and all three were professors of physics at the Collège de

France at one time or another. The Biot-Savart law was proposed in 1820.
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The law of Biot-Savart is sometimes called Ampère’s law for the current element,
but we will retain the former name because of possible confusion with Ampère’s

circuital law, to be discussed later.

In some aspects, the Biot-Savart law is reminiscent of Coulomb’s law when that

law is written for a differential element of charge,

dE2 =
dQ1aR12

4πǫ0 R2
12

Both show an inverse-square-law dependence on distance, and both show a linear

relationship between source and field. The chief difference appears in the direction

of the field.

It is impossible to check experimentally the law of Biot-Savart as expressed by (1)

or (2) because the differential current element cannot be isolated. We have restricted

our attention to direct currents only, so the charge density is not a function of time.

The continuity equation in Section 5.2, Eq. (5),

∇ · J = −
∂ρν

∂t
therefore shows that

∇ · J = 0

or upon applying the divergence theorem,
∮

s
J · dS = 0

The total current crossing any closed surface is zero, and this condition may be satisfied

only by assuming a current flow around a closed path. It is this current flowing in a

closed circuit that must be our experimental source, not the differential element.

It follows that only the integral form of the Biot-Savart law can be verified

experimentally,

H =
∮ I dL× aR

4πR2
(3)

Equation (1) or (2), of course, leads directly to the integral form (3), but other

differential expressions also yield the same integral formulation. Any term may be

added to (1) whose integral around a closed path is zero. That is, any conservative field

could be added to (1). The gradient of any scalar field always yields a conservative

field, and we could therefore add a term ∇G to (1), where G is a general scalar field,

without changing (3) in the slightest. This qualification on (1) or (2) is mentioned

to show that if we later ask some foolish questions, not subject to any experimental

check, concerning the force exerted by one differential current element on another,

we should expect foolish answers.

The Biot-Savart law may also be expressed in terms of distributed sources, such

as current density J and surface current density K. Surface current flows in a sheet of

vanishingly small thickness, and the current density J, measured in amperes per square
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Figure 7.2 The total current I within a

transverse width b, in which there is a uniform

surface current density K, is K b.

meter, is therefore infinite. Surface current density, however, is measured in amperes

per meter width and designated by K. If the surface current density is uniform, the

total current I in any width b is

I = K b

where we assume that the width b is measured perpendicularly to the direction in which

the current is flowing. The geometry is illustrated by Figure 7.2. For a nonuniform

surface current density, integration is necessary:

I =
∫

KdN (4)

where dN is a differential element of the path across which the current is flowing.

Thus the differential current element I dL, where dL is in the direction of the current,

may be expressed in terms of surface current density K or current density J,

I dL = K d S = J dν (5)

and alternate forms of the Biot-Savart law obtained,

H =
∫

s

K× aRd S
4πR2

(6)

and

H =
∫

vol

J× aRdν

4πR2
(7)
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Figure 7.3 An infinitely long straight filament

carrying a direct current I. The field at point 2 is

H = ( I/2πρ)aφ .

We illustrate the application of the Biot-Savart law by considering an infinitely

long straight filament. We apply (2) first and then integrate. This, of course, is the

same as using the integral form (3) in the first place.2

Referring to Figure 7.3, we should recognize the symmetry of this field. No

variation with z or with φ can exist. Point 2, at which we will determine the field,

is therefore chosen in the z = 0 plane. The field point r is therefore r = ρaρ . The

source point r ′ is given by r′ = z′az , and therefore

R12 = r− r′ = ρaρ − z′az

so that

aR12 =
ρaρ − z′az
√

ρ2 + z′2

We take dL = dz′az and (2) becomes

dH2 =
I dz′az × (ρaρ − z′az)

4π (ρ2 + z′2)3/2

Because the current is directed toward increasing values of z′, the limits are −∞ and

∞ on the integral, and we have

H2 =

∫ ∞

−∞

I dz′az × (ρaρ − z′az)

4π (ρ2 + z′2)3/2

=
I

4π

∫ ∞

−∞

ρdz′aφ

(ρ2 + z′2)3/2

2 The closed path for the current may be considered to include a return filament parallel to the first

filament and infinitely far removed. An outer coaxial conductor of infinite radius is another theoretical

possibility. Practically, the problem is an impossible one, but we should realize that our answer will be

quite accurate near a very long, straight wire having a distant return path for the current.
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Figure 7.4 The streamlines of the

magnetic field intensity about an

infinitely long straight filament

carrying a direct current I. The

direction of I is into the page.

At this point the unit vector aφ under the integral sign should be investigated, for it is

not always a constant, as are the unit vectors of the rectangular coordinate system. A

vector is constant when its magnitude and direction are both constant. The unit vector

certainly has constant magnitude, but its direction may change. Here aφ changes with

the coordinate φ but not with ρ or z. Fortunately, the integration here is with respect

to z′, and aφ is a constant and may be removed from under the integral sign,

H2 =
Iρaφ

4π

∫ ∞

−∞

dz′

(ρ2 + z′ 2)3/2

=
Iρaφ

4π

z′

ρ2
√

ρ2 + z′ 2

∣

∣

∣

∣

∣

∞

−∞

and

H2 =
I

2πρ
aφ (8)

The magnitude of the field is not a function of φ or z, and it varies inversely with

the distance from the filament. The direction of the magnetic-field-intensity vector is

circumferential. The streamlines are therefore circles about the filament, and the field

may be mapped in cross section as in Figure 7.4.

The separation of the streamlines is proportional to the radius, or inversely pro-

portional to the magnitude ofH. To be specific, the streamlines have been drawn with

curvilinear squares in mind. As yet, we have no name for the family of lines3 that

are perpendicular to these circular streamlines, but the spacing of the streamlines has

3 If you can’t wait, see Section 7.6.
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been adjusted so that the addition of this second set of lines will produce an array of

curvilinear squares.

A comparison of Figure 7.4 with the map of the electric field about an infinite

line charge shows that the streamlines of the magnetic field correspond exactly to

the equipotentials of the electric field, and the unnamed (and undrawn) perpendicular

family of lines in the magnetic field corresponds to the streamlines of the electric

field. This correspondence is not an accident, but there are several other concepts

which must be mastered before the analogy between electric and magnetic fields can

be explored more thoroughly.

Using the Biot-Savart law to find H is in many respects similar to the use of

Coulomb’s law to findE. Each requires the determination of a moderately complicated

integrand containing vector quantities, followed by an integration. When we were

concerned with Coulomb’s law we solved a number of examples, including the fields

of the point charge, line charge, and sheet of charge. The law of Biot-Savart can be

used to solve analogous problems in magnetic fields, and some of these problems

appear as exercises at the end of the chapter rather than as examples here.

One useful result is the field of the finite-length current element, shown in

Figure 7.5. It turns out (see Problem 7.8 at the end of the chapter) that H is most

easily expressed in terms of the angles α1 and α2, as identified in the figure. The

result is

H =
I

4πρ
(sin α2 − sin α1)aφ (9)

If one or both ends are below point 2, then α1 is or both α1 and α2 are negative.

Figure 7.5 The magnetic field intensity

caused by a finite-length current filament

on the z axis is ( I/4πρ)(sin α2 − sin α1)aφ .
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Equation (9) may be used to find the magnetic field intensity caused by current

filaments arranged as a sequence of straight-line segments.

EXAMPLE 7.1

As a numerical example illustrating the use of (9), we determine H at P2(0.4, 0.3, 0)

in the field of an 8. A filamentary current is directed inward from infinity to the origin

on the positive x axis, and then outward to infinity along the y axis. This arrangement

is shown in Figure 7.6.

Solution. We first consider the semi-infinite current on the x axis, identifying the

two angles, α1x = −90◦ and α2x = tan−1(0.4/0.3) = 53.1◦. The radial distance ρ is

measured from the x axis, and we have ρx = 0.3. Thus, this contribution to H2 is

H2(x) =
8

4π (0.3)
(sin 53.1◦ + 1)aφ =

2

0.3π
(1.8)aφ =

12

π
aφ

The unit vector aφ must also be referred to the x axis. We see that it becomes −az .

Therefore,

H2(x) = −
12

π
az A/m

For the current on the y axis, we have α1y = − tan−1(0.3/0.4) = −36.9◦, α2y = 90◦,

and ρy = 0.4. It follows that

H2(y) =
8

4π (0.4)
(1 + sin 36.9◦)(−az) = −

8

π
az A/m

Figure 7.6 The individual fields of two semi-infinite

current segments are found by (9) and added to obtain

H2 at P2.
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Adding these results, we have

H2 = H2(x) +H2(y) = −
20

π
az = −6.37az A/m

D7.1. Given the following values for P1, P2, and I1�L1, calculate �H2:

(a) P1(0, 0, 2), P2(4, 2, 0), 2πazµA·m; (b) P1(0, 2, 0), P2(4, 2, 3), 2πazµA·m;

(c) P1(1, 2, 3), P2(−3, −1, 2), 2π (−ax + ay + 2az)µA·m.

Ans. −8.51ax + 17.01ay nA/m; 16ay nA/m; 18.9ax − 33.9ay + 26.4az nA/m

D7.2. A current filament carrying 15 A in the az direction lies along the entire

z axis. FindH in rectangular coordinates at: (a) PA(
√

20, 0, 4); (b) PB(2, −4, 4).

Ans. 0.534ay A/m; 0.477ax + 0.239ay A/m

7.2 AMPÈRE’S CIRCUITAL LAW

After solving a number of simple electrostatic problems with Coulomb’s law, we

found that the same problems could be solved much more easily by using Gauss’s

law whenever a high degree of symmetry was present. Again, an analogous procedure

exists in magnetic fields. Here, the law that helps us solve problems more easily is

known as Ampère’s circuital4 law, sometimes called Ampère’s work law. This law

may be derived from the Biot-Savart law (see Section 7.7).

Ampère’s circuital law states that the line integral of H about any closed path is

exactly equal to the direct current enclosed by that path,

∮

H · dL = I (10)

We define positive current as flowing in the direction of advance of a right-handed

screw turned in the direction in which the closed path is traversed.

Referring to Figure 7.7, which shows a circular wire carrying a direct current I,
the line integral of H about the closed paths lettered a and b results in an answer of

I; the integral about the closed path c which passes through the conductor gives an

answer less than I and is exactly that portion of the total current that is enclosed by

the path c. Although paths a and b give the same answer, the integrands are, of course,

different. The line integral directs us to multiply the component of H in the direction

of the path by a small increment of path length at one point of the path, move along

the path to the next incremental length, and repeat the process, continuing until the

path is completely traversed. Because H will generally vary from point to point, and

because paths a and b are not alike, the contributions to the integral made by, say,

4 The preferred pronunciation puts the accent on “circ-.”
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Figure 7.7 A conductor has a total current I. The line

integral of H about the closed paths a and b is equal to

I, and the integral around path c is less than I, since the

entire current is not enclosed by the path.

each micrometer of path length are quite different. Only the final answers are the

same.

We should also consider exactly what is meant by the expression “current en-

closed by the path.” Suppose we solder a circuit together after passing the conductor

once through a rubber band, which we use to represent the closed path. Some strange

and formidable paths can be constructed by twisting and knotting the rubber band, but

if neither the rubber band nor the conducting circuit is broken, the current enclosed

by the path is that carried by the conductor. Now replace the rubber band by a circular

ring of spring steel across which is stretched a rubber sheet. The steel loop forms

the closed path, and the current-carrying conductor must pierce the rubber sheet if

the current is to be enclosed by the path. Again, we may twist the steel loop, and

we may also deform the rubber sheet by pushing our fist into it or folding it in any

way we wish. A single current-carrying conductor still pierces the sheet once, and

this is the true measure of the current enclosed by the path. If we should thread the

conductor once through the sheet from front to back and once from back to front, the

total current enclosed by the path is the algebraic sum, which is zero.

In more general language, given a closed path, we recognize this path as the

perimeter of an infinite number of surfaces (not closed surfaces). Any current-carrying

conductor enclosed by the path must pass through every one of these surfaces once.

Certainly some of the surfaces may be chosen in such a way that the conductor pierces

them twice in one direction and once in the other direction, but the algebraic total

current is still the same.

We will find that the nature of the closed path is usually extremely simple and can

be drawn on a plane. The simplest surface is, then, that portion of the plane enclosed

by the path. We need merely find the total current passing through this region of the

plane.

The application of Gauss’s law involves finding the total charge enclosed by a

closed surface; the application of Ampère’s circuital law involves finding the total

current enclosed by a closed path.
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Let us again find the magnetic field intensity produced by an infinitely long

filament carrying a current I . The filament lies on the z axis in free space (as in

Figure 7.3), and the current flows in the direction given by az . Symmetry inspection

comes first, showing that there is no variation with z or φ. Next we determine which

components of H are present by using the Biot-Savart law. Without specifically using

the cross product, we may say that the direction of dH is perpendicular to the plane

conaining dL andR and therefore is in the direction of aφ . Hence the only component

of H is Hφ , and it is a function only of ρ.

We therefore choose a path, to any section of which H is either perpendicular

or tangential, and along which H is constant. The first requirement (perpendicularity

or tangency) allows us to replace the dot product of Ampère’s circuital law with the

product of the scalar magnitudes, except along that portion of the path where H is

normal to the path and the dot product is zero; the second requirement (constancy)

then permits us to remove the magnetic field intensity from the integral sign. The

integration required is usually trivial and consists of finding the length of that portion

of the path to which H is parallel.

In our example, the path must be a circle of radius ρ, and Ampère’s circuital law

becomes

∮

H · dL =
∫ 2π

0

Hφρdφ = Hφρ

∫ 2π

0

dφ = Hφ2πρ = I

or

Hφ =
I

2πρ

as before.

As a second example of the application of Ampère’s circuital law, consider an

infinitely long coaxial transmission line carrying a uniformly distributed total current

I in the center conductor and −I in the outer conductor. The line is shown in Fig-

ure 7.8a. Symmetry shows that H is not a function of φ or z. In order to determine the

components present, we may use the results of the previous example by considering

the solid conductors as being composed of a large number of filaments. No filament

has a z component of H. Furthermore, the Hρ component at φ = 0◦, produced by one

filament located at ρ = ρ1, φ = φ1, is canceled by the Hρ component produced by a

symmetrically located filament at ρ = ρ1, φ = −φ1. This symmetry is illustrated by

Figure 7.8b. Again we find only an Hφ component which varies with ρ.

A circular path of radius ρ, where ρ is larger than the radius of the inner conduc-

tor but less than the inner radius of the outer conductor, then leads immediately to

Hφ =
I

2πρ
(a < ρ < b)
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Figure 7.8 (a) Cross section of a coaxial cable carrying a uniformly

distributed current I in the inner conductor and − I in the outer conductor. The

magnetic field at any point is most easily determined by applying Ampère’s

circuital law about a circular path. (b) Current filaments at ρ = ρ1, φ = ±φ1,

produces Hρ components which cancel. For the total field, H = Hφaφ .

If we choose ρ smaller than the radius of the inner conductor, the current

enclosed is

Iencl = I
ρ2

a2

and

2πρHφ = I
ρ2

a2

or

Hφ =
Iρ

2πa2
(ρ < a)

If the radius ρ is larger than the outer radius of the outer conductor, no current is

enclosed and

Hφ = 0 (ρ > c)

Finally, if the path lies within the outer conductor, we have

2πρHφ = I − I
(

ρ2 − b2

c2 − b2

)

Hφ =
I

2πρ

c2 − ρ2

c2 − b2
(b < ρ < c)

The magnetic-field-strength variation with radius is shown in Figure 7.9 for

a coaxial cable in which b = 3a, c = 4a. It should be noted that the magnetic

field intensity H is continuous at all the conductor boundaries. In other words, a

slight increase in the radius of the closed path does not result in the enclosure of a

tremendously different current. The value of Hφ shows no sudden jumps.
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Figure 7.9 The magnetic field intensity as a function of

radius in an infinitely long coaxial transmission line with

the dimensions shown.

The external field is zero. This, we see, results from equal positive and negative

currents enclosed by the path. Each produces an external field of magnitude I/2πρ,

but complete cancellation occurs. This is another example of “shielding”; such a

coaxial cable carrying large currents would, in principle, not produce any noticeable

effect in an adjacent circuit.

As a final example, let us consider a sheet of current flowing in the positive y
direction and located in the z = 0 plane. We may think of the return current as equally

divided between two distant sheets on either side of the sheet we are considering. A

sheet of uniform surface current densityK = K yay is shown in Figure 7.10.H cannot

vary with x or y. If the sheet is subdivided into a number of filaments, it is evident

that no filament can produce an Hy component. Moreover, the Biot-Savart law shows

that the contributions to Hz produced by a symmetrically located pair of filaments

cancel. Thus, Hz is zero also; only an Hx component is present. We therefore choose

the path 1-1′-2′-2-1 composed of straight-line segments that are either parallel or

Figure 7.10 A uniform sheet of surface current

K = K yay in the z = 0 plane. H may be found by applying

Ampère’s circuital law about the paths 1-1′-2′-2-1 and

3-3′-2′-2-3.
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perpendicular to Hx . Ampère’s circuital law gives

Hx1L + Hx2(−L) = K y L

or

Hx1 − Hx2 = K y

If the path 3-3′-2′-2-3 is now chosen, the same current is enclosed, and

Hx3 − Hx2 = K y

and therefore

Hx3 = Hx1

It follows that Hx is the same for all positive z. Similarly, Hx is the same for all

negative z. Because of the symmetry, then, the magnetic field intensity on one side

of the current sheet is the negative of that on the other. Above the sheet,

Hx = 1
2

K y (z > 0)

while below it

Hx = − 1
2

K y (z < 0)

Letting aN be a unit vector normal (outward) to the current sheet, the result may be

written in a form correct for all z as

H = 1
2
K× aN (11)

If a second sheet of current flowing in the opposite direction, K = −K yay , is

placed at z = h, (11) shows that the field in the region between the current sheets is

H = K× aN (0 < z < h) (12)

and is zero elsewhere,

H = 0 (z < 0, z > h) (13)

The most difficult part of the application of Ampère’s circuital law is the deter-

mination of the components of the field that are present. The surest method is the

logical application of the Biot-Savart law and a knowledge of the magnetic fields of

simple form.

Problem 7.13 at the end of this chapter outlines the steps involved in applying

Ampère’s circuital law to an infinitely long solenoid of radius a and uniform current

density Kaaφ, as shown in Figure 7.11a. For reference, the result is

H = Kaaz (ρ < a) (14a)

H = 0 (ρ > a) (14b)
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Figure 7.11 (a) An ideal solenoid of infinite length with a circular

current sheet K = Kaaφ . (b) An N-turn solenoid of finite length d.

If the solenoid has a finite length d and consists of N closely wound turns of a

filament that carries a current I (Figure 7.11b), then the field at points well within the

solenoid is given closely by

H =
N I
d
az (well within the solenoid) (15)

The approximation is useful it if is not applied closer than two radii to the open ends,

nor closer to the solenoid surface than twice the separation between turns.

For the toroids shown in Figure 7.12, it can be shown that the magnetic field

intensity for the ideal case, Figure 7.12a, is

H = Ka
ρ0 − a

ρ
aφ (inside toroid) (16a)

H = 0 (outside) (16b)

For the N -turn toroid of Figure 7.12b, we have the good approximations,

H =
NI

2πρ
aφ (inside toroid) (17a)

H = 0 (outside) (17b)

as long as we consider points removed from the toroidal surface by several times the

separation between turns.

Toroids having rectangular cross sections are also treated quite readily, as you

can see for yourself by trying Problem 7.14.

Accurate formulas for solenoids, toroids, and coils of other shapes are available

in Section 2 of the Standard Handbook for Electrical Engineers (see References for

Chapter 5).
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Figure 7.12 (a) An ideal toroid carrying a surface current K in the

direction shown. (b) An N-turn toroid carrying a filamentary current I.

D7.3. Express the value of H in rectangular components at P(0, 0.2, 0) in the

field of: (a) a current filament, 2.5 A in the az direction at x = 0.1, y = 0.3;

(b) a coax, centered on the z axis, with a = 0.3, b = 0.5, c = 0.6, I = 2.5 A

in the az direction in the center conductor; (c) three current sheets, 2.7ax A/m

at y = 0.1, −1.4ax A/m at y = 0.15, and −1.3ax A/m at y = 0.25.

Ans. 1.989ax − 1.989ay A/m; −0.884ax A/m; 1.300az A/m

7.3 CURL

We completed our study of Gauss’s law by applying it to a differential volume element

and were led to the concept of divergence. We now apply Ampère’s circuital law to

the perimeter of a differential surface element and discuss the third and last of the

special derivatives of vector analysis, the curl. Our objective is to obtain the point

form of Ampère’s circuital law.

Again we choose rectangular coordinates, and an incremental closed path of sides

�x and �y is selected (Figure 7.13). We assume that some current, as yet unspecified,

produces a reference value for H at the center of this small rectangle,

H0 = Hx0ax + Hy0ay + Hz0az

The closed line integral ofH about this path is then approximately the sum of the four

values ofH · �L on each side. We choose the direction of traverse as 1-2-3-4-1, which

corresponds to a current in the az direction, and the first contribution is therefore

(H · �L)1−2 = Hy,1−2�y

The value of Hy on this section of the path may be given in terms of the reference

value Hy0 at the center of the rectangle, the rate of change of Hy with x, and the
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Figure 7.13 An incremental closed path in

rectangular coordinates is selected for the

application of Ampère’s circuital law to determine

the spatial rate of change of H.

distance �x/2 from the center to the midpoint of side 1–2:

Hy,1−2
.= Hy0 +

∂ Hy

∂x

(
1

2
�x

)

Thus

(H · �L)1−2
.=

(

Hy0 +
1

2

∂ Hy

∂x
�x

)

�y

Along the next section of the path we have

(H · �L)2−3
.= Hx,2−3(−�x)

.= −
(

Hx0 +
1

2

∂ Hx

∂y
�y

)

�x

Continuing for the remaining two segments and adding the results,
∮

H · dL .=
(

∂ Hy

∂x
−

∂ Hx

∂y

)

�x�y

By Ampère’s circuital law, this result must be equal to the current enclosed by the

path, or the current crossing any surface bounded by the path. If we assume a general

current density J, the enclosed current is then �I .= Jz�x�y, and
∮

H · dL .=
(

∂ Hy

∂x
−

∂ Hx

∂y

)

�x�y .= Jz�x�y

or
∮

H · dL
�x�y

.=
∂ Hy

∂x
−

∂ Hx

∂y
.= Jz

As we cause the closed path to shrink, the preceding expression becomes more nearly

exact, and in the limit we have the equality

lim
�x,�y→0

∮

H · dL
�x�y

=
∂ Hy

∂x
−

∂ Hx

∂y
= Jz (18)
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After beginning with Ampère’s circuital law equating the closed line integral of

H to the current enclosed, we have now arrived at a relationship involving the closed

line integral of H per unit area enclosed and the current per unit area enclosed, or

current density. We performed a similar analysis in passing from the integral form of

Gauss’s law, involving flux through a closed surface and charge enclosed, to the point

form, relating flux through a closed surface per unit volume enclosed and charge per
unit volume enclosed, or volume charge density. In each case a limit is necessary to

produce an equality.

If we choose closed paths that are oriented perpendicularly to each of the re-

maining two coordinate axes, analogous processes lead to expressions for the x and

y components of the current density,

lim
�y,�z→0

∮

H · dL
�y�z

=
∂ Hz

∂y
−

∂ Hy

∂z
= Jx (19)

and

lim
�z,�x→0

∮

H · dL
�z�x

=
∂ Hx

∂z
−

∂ Hz

∂x
= Jy (20)

Comparing (18)–(20), we see that a component of the current density is given by

the limit of the quotient of the closed line integral of H about a small path in a plane

normal to that component and of the area enclosed as the path shrinks to zero. This

limit has its counterpart in other fields of science and long ago received the name of

curl. The curl of any vector is a vector, and any component of the curl is given by

the limit of the quotient of the closed line integral of the vector about a small path in

a plane normal to that component desired and the area enclosed, as the path shrinks

to zero. It should be noted that this definition of curl does not refer specifically to a

particular coordinate system. The mathematical form of the definition is

(curl H)N = lim
�SN →0

∮

H · dL
�SN

(21)

where �SN is the planar area enclosed by the closed line integral. The N subscript

indicates that the component of the curl is that component which is normal to the

surface enclosed by the closed path. It may represent any component in any coordinate

system.

In rectangular coordinates, the definition (21) shows that the x , y, and z compo-

nents of the curl H are given by (18)–(20), and therefore

curl H =
(

∂ Hz

∂y
−

∂ Hy

∂z

)

ax +
(

∂ Hx

∂z
−

∂ Hz

∂x

)

ay +
(

∂ Hy

∂x
−

∂ Hx

∂y

)

az (22)
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This result may be written in the form of a determinant,

curlH =

∣

∣

∣

∣

∣

∣

∣

∣

∣

ax ay az

∂

∂x
∂

∂y
∂

∂z
Hx Hy Hz

∣

∣

∣

∣

∣

∣

∣

∣

∣

(23)

and may also be written in terms of the vector operator,

curl H = ∇ ×H (24)

Equation (22) is the result of applying the definition (21) to the rectangular coordi-

nate system. We obtained the z component of this expression by evaluating Ampère’s

circuital law about an incremental path of sides �x and �y, and we could have ob-

tained the other two components just as easily by choosing the appropriate paths. Equa-

tion (23) is a neat method of storing the rectangular coordinate expression for curl; the

form is symmetrical and easily remembered. Equation (24) is even more concise and

leads to (22) upon applying the definitions of the cross product and vector operator.

The expressions for curlH in cylindrical and spherical coordinates are derived in

Appendix A by applying the definition (21). Although they may be written in determi-

nant form, as explained there, the determinants do not have one row of unit vectors on

top and one row of components on the bottom, and they are not easily memorized. For

this reason, the curl expansions in cylindrical and spherical coordinates that follow

here and appear inside the back cover are usually referred to whenever necessary.

∇ ×H=
(

1

ρ

∂Hz

∂φ
−

∂Hφ

∂z

)

aρ +
(

∂Hρ

∂z
−

∂Hz

∂ρ

)

aφ

+
(

1

ρ

∂(ρHφ)

∂ρ
−

1

ρ

∂Hρ

∂φ

)

az (cylindrical)

(25)

∇ ×H=
1

r sin θ

(

∂(Hφ sin θ )

∂θ
−

∂Hθ

∂φ

)

ar +
1

r

(

1

sin θ

∂Hr

∂φ
−

∂(rHφ)

∂r

)

aθ

+
1

r

(

∂(rHθ )

∂r
−

∂Hr

∂θ

)

aφ (spherical)

(26)

Although we have described curl as a line integral per unit area, this does not

provide everyone with a satisfactory physical picture of the nature of the curl operation,

for the closed line integral itself requires physical interpretation. This integral was

first met in the electrostatic field, where we saw that
∮

E · dL = 0. Inasmuch as the

integral was zero, we did not belabor the physical picture. More recently we have

discussed the closed line integral of H,
∮

H · dL = I . Either of these closed line

integrals is also known by the name of circulation, a term borrowed from the field of

fluid dynamics.
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Figure 7.14 (a) The curl meter shows a component of the curl of the water velocity

into the page. (b) The curl of the magnetic field intensity about an infinitely long filament

is shown.

The circulation of H, or
∮

H · dL, is obtained by multiplying the component

of H parallel to the specified closed path at each point along it by the differential

path length and summing the results as the differential lengths approach zero and as

their number becomes infinite. We do not require a vanishingly small path. Ampère’s

circuital law tells us that ifH does possess circulation about a given path, then current

passes through this path. In electrostatics we see that the circulation ofE is zero about

every path, a direct consequence of the fact that zero work is required to carry a charge

around a closed path.

We may describe curl as circulation per unit area. The closed path is vanishingly

small, and curl is defined at a point. The curl of E must be zero, for the circulation

is zero. The curl of H is not zero, however; the circulation of H per unit area is the

current density by Ampère’s circuital law [or (18), (19), and (20)].

Skilling5 suggests the use of a very small paddle wheel as a “curl meter.” Our

vector quantity, then, must be thought of as capable of applying a force to each blade

of the paddle wheel, the force being proportional to the component of the field normal

to the surface of that blade. To test a field for curl, we dip our paddle wheel into the

field, with the axis of the paddle wheel lined up with the direction of the component of

curl desired, and note the action of the field on the paddle. No rotation means no curl;

larger angular velocities mean greater values of the curl; a reversal in the direction of

spin means a reversal in the sign of the curl. To find the direction of the vector curl and

not merely to establish the presence of any particular component, we should place

our paddle wheel in the field and hunt around for the orientation which produces the

greatest torque. The direction of the curl is then along the axis of the paddle wheel,

as given by the right-hand rule.

As an example, consider the flow of water in a river. Figure 7.14a shows the

longitudinal section of a wide river taken at the middle of the river. The water velocity

is zero at the bottom and increases linearly as the surface is approached. A paddle

wheel placed in the position shown, with its axis perpendicular to the paper, will turn

in a clockwise direction, showing the presence of a component of curl in the direction

5 See the References at the end of the chapter.
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of an inward normal to the surface of the page. If the velocity of water does not change

as we go up- or downstream and also shows no variation as we go across the river

(or even if it decreases in the same fashion toward either bank), then this component

is the only component present at the center of the stream, and the curl of the water

velocity has a direction into the page.

In Figure 7.14b, the streamlines of the magnetic field intensity about an infinitely

long filamentary conductor are shown. The curl meter placed in this field of curved

lines shows that a larger number of blades have a clockwise force exerted on them

but that this force is in general smaller than the counterclockwise force exerted on

the smaller number of blades closer to the wire. It seems possible that if the curvature

of the streamlines is correct and also if the variation of the field strength is just right,

the net torque on the paddle wheel may be zero. Actually, the paddle wheel does not

rotate in this case, for since H = (I/2πρ)aφ, we may substitute into (25) obtaining

curl H = −
∂Hφ

∂z
aρ +

1

ρ

∂(ρHφ)

∂ρ
az = 0

EXAMPLE 7.2

As an example of the evaluation of curl H from the definition and of the evaluation of

another line integral, suppose that H = 0.2z2ax for z > 0, and H = 0 elsewhere, as

shown in Figure 7.15. Calculate
∮

H · dL about a square path with side d, centered

at (0, 0, z1) in the y = 0 plane where z1 > d/2.

Figure 7.15 A square path of side d with its center on the

z axis at z = z1 is used to evaluate
∮

H · dL and find curl H.
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Solution. We evaluate the line integral of H along the four segments, beginning at

the top:

∮

H · dL = 0.2
(

z1 + 1
2
d
)2 d + 0 − 0.2

(

z1 − 1
2
d
)2 d + 0

= 0.4z1d2

In the limit as the area approaches zero, we find

(∇ ×H)y = lim
d→0

∮

H · dL
d2

= lim
d→0

0.4z1d2

d2
= 0.4z1

The other components are zero, so ∇ ×H = 0.4z1ay .

To evaluate the curl without trying to illustrate the definition or the evaluation of

a line integral, we simply take the partial derivative indicated by (23):

∇ × H =

∣

∣

∣

∣

∣

∣

∣

∣

∣

ax ay az

∂

∂x
∂

∂y
∂

∂z
0.2z2 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
∂

∂z
(0.2z2)ay = 0.4zay

which checks with the preceding result when z = z1.

Returning now to complete our original examination of the application of

Ampère’s circuital law to a differential-sized path, we may combine (18)–(20), (22),

and (24),

curl H = ∇ ×H =
(

∂Hz

∂y
−

∂Hy

∂z

)

ax +
(

∂Hx

∂z
−

∂Hz

∂x

)

ay

+
(

∂Hy

∂x
−

∂Hx

∂y

)

az = J (27)

and write the point form of Ampère’s circuital law,

∇ ×H = J (28)

This is the second of Maxwell’s four equations as they apply to non-time-varying

conditions. We may also write the third of these equations at this time; it is the point

form of
∮

E · dL = 0, or

∇ ×E = 0 (29)

The fourth equation appears in Section 7.5.
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D7.4. (a) Evaluate the closed line integral of H about the rectangular path

P1(2, 3, 4) to P2(4, 3, 4) to P3(4, 3, 1) to P4(2, 3, 1) to P1, given H = 3zax −
2x3az A/m. (b) Determine the quotient of the closed line integral and the area

enclosed by the path as an approximation to (∇ ×H)y . (c) Determine (∇ ×H)y
at the center of the area.

Ans. 354 A; 59 A/m2; 57 A/m2

D7.5. Calculate the value of the vector current density: (a) in rectangular

coordinates at PA(2, 3, 4) if H = x2zay − y2xaz ; (b) in cylindrical coordi-

nates at PB(1.5, 90◦, 0.5) if H =
2

ρ
(cos 0.2φ)aρ ; (c) in spherical coordinates at

PC (2, 30◦, 20◦) if H =
1

sin θ
aθ .

Ans. −16ax + 9ay + 16az A/m2; 0.055az A/m2; aφ A/m2

7.4 STOKES’ THEOREM

Although Section 7.3 was devoted primarily to a discussion of the curl operation,

the contribution to the subject of magnetic fields should not be overlooked. From

Ampère’s circuital law we derived one of Maxwell’s equations, ∇ ×H = J. This

latter equation should be considered the point form of Ampère’s circuital law and

applies on a “per-unit-area” basis. In this section we shall again devote a major share

of the material to the mathematical theorem known as Stokes’ theorem, but in the

process we will show that we may obtain Ampère’s circuital law from ∇ ×H = J.
In other words, we are then prepared to obtain the integral form from the point form

or to obtain the point form from the integral form.

Consider the surface S of Figure 7.16, which is broken up into incremental

surfaces of area �S. If we apply the definition of the curl to one of these incremental

surfaces, then
∮

H · dL�S

�S
.= (∇ ×H)N

where the N subscript again indicates the right-hand normal to the surface. The

subscript on dL�S indicates that the closed path is the perimeter of an incremental

area �S. This result may also be written
∮

H · dL�S

�S
.= (∇ ×H) · aN

or
∮

H · dL�S
.= (∇ ×H) · aN �S = (∇ ×H) · �S

where aN is a unit vector in the direction of the right-hand normal to �S.

Now let us determine this circulation for every �S comprising S and sum the re-

sults. As we evaluate the closed line integral for each �S, some cancellation will occur
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Figure 7.16 The sum of the closed line integrals

about the perimeter of every �S is the same as the

closed line integral about the perimeter of S because

of cancellation on every interior path.

because every interior wall is covered once in each direction. The only boundaries

on which cancellation cannot occur form the outside boundary, the path enclosing S.

Therefore we have

∮

H · dL ≡
∫

S
(∇ ×H) · dS (30)

where dL is taken only on the perimeter of S.

Equation (30) is an identity, holding for any vector field, and is known as Stokes’
theorem.

EXAMPLE 7.3

A numerical example may help to illustrate the geometry involved in Stokes’ theorem.

Consider the portion of a sphere shown in Figure 7.17. The surface is specified by r =
4, 0 ≤ θ ≤ 0.1π , 0 ≤ φ ≤ 0.3π , and the closed path forming its perimeter is com-

posed of three circular arcs. We are given the fieldH = 6r sin φar +18r sin θ cos φaφ

and are asked to evaluate each side of Stokes’ theorem.

Solution. The first path segment is described in spherical coordinates by r = 4, 0 ≤
θ ≤ 0.1π, φ = 0; the second one by r = 4, θ = 0.1π, 0 ≤ φ ≤ 0.3π ; and the third

by r = 4, 0 ≤ θ ≤ 0.1π, φ = 0.3π . The differential path element dL is the vector

sum of the three differential lengths of the spherical coordinate system first discussed

in Section 1.9,

dL = dr ar + r dθ aθ + r sin θ dφ aφ
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Figure 7.17 A portion of a spherical cap is

used as a surface and a closed path to illustrate

Stokes’ theorem.

The first term is zero on all three segments of the path since r = 4 and dr = 0,

the second is zero on segment 2 as θ is constant, and the third term is zero on both

segments 1 and 3. Thus,
∮

H · dL =
∫

1

Hθr dθ +
∫

2

Hφr sin θ dφ +
∫

3

Hθr dθ

Because Hθ = 0, we have only the second integral to evaluate,
∮

H · dL =
∫ 0.3π

0

[18(4) sin 0.1π cos φ]4 sin 0.1πdφ

= 288 sin2 0.1π sin 0.3π = 22.2 A

We next attack the surface integral. First, we use (26) to find

∇ ×H =
1

r sin θ
(36r sin θ cos θ cos φ)ar +

1

r

(

1

sin θ
6r cos φ − 36r sin θ cos φ

)

aθ

Because dS = r2 sin θ dθ dφ ar , the integral is
∫

S
(∇ ×H) · dS =

∫ 0.3π

0

∫ 0.1π

0

(36 cos θ cos φ)16 sin θ dθ dφ

=
∫ 0.3π

0

576
(

1
2

sin2 θ
)

∣

∣

∣

0.1π

0
cos φ dφ

= 288 sin2 0.1π sin 0.3π = 22.2 A
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Thus, the results check Stokes’ theorem, and we note in passing that a current of

22.2 A is flowing upward through this section of a spherical cap.

Next, let us see how easy it is to obtain Ampère’s circuital law from ∇ ×H = J.
We merely have to dot each side by dS, integrate each side over the same (open)

surface S, and apply Stokes’ theorem:

∫

S
(∇ ×H) · dS =

∫

S
J · dS =

∮

H · dL

The integral of the current density over the surface S is the total current I passing

through the surface, and therefore

∮

H · dL = I

This short derivation shows clearly that the current I , described as being “en-

closed by the closed path,” is also the current passing through any of the infinite

number of surfaces that have the closed path as a perimeter.

Stokes’ theorem relates a surface integral to a closed line integral. It should

be recalled that the divergence theorem relates a volume integral to a closed surface

integral. Both theorems find their greatest use in general vector proofs. As an example,

let us find another expression for ∇ · ∇ ×A, whereA represents any vector field. The

result must be a scalar (why?), and we may let this scalar be T , or

∇ · ∇ ×A = T

Multiplying by dν and integrating throughout any volume ν,

∫

vol

(∇ · ∇ ×A) dν =
∫

vol

T dν

we first apply the divergence theorem to the left side, obtaining

∮

S
(∇ ×A) · dS =

∫

vol

T dν

The left side is the surface integral of the curl of A over the closed surface

surrounding the volume ν. Stokes’ theorem relates the surface integral of the curl of

A over the open surface enclosed by a given closed path. If we think of the path as

the opening of a laundry bag and the open surface as the surface of the bag itself, we

see that as we gradually approach a closed surface by pulling on the drawstrings, the

closed path becomes smaller and smaller and finally disappears as the surface becomes

closed. Hence, the application of Stokes’ theorem to a closed surface produces a zero

result, and we have
∫

vol

T dν = 0
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Because this is true for any volume, it is true for the differential volume dν,

T dν = 0

and therefore

T = 0

or

∇ · ∇ ×A ≡ 0 (31)

Equation (31) is a useful identity of vector calculus.6 Of course, it may also be

proven easily by direct expansion in rectangular coordinates.

Let us apply the identity to the non-time-varying magnetic field for which

∇ ×H = J

This shows quickly that

∇ · J = 0

which is the same result we obtained earlier in the chapter by using the continuity

equation.

Before introducing several new magnetic field quantities in the following section,

we may review our accomplishments at this point. We initially accepted the Biot-

Savart law as an experimental result,

H =
∮ I dL× aR

4πR2

and tentatively accepted Ampère’s circuital law, subject to later proof,
∮

H · dL = I

From Ampère’s circuital law the definition of curl led to the point form of this same

law,

∇ ×H = J

We now see that Stokes’ theorem enables us to obtain the integral form of Ampère’s

circuital law from the point form.

D7.6. Evaluate both sides of Stokes’ theorem for the field H = 6xyax −
3y2ay A/m and the rectangular path around the region, 2 ≤ x ≤ 5, −1 ≤ y ≤
1, z = 0. Let the positive direction of dS be az .

Ans. −126 A; −126 A

6 This and other vector identities are tabulated in Appendix A.3.
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7.5 MAGNETIC FLUX AND MAGNETIC
FLUX DENSITY

In free space, let us define the magnetic flu density B as

B = µ0H (free space only) (32)

where B is measured in webers per square meter (Wb/m2) or in a newer unit adopted

in the International System of Units, tesla (T). An older unit that is often used for

magnetic flux density is the gauss (G), where 1 T or 1Wb/m2 is the same as 10, 000 G.

The constant µ0 is not dimensionless and has the define value for free space, in henrys

per meter (H/m), of

µ0 = 4π × 10−7 H/m (33)

The name given to µ0 is the permeability of free space.

We should note that since H is measured in amperes per meter, the weber is

dimensionally equal to the product of henrys and amperes. Considering the henry as

a new unit, the weber is merely a convenient abbreviation for the product of henrys

and amperes. When time-varying fields are introduced, it will be shown that a weber

is also equivalent to the product of volts and seconds.

The magnetic-flux-density vector B, as the name weber per square meter im-

plies, is a member of the flux-density family of vector fields. One of the possible

analogies between electric and magnetic fields7 compares the laws of Biot-Savart and

Coulomb, thus establishing an analogy between H and E. The relations B = µ0H
and D = ǫ0E then lead to an analogy between B and D. If B is measured in teslas or

webers per square meter, then magnetic flux should be measured in webers. Let us

represent magnetic flux by 
 and define 
 as the flux passing through any designated

area,


 =
∫

S
B · dS Wb (34)

Our analogy should now remind us of the electric flux �, measured in coulombs,

and of Gauss’s law, which states that the total flux passing through any closed surface

is equal to the charge enclosed,

� =
∮

S
D · dS = Q

The charge Q is the source of the lines of electric flux and these lines begin and

terminate on positive and negative charges, respectively.

7 An alternate analogy is presented in Section 9.2.
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No such source has ever been discovered for the lines of magnetic flux. In the

example of the infinitely long straight filament carrying a direct current I , the H field

formed concentric circles about the filament. Because B = µ0H, the B field is of the

same form. The magnetic flux lines are closed and do not terminate on a “magnetic

charge.” For this reason Gauss’s law for the magnetic field is

∮

S
B · dS = 0 (35)

and application of the divergence theorem shows us that

∇ ·B = 0 (36)

Equation (36) is the last of Maxwell’s four equations as they apply to static

electric fields and steady magnetic fields. Collecting these equations, we then have

for static electric fields and steady magnetic fields

∇ ·D = ρν

∇ ×E= 0

∇ ×H= J

∇ ·B = 0

(37)

To these equations we may add the two expressions relating D to E and B to H
in free space,

D = ǫ0E (38)

B = µ0H (39)

We have also found it helpful to define an electrostatic potential,

E = −∇V (40)

and we will discuss a potential for the steady magnetic field in the following section. In

addition, we extended our coverage of electric fields to include conducting materials

and dielectrics, and we introduced the polarization P. A similar treatment will be

applied to magnetic fields in the next chapter.

Returning to (37), it may be noted that these four equations specify the divergence

and curl of an electric and a magnetic field. The corresponding set of four integral
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equations that apply to static electric fields and steady magnetic fields is

∮

S
D · dS = Q =

∫

vol

ρνdν

∮

E · dL = 0

∮

H · dL = I =
∫

S
J · dS

∮

S
B · dS = 0

(41)

Our study of electric and magnetic fields would have been much simpler if we

could have begun with either set of equations, (37) or (41). With a good knowledge

of vector analysis, such as we should now have, either set may be readily obtained

from the other by applying the divergence theorem or Stokes’ theorem. The various

experimental laws can be obtained easily from these equations.

As an example of the use of flux and flux density in magnetic fields, let us find

the flux between the conductors of the coaxial line of Figure 7.8a. The magnetic field

intensity was found to be

Hφ =
I

2πρ
(a < ρ < b)

and therefore

B = µ0H =
µ0 I
2πρ

aφ

The magnetic flux contained between the conductors in a length d is the flux

crossing any radial plane extending from ρ = a to ρ = b and from, say, z = 0 to

z = d


 =
∫

S
B · dS =

∫ d

0

∫ b

a

µ0 I
2πρ

aφ · dρ dz aφ

or


 =
µ0 Id
2π

ln
b
a

(42)

This expression will be used later to obtain the inductance of the coaxial trans-

mission line.

D7.7. A solid conductor of circular cross section is made of a homogeneous

nonmagnetic material. If the radius a = 1 mm, the conductor axis lies on the

z axis, and the total current in theaz direction is 20 A, find: (a) Hφ atρ = 0.5 mm;

(b) Bφ at ρ = 0.8 mm; (c) the total magnetic flux per unit length inside the

conductor; (d) the total flux for ρ < 0.5 mm; (e) the total magnetic flux outside

the conductor.

Ans. 1592 A/m; 3.2 mT; 2 µWb/m; 0.5 µWb; ∞



210 ENGINEERING ELECTROMAGNETICS

7.6 THE SCALAR AND VECTOR
MAGNETIC POTENTIALS

The solution of electrostatic field problems is greatly simplified by the use of the

scalar electrostatic potential V. Although this potential possesses a very real physical

significance for us, it is mathematically no more than a stepping-stone which allows

us to solve a problem by several smaller steps. Given a charge configuration, we may

first find the potential and then from it the electric field intensity.

We should question whether or not such assistance is available in magnetic fields.

Can we define a potential function which may be found from the current distribution

and from which the magnetic fields may be easily determined? Can a scalar magnetic

potential be defined, similar to the scalar electrostatic potential? We will show in

the next few pages that the answer to the first question is yes, but the second must

be answered “sometimes.” Let us attack the second question first by assuming the

existence of a scalar magnetic potential, which we designate Vm , whose negative

gradient gives the magnetic field intensity

H = −∇Vm

The selection of the negative gradient provides a closer analogy to the electric potential

and to problems which we have already solved.

This definition must not conflict with our previous results for the magnetic field,

and therefore

∇ ×H = J = ∇ × (−∇Vm)

However, the curl of the gradient of any scalar is identically zero, a vector identity

the proof of which is left for a leisure moment. Therefore, we see that if H is to be

defined as the gradient of a scalar magnetic potential, then current density must be

zero throughout the region in which the scalar magnetic potential is so defined. We

then have

H = −∇Vm (J = 0) (43)

Because many magnetic problems involve geometries in which the current-carrying

conductors occupy a relatively small fraction of the total region of interest, it is evident

that a scalar magnetic potential can be useful. The scalar magnetic potential is also

applicable in the case of permanent magnets. The dimensions of Vm are obviously

amperes.

This scalar potential also satisfies Laplace’s equation. In free space,

∇ ·B = µ0∇ ·H = 0

and hence

µ0∇ · (−∇Vm) = 0
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or

∇2Vm = 0 (J = 0) (44)

We will see later that Vm continues to satisfy Laplace’s equation in homogeneous

magnetic materials; it is not defined in any region in which current density is present.

Although we shall consider the scalar magnetic potential to a much greater extent

in Chapter 8, when we introduce magnetic materials and discuss the magnetic circuit,

one difference between V and Vm should be pointed out now: Vm is not a single-valued

function of position. The electric potential V is single-valued; once a zero reference is

assigned, there is only one value of V associated with each point in space. Such is not

the case with Vm . Consider the cross section of the coaxial line shown in Figure 7.18.

In the region a < ρ < b, J = 0, and we may establish a scalar magnetic potential.

The value of H is

H =
I

2πρ
aφ

where I is the total current flowing in the az direction in the inner conductor. We find

Vm by integrating the appropriate component of the gradient. Applying (43),

I
2πρ

= −∇Vm

∣

∣

∣

φ
= −

1

ρ

∂Vm

∂φ

or

∂Vm

∂φ
= −

I
2π

Figure 7.18 The scalar magnetic potential Vm is a

multivalued function of φ in the region a < ρ < b. The

electrostatic potential is always single valued.
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Thus,

Vm = −
I

2π
φ

where the constant of integration has been set equal to zero. What value of potential

do we associate with point P , where φ = π/4? If we let Vm be zero at φ = 0 and

proceed counterclockwise around the circle, the magnetic potential goes negative

linearly. When we have made one circuit, the potential is −I , but that was the point

at which we said the potential was zero a moment ago. At P , then, φ = π/4, 9π/4,

17π/4, . . . , or −7π/4, −15π/4, −23π/4, . . . , or

VmP =
I

2π

(

2n − 1
4

)

π (n = 0, ±1, ±2, . . .)

or

VmP = I
(

n − 1
8

)

(n = 0, ±1, ±2, . . .)

The reason for this multivaluedness may be shown by a comparison with the

electrostatic case. There, we know that

∇ ×E = 0
∮

E · dL = 0

and therefore the line integral

Vab = −
∫ a

b
E · dL

is independent of the path. In the magnetostatic case, however,

∇ ×H = 0 (wherever J = 0)

but
∮

H · dL = I

even if J is zero along the path of integration. Every time we make another complete

lap around the current, the result of the integration increases by I . If no current I
is enclosed by the path, then a single-valued potential function may be defined. In

general, however,

Vm,ab = −
∫ a

b
H · dL (specified path) (45)

where a specific path or type of path must be selected. We should remember that the

electrostatic potential V is a conservative field; the magnetic scalar potential Vm is

not a conservative field. In our coaxial problem, let us erect a barrier8 at φ = π ; we

8 This corresponds to the more precise mathematical term “branch cut.”



CHAPTER 7 The Steady Magnetic Field 213

agree not to select a path that crosses this plane. Therefore, we cannot encircle I , and

a single-valued potential is possible. The result is seen to be

Vm = −
I

2π
φ (−π < φ < π)

and

VmP = −
I
8

(

φ =
π

4

)

The scalar magnetic potential is evidently the quantity whose equipotential sur-

faces will form curvilinear squares with the streamlines of H in Figure 7.4. This is

one more facet of the analogy between electric and magnetic fields about which we

will have more to say in the next chapter.

Let us temporarily leave the scalar magnetic potential now and investigate a vector

magnetic potential. This vector field is one which is extremely useful in studying

radiation from antennas (as we will find in Chapter 14) as well as radiation leakage

from transmission lines, waveguides, and microwave ovens. The vector magnetic

potential may be used in regions where the current density is zero or nonzero, and we

shall also be able to extend it to the time-varying case later.

Our choice of a vector magnetic potential is indicated by noting that

∇ ·B = 0

Next, a vector identity that we proved in Section 7.4 shows that the divergence of the

curl of any vector field is zero. Therefore, we select

B = ∇ ×A (46)

where A signifies a vector magnetic potential, and we automatically satisfy the con-

dition that the magnetic flux density shall have zero divergence. The H field is

H =
1

µ0

∇ ×A

and

∇ ×H = J =
1

µ0

∇ × ∇ ×A

The curl of the curl of a vector field is not zero and is given by a fairly complicated

expression,9 which we need not know now in general form. In specific cases for which

the form of A is known, the curl operation may be applied twice to determine the

current density.

9 ∇ × ∇ × A ≡ ∇(∇ ·A) − ∇2A. In rectangular coordinates, it may be shown that ∇2A ≡ ∇2Axax +
∇2Ayay + ∇2Azaz . In other coordinate systems, ∇2A may be found by evaluating the second-order

partial derivatives in ∇2A = ∇(∇ ·A) − ∇ ×∇ × A.
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Equation (46) serves as a useful definition of the vector magnetic potential A.

Because the curl operation implies differentiation with respect to a length, the units

of A are webers per meter.

As yet we have seen only that the definition for A does not conflict with any

previous results. It still remains to show that this particular definition can help us to

determine magnetic fields more easily. We certainly cannot identifyAwith any easily

measured quantity or history-making experiment.

We will show in Section 7.7 that, given the Biot-Savart law, the definition of B,

and the definition ofA, Amay be determined from the differential current elements by

A =
∮

µ0 I dL
4πR

(47)

The significance of the terms in (47) is the same as in the Biot-Savart law; a direct

current I flows along a filamentary conductor of which any differential length dL is

distant R from the point at which A is to be found. Because we have defined A only

through specification of its curl, it is possible to add the gradient of any scalar field

to (47) without changing B or H, for the curl of the gradient is identically zero. In

steady magnetic fields, it is customary to set this possible added term equal to zero.

The fact that A is a vector magnetic potential is more apparent when (47) is

compared with the similar expression for the electrostatic potential,

V =
∫

ρLdL
4πǫ0 R

Each expression is the integral along a line source, in one case line charge and in the

other case line current; each integrand is inversely proportional to the distance from

the source to the point of interest; and each involves a characteristic of the medium

(here free space), the permeability or the permittivity.

Equation (47) may be written in differential form,

dA =
µ0 I dL

4π R
(48)

if we again agree not to attribute any physical significance to any magnetic fields we

obtain from (48) until the entire closed path in which the current flow is considered.

With this reservation, let us go right ahead and consider the vector magnetic

potential field about a differential filament. We locate the filament at the origin in free

space, as shown in Figure 7.19, and allow it to extend in the positive z direction so

that dL = dz az . We use cylindrical coordinates to find dA at the point (ρ, φ, z):

dA =
µ0 I dz az

4π
√

ρ2 + z2

or

dAz =
µ0 I dz

4π
√

ρ2 + z2
dAφ = 0 dAρ = 0 (49)
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Figure 7.19 The differential current

element I dzaz at the origin establishes the

differential vector magnetic potential field,

dA =
µ0 I dzaz

4π
√

ρ2 + z2
at P(ρ, φ, z).

We note that the direction of dA is the same as that of I dL. Each small section

of a current-carrying conductor produces a contribution to the total vector magnetic

potential which is in the same direction as the current flow in the conductor. The

magnitude of the vector magnetic potential varies inversely with the distance to the

current element, being strongest in the neighborhood of the current and gradually

falling off to zero at distant points. Skilling10 describes the vector magnetic potential

field as “like the current distribution but fuzzy around the edges, or like a picture of

the current out of focus.”

In order to find the magnetic field intensity, we must take the curl of (49) in

cylindrical coordinates, leading to

dH =
1

µ0

∇ × dA =
1

µ0

(

−
∂dAz

∂ρ

)

aφ

or

dH =
I dz
4π

ρ

(ρ2 + z2)3/2
aφ

which is easily shown to be the same as the value given by the Biot-Savart law.

Expressions for the vector magnetic potentialA can also be obtained for a current

source which is distributed. For a current sheet K, the differential current element

becomes

I dL = K dS

In the case of current flow throughout a volume with a density J, we have

I dL = J dν

10 See the References at the end of the chapter.
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In each of these two expressions the vector character is given to the current. For the

filamentary element it is customary, although not necessary, to use I dL instead of

I dL . Since the magnitude of the filamentary element is constant, we have chosen

the form which allows us to remove one quantity from the integral. The alternative

expressions for A are then

A =
∫

S

µ0K dS
4πR

(50)

and

A =
∫

vol

µ0J dν

4πR
(51)

Equations (47), (50), and (51) express the vector magnetic potential as an inte-

gration over all of its sources. From a comparison of the form of these integrals with

those which yield the electrostatic potential, it is evident that once again the zero ref-

erence for A is at infinity, for no finite current element can produce any contribution

as R → ∞. We should remember that we very seldom used the similar expressions

for V ; too often our theoretical problems included charge distributions that extended

to infinity, and the result would be an infinite potential everywhere. Actually, we cal-

culated very few potential fields until the differential form of the potential equation

was obtained, ∇2V = −ρν/ǫ, or better yet, ∇2V = 0. We were then at liberty to

select our own zero reference.

The analogous expressions for A will be derived in the next section, and an

example of the calculation of a vector magnetic potential field will be completed.

D7.8. A current sheet, K = 2.4az A/m, is present at the surface ρ = 1.2 in

free space. (a) Find H for ρ > 1.2. Find Vm at P(ρ = 1.5, φ = 0.6π, z = 1) if:

(b) Vm = 0 at φ = 0 and there is a barrier at φ = π ; (c) Vm = 0 at φ = 0 and

there is a barrier at φ = π/2; (d) Vm = 0 at φ = π and there is a barrier at φ = 0;

(e) Vm = 5 V at φ = π and there is a barrier at φ = 0.8π .

Ans.
2.88

ρ
aφ ; −5.43 V; 12.7 V; 3.62 V; −9.48 V

D7.9. The value of A within a solid nonmagnetic conductor of radius a car-

rying a total current I in the az direction may be found easily. Using the

known value of H or B for ρ < a, then (46) may be solved for A. Select

A = (µ0 I ln 5)/2π at ρ = a (to correspond with an example in the next sec-

tion) and find A at ρ =: (a) 0; (b) 0.25a; (c) 0.75a; (d) a.

Ans. 0.422Iaz µWb/m; 0.416Iaz µWb/m; 0.366Iaz µWb/m; 0.322Iaz µWb/m
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7.7 DERIVATION OF THE
STEADY-MAGNETIC-FIELD LAWS

We will now supply the promised proofs of the several relationships between the

magnetic field quantities. All these relationships may be obtained from the definitions

of H,

H =
∮ I dL× aR

4πR2
(3)

of B (in free space),

B = µ0H (32)

and of A,

B = ∇ ×A (46)

Let us first assume that we may express A by the last equation of Section 7.6,

A =
∫

vol

µ0J dν

4πR
(51)

and then demonstrate the correctness of (51) by showing that (3) follows. First, we

should add subscripts to indicate the point at which the current element is located

(x1, y1, z1) and the point at which A is given (x2, y2, z2). The differential volume

element dν is then written dν1 and in rectangular coordinates would be dx1 dy1 dz1.

The variables of integration are x1, y1, and z1. Using these subscripts, then,

A2 =
∫

vol

µ0J1dν1

4πR12

(52)

From (32) and (46) we have

H =
B
µ0

=
∇ ×A

µ0

(53)

To show that (3) follows from (52), it is necessary to substitute (52) into (53). This

step involves taking the curl of A2, a quantity expressed in terms of the variables x2,

y2, and z2, and the curl therefore involves partial derivatives with respect to x2, y2, and

z2. We do this, placing a subscript on the del operator to remind us of the variables

involved in the partial differentiation process,

H2 =
∇2 ×A2

µ0

=
1

µ0

∇2 ×
∫

vol

µ0J1dν1

4πR12

The order of partial differentiation and integration is immaterial, and µ0/4π is

constant, allowing us to write

H2 =
1

4π

∫

vol

∇2 ×
J1dν1

R12

The curl operation within the integrand represents partial differentiation with

respect to x2, y2, and z2. The differential volume element dν1 is a scalar and a function
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only of x1, y1, and z1. Consequently, it may be factored out of the curl operation as

any other constant, leaving

H2 =
1

4π

∫

vol

(

∇2 ×
J1

R12

)

dν1 (54)

The curl of the product of a scalar and a vector is given by an identity which may

be checked by expansion in rectangular coordinates or obtained from Appendix A.3,

∇ × (SV) ≡ (∇S) ×V+ S(∇ ×V) (55)

This identity is used to expand the integrand of (54),

H2 =
1

4π

∫

vol

[(

∇2

1

R12

)

× J1 +
1

R12

(∇2 × J1)

]

dν1 (56)

The second term of this integrand is zero because ∇2 × J1 indicates partial deriva-

tives of a function of x1, y1, and z1, taken with respect to the variables x2, y2, and z2;

the first set of variables is not a function of the second set, and all partial derivatives

are zero.

The first term of the integrand may be determined by expressing R12 in terms of

the coordinate values,

R12 =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

and taking the gradient of its reciprocal. Problem 7.42 shows that the result is

∇2

1

R12

= −
R12

R3
12

= −
aR12

R2
12

Substituting this result into (56), we have

H2 = −
1

4π

∫

vol

aR12 × J1

R2
12

dν1

or

H2 =
∫

vol

J1 × aR12

4πR2
12

dν1

which is the equivalent of (3) in terms of current density. Replacing J1 dν1 by I1 dL1,

we may rewrite the volume integral as a closed line integral,

H2 =
∮ I1dL1 × aR12

4πR2
12

Equation (51) is therefore correct and agrees with the three definitions (3), (32),

and (46).

Next we will prove Ampère’s circuital law in point form,

∇ ×H = J (28)

Combining (28), (32), and (46), we obtain

∇ ×H = ∇ ×
B
µ0

=
1

µ0

∇ × ∇ ×A (57)
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We now need the expansion in rectangular coordinates for ∇ × ∇ ×A. Performing

the indicated partial differentiations and collecting the resulting terms, we may write

the result as

∇ × ∇ ×A ≡ ∇(∇ ·A) − ∇2A (58)

where

∇2A ≡ ∇2 Axax + ∇2 Ayay + ∇2 Azaz (59)

Equation (59) is the definition (in rectangular coordinates) of the Laplacian of a
vector.

Substituting (58) into (57), we have

∇ ×H =
1

µ0

[∇(∇ ·A) − ∇2A] (60)

and now require expressions for the divergence and the Laplacian of A.

We may find the divergence of A by applying the divergence operation to (52),

∇2 ·A2 =
µ0

4π

∫

vol

∇2 ·

J1

R12

dν1 (61)

and using the vector identity (44) of Section 4.8,

∇ · (SV) ≡ V · (∇S) + S(∇ ·V)

Thus,

∇2 ·A2 =
µ0

4π

∫

vol

[

J1 ·

(

∇2

1

R12

)

+
1

R12

(∇2 · J1)

]

dν1 (62)

The second part of the integrand is zero because J1 is not a function of x2, y2,

and z2.

We have already used the result that ∇2(1/R12) = −R12/R3
12, and it is just as

easily shown that

∇1

1

R12

=
R12

R3
12

or that

∇1

1

R12

= −∇2

1

R12

Equation (62) can therefore be written as

∇2 ·A2 =
µ0

4π

∫

vol

[

−J1 ·

(

∇1

1

R12

)]

dν1

and the vector identity applied again,

∇2 ·A2 =
µ0

4π

∫

vol

[

1

R12

(∇1 · J1) − ∇1 ·

(

J1

R12

)]

dν1 (63)
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Because we are concerned only with steady magnetic fields, the continuity equa-

tion shows that the first term of (63) is zero. Application of the divergence theorem

to the second term gives

∇2 ·A2 = −
µ0

4π

∮

S1

J1

R12

· dS1

where the surface S1 encloses the volume throughout which we are integrating. This

volume must include all the current, for the original integral expression for A was an

integration such as to include the effect of all the current. Because there is no current

outside this volume (otherwise we should have had to increase the volume to include

it), we may integrate over a slightly larger volume or a slightly larger enclosing surface

without changing A. On this larger surface the current density J1 must be zero, and

therefore the closed surface integral is zero, since the integrand is zero. Hence the

divergence of A is zero.

In order to find the Laplacian of the vector A, let us compare the x component

of (51) with the similar expression for electrostatic potential,

Ax =
∫

vol

µ0 Jx dν

4πR
V =

∫

vol

ρν dν

4πǫ0 R
We note that one expression can be obtained from the other by a straightforward

change of variable, Jx for ρν , µ0 for 1/ǫ0, and Ax for V . However, we have derived

some additional information about the electrostatic potential which we shall not have

to repeat now for the x component of the vector magnetic potential. This takes the

form of Poisson’s equation,

∇2V = −
ρν

ǫ0

which becomes, after the change of variables,

∇2 Ax = −µ0 Jx

Similarly, we have

∇2 Ay = −µ0 Jy

and

∇2 Az = −µ0 Jz

or

∇2A = −µ0J (64)

Returning to (60), we can now substitute for the divergence and Laplacian of A
and obtain the desired answer,

∇ ×H = J (28)

We have already shown the use of Stokes’ theorem in obtaining the integral form of

Ampère’s circuital law from (28) and need not repeat that labor here.
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We thus have succeeded in showing that every result we have essentially pulled

from thin air11 for magnetic fields follows from the basic definitions of H, B, and A.

The derivations are not simple, but they should be understandable on a step-by-step

basis.

Finally, let us return to (64) and make use of this formidable second-order vec-

tor partial differential equation to find the vector magnetic potential in one simple

example. We select the field between conductors of a coaxial cable, with radii of a
and b as usual, and current I in the az direction in the inner conductor. Between the

conductors, J = 0, and therefore

∇2A = 0

We have already been told (and Problem 7.44 gives us the opportunity to check the

results for ourselves) that the vector Laplacian may be expanded as the vector sum of

the scalar Laplacians of the three components in rectangular coordinates,

∇2A = ∇2 Axax + ∇2 Ayay + ∇2 Azaz

but such a relatively simple result is not possible in other coordinate systems. That is,

in cylindrical coordinates, for example,

∇2A 	= ∇2 Aρaρ + ∇2 Aφaφ + ∇2 Azaz

However, it is not difficult to show for cylindrical coordinates that the z component

of the vector Laplacian is the scalar Laplacian of the z component of A, or

∇2A
∣

∣

∣

z
= ∇2 Az (65)

and because the current is entirely in the z direction in this problem, A has only a

z component. Therefore,

∇2 Az = 0

or

1

ρ

∂

∂ρ

(

ρ
∂ Az

∂ρ

)

+
1

ρ2

∂2 Az

∂φ2
+

∂2 Az

∂z2
= 0

Thinking symmetrical thoughts about (51) shows us that Az is a function only of ρ,

and thus

1

ρ

d
dρ

(

ρ
d Az

dρ

)

= 0

We have solved this equation before, and the result is

Az = C1 ln ρ + C2

If we choose a zero reference at ρ = b, then

Az = C1 ln
ρ

b

11 Free space.
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In order to relate C1 to the sources in our problem, we may take the curl of A,

∇ ×A = −
∂ Az

∂ρ
aφ = −

C1

ρ
aφ = B

obtain H,

H = −
C1

µ0ρ
aφ

and evaluate the line integral,
∮

H · dL = I =
∫ 2π

0

−
C1

µ0ρ
aφ · ρ dφ aφ = −

2πC1

µ0

Thus

C1 = −
µ0 I
2π

or

Az =
µ0 I
2π

ln
b
ρ

(66)

and

Hφ =
I

2πρ

as before. A plot of Az versus ρ for b = 5a is shown in Figure 7.20; the decrease

of |A| with distance from the concentrated current source that the inner conductor

represents is evident. The results of Problem D7.9 have also been added to Figure 7.20.

The extension of the curve into the outer conductor is left as Problem 7.43.

It is also possible to find Az between conductors by applying a process some of

us informally call “uncurling.” That is, we know H or B for the coax, and we may

Figure 7.20 The vector magnetic potential is shown

within the inner conductor and in the region between

conductors for a coaxial cable with b = 5a carrying I

in the az direction. Az = 0 is arbitrarily selected at ρ = b.
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therefore select the φ component of ∇ ×A = B and integrate to obtain Az . Try it,

you’ll like it!

D7.10. Equation (66) is obviously also applicable to the exterior of any con-

ductor of circular cross section carrying a current I in the az direction in free

space. The zero reference is arbitrarily set at ρ = b. Now consider two con-

ductors, each of 1 cm radius, parallel to the z axis with their axes lying in

the x = 0 plane. One conductor whose axis is at (0, 4 cm, z) carries 12 A

in the az direction; the other axis is at (0,−4 cm, z) and carries 12 A in the

−az direction. Each current has its zero reference for A located 4 cm from its

axis. Find the total A field at: (a) (0, 0, z); (b) (0, 8 cm, z); (c) (4 cm, 4 cm, z);

(d) (2 cm, 4 cm, z).

Ans. 0; 2.64 µWb/m; 1.93 µWb/m; 3.40 µWb/m
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CHAPTER 7 PROBLEMS

7.1 (a) Find H in rectangular components at P(2, 3, 4) if there is a current

filament on the z axis carrying 8 mA in the az direction. (b) Repeat if the

filament is located at x = −1, y = 2. (c) Find H if both filaments are present.

7.2 A filamentary conductor is formed into an equilateral triangle with sides of

length ℓ carrying current I . Find the magnetic field intensity at the center of

the triangle.

7.3 Two semi-infinite filaments on the z axis lie in the regions −∞ < z < −a
and a < z < ∞. Each carries a current I in the az direction. (a) Calculate H
as a function of ρ and φ at z = 0. (b) What value of a will cause the

magnitude of H at ρ = 1, z = 0, to be one-half the value obtained for an

infinite filament?

7.4 Two circular current loops are centered on the z axis at z = ±h. Each loop

has radius a and carries current I in the aφ direction. (a) Find H on the z axis

over the range −h < z < h. Take I = 1 A and plot |H| as a function of z/a if
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Figure 7.21 See Problem 7.5.

(b) h = a/4; (c) h = a/2; (d) h = a. Which choice for h gives the most

uniform field? These are called Helmholtz coils (of a single turn each in this

case), and are used in providing uniform fields.

7.5 The parallel filamentary conductors shown in Figure 7.21 lie in free space.

Plot |H| versus y, −4 < y < 4, along the line x = 0, z = 2.

7.6 A disk of radius a lies in the xy plane, with the z axis through its center.

Surface charge of uniform density ρs lies on the disk, which rotates about

the z axis at angular velocity 
 rad/s. Find H at any point on the z axis.

7.7 A filamentary conductor carrying current I in the az direction extends along

the entire negative z axis. At z = 0 it connects to a copper sheet that fills the

x > 0, y > 0 quadrant of the xy plane. (a) Set up the Biot-Savart law and

find H everywhere on the z axis; (b) repeat part (a), but with the copper sheet

occupying the entire xy plane (Hint: express aφ in terms of ax and ay and

angle φ in the integral).

7.8 For the finite-length current element on the z axis, as shown in Figure 7.5,

use the Biot-Savart law to derive Eq. (9) of Section 7.1.

7.9 A current sheet K = 8ax A/m flows in the region −2 < y < 2 in the plane

z = 0. Calculate H at P(0, 0, 3).

7.10 A hollow spherical conducting shell of radius a has filamentary connections

made at the top (r = a, θ = 0) and bottom (r = a, θ = π ). A direct current I
flows down the upper filament, down the spherical surface, and out the lower

filament. Find H in spherical coordinates (a) inside and (b) outside the

sphere.

7.11 An infinite filament on the z axis carries 20π mA in the az direction. Three

az-directed uniform cylindrical current sheets are also present: 400 mA/m at
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Figure 7.22 See Problem 7.12.

ρ = 1 cm, −250 mA/m at ρ = 2 cm, and −300 mA/m at ρ = 3 cm. Calculate

Hφ at ρ = 0.5, 1.5, 2.5, and 3.5 cm.

7.12 In Figure 7.22, let the regions 0 < z < 0.3 m and 0.7 < z < 1.0 m be

conducting slabs carrying uniform current densities of 10 A/m2 in opposite

directions as shown. Find H at z =: (a) −0.2; (b) 0.2; (c) 0.4; (d) 0.75;

(e) 1.2 m.

7.13 A hollow cylindrical shell of radius a is centered on the z axis and carries a

uniform surface current density of Kaaφ . (a) Show that H is not a function of

φ or z. (b) Show that Hφ and Hρ are everywhere zero. (c) Show that Hz = 0

for ρ > a. (d) Show that Hz = Ka for ρ < a. (e) A second shell, ρ = b,

carries a current Kbaφ . Find H everywhere.

7.14 A toroid having a cross section of rectangular shape is defined by the

following surfaces: the cylinders ρ = 2 and ρ = 3 cm, and the planes z = 1

and z = 2.5 cm. The toroid carries a surface current density of −50az A/m

on the surface ρ = 3 cm. Find H at the point P(ρ, φ, z): (a) PA(1.5 cm, 0,

2 cm); (b) PB(2.1 cm, 0, 2 cm); (c) PC (2.7 cm, π/2, 2 cm); (d) PD(3.5 cm,

π/2, 2 cm).

7.15 Assume that there is a region with cylindrical symmetry in which the

conductivity is given by σ = 1.5e−150ρkS/m. An electric field of 30az V/m

is present. (a) Find J. (b) Find the total current crossing the surface ρ < ρ0,

z = 0, all φ. (c) Make use of Ampère’s circuital law to find H.

7.16 A current filament carrying I in the −az direction lies along the entire

positive z axis. At the origin, it connects to a conducting sheet that forms the

xy plane. (a) Find K in the conducting sheet. (b) Use Ampere’s circuital law

to find H everywhere for z > 0; (c) find H for z < 0.
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7.17 A current filament on the z axis carries a current of 7 mA in the az direction,

and current sheets of 0.5 az A/m and −0.2 az A/m are located at ρ = 1 cm

and ρ = 0.5 cm, respectively. Calculate H at: (a) ρ = 0.5 cm; (b) ρ =
1.5 cm; (c) ρ = 4 cm. (d) What current sheet should be located at ρ = 4 cm

so that H = 0 for all ρ > 4 cm?

7.18 A wire of 3 mm radius is made up of an inner material (0 < ρ < 2 mm) for

which σ = 107 S/m, and an outer material (2 mm < ρ < 3 mm) for which

σ = 4 × 107 S/m. If the wire carries a total current of 100 mA dc, determine

H everywhere as a function of ρ.

7.19 In spherical coordinates, the surface of a solid conducting cone is described

by θ = π/4 and a conducting plane by θ = π/2. Each carries a total current

I . The current flows as a surface current radially inward on the plane to the

vertex of the cone, and then flows radially outward throughout the cross

section of the conical conductor. (a) Express the surface current density as a

function of r ; (b) express the volume current density inside the cone as a

function of r ; (c) determine H as a function of r and θ in the region between

the cone and the plane; (d) determine H as a function of r and θ inside the

cone.

7.20 A solid conductor of circular cross section with a radius of 5 mm has a

conductivity that varies with radius. The conductor is 20 m long, and there is

a potential difference of 0.1 V dc between its two ends. Within the conductor,

H = 105ρ2aφ A/m. (a) Find σ as a function of ρ. (b) What is the resistance

between the two ends?

7.21 A cylindrical wire of radius a is oriented with the z axis down its center line.

The wire carries a nonuniform current down its length of density

J = bρ az A/m2 where b is a constant. (a) What total current flows in the

wire? (b) Find Hin (0 < ρ < a), as a function of ρ; (c) find Hout (ρ > a), as a

function of ρ; (d) verify your results of parts (b) and (c) by using ∇ ×H = J.

7.22 A solid cylinder of radius a and length L , where L ≫ a, contains volume

charge of uniform density ρ0 C/m3. The cylinder rotates about its axis (the

z axis) at angular velocity 
 rad/s. (a) Determine the current density J as a

function of position within the rotating cylinder. (b) Determine H on-axis by

applying the results of Problem 7.6. (c) Determine the magnetic field

intensity H inside and outside. (d) Check your result of part (c) by taking

the curl of H.

7.23 Given the field H = 20ρ2aφ A/m: (a) Determine the current density J.

(b) Integrate J over the circular surface ρ ≤ 1, 0 < φ < 2π, z = 0, to

determine the total current passing through that surface in the az direction.

(c) Find the total current once more, this time by a line integral around the

circular path ρ = 1, 0 < φ < 2π, z = 0.

7.24 Infinitely long filamentary conductors are located in the y = 0 plane at x = n
meters where n = 0, ±1, ±2, . . . Each carries 1 A in the az direction.



CHAPTER 7 The Steady Magnetic Field 227

(a) Find H on the y axis. As a help,

∞
∑

n=1

y
y2 + n2

=
π

2
−

1

2y
+

π

e2πy − 1

(b) Compare your result of part (a) to that obtained if the filaments are

replaced by a current sheet in the y = 0 plane that carries surface current

density K = 1az A/m.

7.25 When x, y, and z are positive and less than 5, a certain magnetic field

intensity may be expressed as H = [x2 yz/(y + 1)]ax + 3x2z2ay −

[xyz2/(y + 1)]az . Find the total current in the ax direction that crosses the

strip x = 2, 1 ≤ y ≤ 4, 3 ≤ z ≤ 4, by a method utilizing: (a) a surface

integral; (b) a closed line integral.

7.26 Consider a sphere of radius r = 4 centered at (0, 0, 3). Let S1 be that portion

of the spherical surface that lies above the xy plane. Find
∫

S1
(∇ ×H) · dS if

H = 3ρ aφ in cylindrical coordinates.

7.27 The magnetic field intensity is given in a certain region of space as H =
[(x + 2y)/z2]ay + (2/z)az A/m. (a) Find ∇ ×H. (b) Find J. (c) Use J to find

the total current passing through the surface z = 4, 1 ≤ x ≤ 2, 3 ≤ z ≤ 5,

in the az direction. (d) Show that the same result is obtained using the other

side of Stokes’ theorem.

7.28 Given H = (3r2/ sin θ )aθ + 54r cos θaφ A/m in free space: (a) Find the total

current in the aθ direction through the conical surface θ = 20◦, 0 ≤ φ ≤ 2π ,

0 ≤ r ≤ 5, by whatever side of Stokes’ theorem you like the best. (b) Check

the result by using the other side of Stokes’ theorem.

7.29 A long, straight, nonmagnetic conductor of 0.2 mm radius carries a

uniformly distributed current of 2 A dc. (a) Find J within the conductor.

(b) Use Ampère’s circuital law to find H and B within the conductor.

(c) Show that ∇ ×H = J within the conductor. (d) Find H and B outside the

conductor. (e) Show that ∇ ×H = J outside the conductor.

7.30 (An inversion of Problem 7.20.) A solid, nonmagnetic conductor of circular

cross section has a radius of 2 mm. The conductor is inhomogeneous, with

σ = 106(1 + 106ρ2) S/m. If the conductor is 1 m in length and has a voltage

of 1 mV between its ends, find: (a) H inside; (b) the total magnetic flux

inside the conductor.

7.31 The cylindrical shell defined by 1 cm < ρ < 1.4 cm consists of a

nonmagnetic conducting material and carries a total current of 50 A in the az
direction. Find the total magnetic flux crossing the plane φ = 0, 0 < z < 1:

(a) 0 < ρ < 1.2 cm; (b) 1.0 cm < ρ < 1.4 cm; (c) 1.4 cm < ρ < 20 cm.

7.32 The free space region defined by 1 < z < 4 cm and 2 < ρ < 3 cm is a toroid

of rectangular cross section. Let the surface at ρ = 3 cm carry a surface

current K = 2az kA/m. (a) Specify the current densities on the surfaces at
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ρ = 2 cm, z = 1 cm, and z = 4 cm. (b) Find H everywhere. (c) Calculate

the total flux within the toroid.

7.33 Use an expansion in rectangular coordinates to show that the curl of the

gradient of any scalar field G is identically equal to zero.

7.34 A filamentary conductor on the z axis carries a current of 16 A in the az
direction, a conducting shell at ρ = 6 carries a total current of 12 A in the

−az direction, and another shell at ρ = 10 carries a total current of 4 A in

the −az direction. (a) Find H for 0 < ρ < 12. (b) Plot Hφ versus ρ.

(c) Find the total flux 
 crossing the surface 1 < ρ < 7, 0 < z < 1, at fixed

φ.

7.35 A current sheet, K = 20 az A/m, is located at ρ = 2, and a second sheet,

K = −10az A/m, is located at ρ = 4. (a) Let Vm = 0 at P(ρ = 3, φ = 0,

z = 5) and place a barrier at φ = π . Find Vm(ρ, φ, z) for −π < φ < π .

(b) Let A = 0 at P and find A(ρ, φ, z) for 2 < ρ < 4.

7.36 Let A = (3y − z)ax + 2xzay Wb/m in a certain region of free space.

(a) Show that ∇ ·A = 0. (b) At P(2, −1, 3), find A, B, H, and J.

7.37 Let N = 1000, I = 0.8 A, ρ0 = 2 cm, and a = 0.8 cm for the toroid shown

in Figure 7.12b. Find Vm in the interior of the toroid if Vm = 0 at ρ = 2.5

cm, φ = 0.3π . Keep φ within the range 0 < φ < 2π .

7.38 A square filamentary differential current loop, d L on a side, is centered at the

origin in the z = 0 plane in free space. The current I flows generally in the

aφ direction. (a) Assuming that r >> d L , and following a method similar to

that in Section 4.7, show that

dA =
µ0 I (d L)2 sin θ

4πr2
aφ

(b) Show that

dH =
I (d L)2

4πr3
(2 cos θ ar + sin θ aθ )

The square loop is one form of a magnetic dipole.

7.39 Planar current sheets of K = 30az A/m and −30az A/m are located in free

space at x = 0.2 and x = −0.2, respectively. For the region −0.2 < x < 0.2

(a) find H; (b) obtain an expression for Vm if Vm = 0 at P(0.1, 0.2, 0.3);

(c) find B; (d) obtain an expression for A if A = 0 at P.

7.40 Show that the line integral of the vector potential A about any closed path is

equal to the magnetic flux enclosed by the path, or
∮

A · dL =
∫

B · dS.

7.41 Assume that A = 50ρ2az Wb/m in a certain region of free space. (a) Find H
and B. (b) Find J. (c) Use J to find the total current crossing the surface

0 ≤ ρ ≤ 1, 0 ≤ φ < 2π , z = 0. (d) Use the value of Hφ at ρ = 1 to calculate
∮

H · dL for ρ = 1, z = 0.
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7.42 Show that ∇2(1/R12) = −∇1(1/R12) = R21/R3
12.

7.43 Compute the vector magnetic potential within the outer conductor for the

coaxial line whose vector magnetic potential is shown in Figure 7.20 if the

outer radius of the outer conductor is 7a. Select the proper zero reference and

sketch the results on the figure.

7.44 By expanding Eq. (58), Section 7.7 in rectangular coordinates, show that (59)

is correct.



8 C H A P T E R

Magnetic Forces,
Materials, and
Inductance

W
e are now ready to undertake the second half of the magnetic field problem,

that of determining the forces and torques exerted by the magnetic field on

other charges. The electric field causes a force to be exerted on a charge

that may be either stationary or in motion; we will see that the steady magnetic field is

capable of exerting a force only on a moving charge. This result appears reasonable; a

magnetic field may be produced by moving charges and may exert forces on moving

charges; a magnetic field cannot arise from stationary charges and cannot exert any

force on a stationary charge.

This chapter initially considers the forces and torques on current-carrying con-

ductors that may either be of a filamentary nature or possess a finite cross section

with a known current density distribution. The problems associated with the motion

of particles in a vacuum are largely avoided.

With an understanding of the fundamental effects produced by the magnetic

field, we may then consider the varied types of magnetic materials, the analysis

of elementary magnetic circuits, the forces on magnetic materials, and finally, the

important electrical circuit concepts of self-inductance and mutual inductance. ■

8.1 FORCE ON A MOVING CHARGE

In an electric field, the definition of the electric field intensity shows us that the force

on a charged particle is

F = QE (1)

230
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The force is in the same direction as the electric field intensity (for a positive charge)

and is directly proportional to both E and Q. If the charge is in motion, the force at

any point in its trajectory is then given by (1).

A charged particle in motion in a magnetic field of flux density B is found

experimentally to experience a force whose magnitude is proportional to the product

of the magnitudes of the charge Q, its velocity v, and the flux densityB, and to the sine

of the angle between the vectors v and B. The direction of the force is perpendicular

to both v and B and is given by a unit vector in the direction of v×B. The force may

therefore be expressed as

F = Qv× B (2)

A fundamental difference in the effect of the electric and magnetic fields on

charged particles is now apparent, for a force which is always applied in a direc-

tion at right angles to the direction in which the particle is proceeding can never

change the magnitude of the particle velocity. In other words, the acceleration vector

is always normal to the velocity vector. The kinetic energy of the particle remains

unchanged, and it follows that the steady magnetic field is incapable of transfer-

ring energy to the moving charge. The electric field, on the other hand, exerts a

force on the particle which is independent of the direction in which the particle is

progressing and therefore effects an energy transfer between field and particle in

general.

The first two problems at the end of this chapter illustrate the different effects of

electric and magnetic fields on the kinetic energy of a charged particle moving in free

space.

The force on a moving particle arising from combined electric and magnetic

fields is obtained easily by superposition,

F = Q(E+ v× B) (3)

This equation is known as the Lorentz force equation, and its solution is required in

determining electron orbits in the magnetron, proton paths in the cyclotron, plasma

characteristics in a magnetohydrodynamic (MHD) generator, or, in general, charged-

particle motion in combined electric and magnetic fields.

D8.1. The point charge Q = 18 nC has a velocity of 5×106 m/s in the direction

aν = 0.60ax +0.75ay +0.30az . Calculate the magnitude of the force exerted on

the charge by the field: (a) B = −3ax + 4ay + 6az mT; (b) E = −3ax + 4ay +
6az kV/m; (c) B and E acting together.

Ans. 660 µN; 140 µN; 670 µN



232 ENGINEERING ELECTROMAGNETICS

8.2 FORCE ON A DIFFERENTIAL
CURRENT ELEMENT

The force on a charged particle moving through a steady magnetic field may be written

as the differential force exerted on a differential element of charge,

dF = dQ v× B (4)

Physically, the differential element of charge consists of a large number of very

small, discrete charges occupying a volume which, although small, is much larger

than the average separation between the charges. The differential force expressed

by (4) is thus merely the sum of the forces on the individual charges. This sum, or

resultant force, is not a force applied to a single object. In an analogous way, we might

consider the differential gravitational force experienced by a small volume taken in

a shower of falling sand. The small volume contains a large number of sand grains,

and the differential force is the sum of the forces on the individual grains within the

small volume.

If our charges are electrons in motion in a conductor, however, we can show

that the force is transferred to the conductor and that the sum of this extremely large

number of extremely small forces is of practical importance. Within the conductor,

electrons are in motion throughout a region of immobile positive ions which form

a crystalline array, giving the conductor its solid properties. A magnetic field which

exerts forces on the electrons tends to cause them to shift position slightly and produces

a small displacement between the centers of “gravity” of the positive and negative

charges. The Coulomb forces between electrons and positive ions, however, tend to

resist such a displacement. Any attempt to move the electrons, therefore, results in

an attractive force between electrons and the positive ions of the crystalline lattice.

The magnetic force is thus transferred to the crystalline lattice, or to the conductor

itself. The Coulomb forces are so much greater than the magnetic forces in good

conductors that the actual displacement of the electrons is almost immeasurable. The

charge separation that does result, however, is disclosed by the presence of a slight

potential difference across the conductor sample in a direction perpendicular to both

the magnetic field and the velocity of the charges. The voltage is known as the Hall
voltage, and the effect itself is called the Hall effect.

Figure 8.1 illustrates the direction of the Hall voltage for both positive and neg-

ative charges in motion. In Figure 8.1a, v is in the −ax direction, v × B is in the ay
direction, and Q is positive, causing FQ to be in the ay direction; thus, the positive

charges move to the right. In Figure 8.1b, v is now in the +ax direction, B is still in

the az direction, v×B is in the −ay direction, and Q is negative; thus, FQ is again in

the ay direction. Hence, the negative charges end up at the right edge. Equal currents

provided by holes and electrons in semiconductors can therefore be differentiated by

their Hall voltages. This is one method of determining whether a given semiconductor

is n-type or p-type.

Devices employ the Hall effect to measure the magnetic flux density and, in some

applications where the current through the device can be made proportional to the
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Figure 8.1 Equal currents directed into the material are provided by positive charges

moving inward in (a) and negative charges moving outward in (b). The two cases can be

distinguished by oppositely directed Hall voltages, as shown.

magnetic field across it, to serve as electronic wattmeters, squaring elements, and so

forth.

Returning to (4), we may therefore say that if we are considering an element

of moving charge in an electron beam, the force is merely the sum of the forces on

the individual electrons in that small volume element, but if we are considering an

element of moving charge within a conductor, the total force is applied to the solid

conductor itself. We will now limit our attention to the forces on current-carrying

conductors.

In Chapter 5 we defined convection current density in terms of the velocity of

the volume charge density,

J = ρνv

The differential element of charge in (4) may also be expressed in terms of volume

charge density,1

dQ = ρνdν

Thus

dF = ρνdν v× B

or

dF = J× B dν (5)

We saw in Chapter 7 that J dν may be interpreted as a differential current element;

that is,

J dν = K dS = I dL

1Remember that dν is a differential volume element and not a differential increase in velocity.
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and thus the Lorentz force equation may be applied to surface current density,

dF = K× B dS (6)

or to a differential current filament,

dF = I dL× B (7)

Integrating (5), (6), or (7) over a volume, a surface which may be either open or

closed (why?), or a closed path, respectively, leads to the integral formulations

F =
∫

vol

J× B dν (8)

F =
∫

S
K× B dS (9)

and

F =
∮

I dL× B = −I
∮

B× dL (10)

One simple result is obtained by applying (7) or (10) to a straight conductor in a

uniform magnetic field,

F = IL× B (11)

The magnitude of the force is given by the familiar equation

F = BIL sin θ (12)

where θ is the angle between the vectors representing the direction of the current flow

and the direction of the magnetic flux density. Equation (11) or (12) applies only to

a portion of the closed circuit, and the remainder of the circuit must be considered in

any practical problem.

EXAMPLE 8.1

As a numerical example of these equations, consider Figure 8.2. We have a square

loop of wire in the z = 0 plane carrying 2 mA in the field of an infinite filament on

the y axis, as shown. We desire the total force on the loop.

Solution. The field produced in the plane of the loop by the straight filament is

H =
I

2πx
az =

15

2πx
az A/m

Therefore,

B = µ0H = 4π × 10−7H =
3 × 10−6

x
az T
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Figure 8.2 A square loop of wire in the xy plane carrying 2 mA

is subjected to a nonuniform B field.

We use the integral form (10),

F = −I
∮

B× dL

Let us assume a rigid loop so that the total force is the sum of the forces on the four

sides. Beginning with the left side:

F = −2 × 10−3 × 3 × 10−6

[∫ 3

x=1

az

x
× dx ax +

∫ 2

y=0

az

3
× dy ay

+
∫ 1

x=3

az

x
× dx ax +

∫ 0

y=2

az

1
× dy ay

]

= −6 × 10−9

[

ln x
∣

∣

∣

∣

3

1

ay +
1

3
y
∣

∣

∣

∣

2

0

(−ax ) + ln x
∣

∣

∣

∣

1

3

ay + y
∣

∣

∣

∣

0

2

(−ax )

]

= −6 × 10−9

[

(ln 3)ay −
2

3
ax +

(

ln
1

3

)

ay + 2ax

]

= −8ax nN

Thus, the net force on the loop is in the −ax direction.

D8.2. The field B = −2ax + 3ay + 4az mT is present in free space. Find the

vector force exerted on a straight wire carrying 12 A in the aAB direction, given

A(1, 1, 1) and: (a) B(2, 1, 1); (b) B(3, 5, 6).

Ans. −48ay + 36az mN; 12ax − 216ay + 168az mN
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D8.3. The semiconductor sample shown in Figure 8.1 is n-type silicon, hav-

ing a rectangular cross section of 0.9 mm by 1.1 cm and a length of 1.3 cm.

Assume the electron and hole mobilities are 0.13 and 0.03 m2/V · s, respectively,

at the operating temperature. Let B = 0.07 T and the electric field intensity in

the direction of the current flow be 800 V/m. Find the magnitude of: (a) the

voltage across the sample length; (b) the drift velocity; (c) the transverse force

per coulomb of moving charge caused by B; (d) the transverse electric field

intensity; (e) the Hall voltage.

Ans. 10.40 V; 104.0 m/s; 7.28 N/C; 7.28 V/m; 80.1 mV

8.3 FORCE BETWEEN DIFFERENTIAL
CURRENT ELEMENTS

The concept of the magnetic field was introduced to break into two parts the problem

of finding the interaction of one current distribution on a second current distribution.

It is possible to express the force on one current element directly in terms of a

second current element without finding the magnetic field. Because we claimed that

the magnetic-field concept simplifies our work, it then behooves us to show that

avoidance of this intermediate step leads to more complicated expressions.

The magnetic field at point 2 due to a current element at point 1 was found to be

dH2 =
I1dL1 × aR12

4πR2
12

Now, the differential force on a differential current element is

dF = I dL× B

and we apply this to our problem by letting B be dB2 (the differential flux density at

point 2 caused by current element 1), by identifying I dL as I2dL2, and by symbolizing

the differential amount of our differential force on element 2 as d(dF2):

d(dF2) = I2dL2 × dB2

Because dB2 = µ0dH2, we obtain the force between two differential current

elements,

d(dF2) = µ0

I1 I2

4πR2
12

dL2 × (dL1 × aR12) (13)

EXAMPLE 8.2

As an example that illustrates the use (and misuse) of these results, consider the

two differential current elements shown in Figure 8.3. We seek the differential force

on dL2.
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Figure 8.3 Given P1(5, 2, 1), P2(1, 8, 5),

I 1 dL1 = −3ay A · m, and I 2 dL2 = −4az A · m,

the force on I 2 dL2 is 8.56 nN in the ay direction.

Solution. We have I1dL1 = −3ayA · m at P1(5, 2, 1), and I2dL2 = −4azA · m at

P2(1, 8, 5). Thus,R12 = −4ax +6ay +4az , and we may substitute these data into (13),

d(dF2) =
4π10−7

4π

(−4az) × [(−3ay) × (−4ax + 6ay + 4az)]

(16 + 36 + 16)1.5

= 8.56ay nN

Many chapters ago, when we discussed the force exerted by one point charge on

another point charge, we found that the force on the first charge was the negative of

that on the second. That is, the total force on the system was zero. This is not the case

with the differential current elements, and d(dF1) = −12.84az nN in Example 8.2.

The reason for this different behavior lies with the nonphysical nature of the current

element. Whereas point charges may be approximated quite well by small charges,

the continuity of current demands that a complete circuit be considered. This we shall

now do.

The total force between two filamentary circuits is obtained by integrating twice:

F2 = µ0

I1 I2

4π

∮ [

dL2 ×
∮ dL1 × aR12

R2
12

]

= µ0

I1 I2

4π

∮ [∮ aR12 × dL1

R2
12

]

× dL2

(14)

Equation (14) is quite formidable, but the familiarity gained in Chapter 7 with

the magnetic field should enable us to recognize the inner integral as the integral

necessary to find the magnetic field at point 2 due to the current element at point 1.

Although we shall only give the result, it is not very difficult to use (14) to

find the force of repulsion between two infinitely long, straight, parallel, filamentary
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Figure 8.4 Two infinite parallel

filaments with separation d and equal

but opposite currents I experience a

repulsive force of µ0 I 2/(2πd ) N/m.

conductors with separation d , and carrying equal but opposite currents I , as shown

in Figure 8.4. The integrations are simple, and most errors are made in determining

suitable expressions for aR12, dL1, and dL2. However, since the magnetic field in-

tensity at either wire caused by the other is already known to be I/(2πd), it is readily

apparent that the answer is a force of µ0 I 2/(2πd) newtons per meter length.

D8.4. Two differential current elements, I1�L1 = 3 × 10−6ay A · m at

P1(1, 0, 0) and I2�L2 = 3×10−6(−0.5ax +0.4ay +0.3az) A · m at P2(2, 2, 2),

are located in free space. Find the vector force exerted on: (a) I2�L2 by I1�L1;

(b) I1�L1 by I2�L2.

Ans. (−1.333ax + 0.333ay − 2.67az)10−20 N; (4.67ax + 0.667az)10−20 N

8.4 FORCE AND TORQUE
ON A CLOSED CIRCUIT

We have already obtained general expressions for the forces exerted on current sys-

tems. One special case is easily disposed of, for if we take our relationship for the

force on a filamentary closed circuit, as given by Eq. (10), Section 8.2,

F = −I
∮

B× dL

and assume a uniform magnetic flux density, thenBmay be removed from the integral:

F = −IB×
∮

dL

However, we discovered during our investigation of closed line integrals in an elec-

trostatic potential field that
∮

dL = 0, and therefore the force on a closed filamentary

circuit in a uniform magnetic field is zero.

If the field is not uniform, the total force need not be zero.
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Figure 8.5 (a) Given a lever arm R extending from an origin O to a point P where

force F is applied, the torque about O is T = R × F. (b) If F2 = −F1, then the torque

T = R21 × F1 is independent of the choice of origin for R1 and R2.

This result for uniform fields does not have to be restricted to filamentary circuits

only. The circuit may contain surface currents or volume current density as well. If

the total current is divided into filaments, the force on each one is zero, as we have

shown, and the total force is again zero. Therefore, any real closed circuit carrying

direct currents experiences a total vector force of zero in a uniform magnetic field.

Although the force is zero, the torque is generally not equal to zero.

In defining the torque, or moment, of a force, it is necessary to consider both an

origin at or about which the torque is to be calculated, and the point at which the

force is applied. In Figure 8.5a, we apply a force F at point P , and we establish an

origin at O with a rigid lever arm R extending from O to P. The torque about point

O is a vector whose magnitude is the product of the magnitudes of R, of F, and of

the sine of the angle between these two vectors. The direction of the vector torque T
is normal to both the force F and the lever arm R and is in the direction of progress

of a right-handed screw as the lever arm is rotated into the force vector through the

smaller angle. The torque is expressible as a cross product,

T = R× F

Now assume that two forces, F1 at P1 and F2 at P2, having lever arms R1 and

R2 extending from a common origin O , as shown in Figure 8.5b, are applied to an

object of fixed shape and that the object does not undergo any translation. Then the

torque about the origin is

T = R1 × F1 + R2 × F2

where

F1 + F2 = 0
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and therefore

T = (R1 − R2) × F1 = R21 × F1

The vector R21 = R1 − R2 joins the point of application of F2 to that of F1 and is

independent of the choice of origin for the two vectors R1 and R2. Therefore, the

torque is also independent of the choice of origin, provided that the total force is zero.

This may be extended to any number of forces.

Consider the application of a vertically upward force at the end of a horizontal

crank handle on an elderly automobile. This cannot be the only applied force, for if it

were, the entire handle would be accelerated in an upward direction. A second force,

equal in magnitude to that exerted at the end of the handle, is applied in a downward

direction by the bearing surface at the axis of rotation. For a 40-N force on a crank

handle 0.3 m in length, the torque is 12 N · m. This figure is obtained regardless of

whether the origin is considered to be on the axis of rotation (leading to 12 N · m plus

0 N · m), at the midpoint of the handle (leading to 6 N · m plus 6 N · m), or at some

point not even on the handle or an extension of the handle.

We may therefore choose the most convenient origin, and this is usually on the

axis of rotation and in the plane containing the applied forces if the several forces

are coplanar.

With this introduction to the concept of torque, let us now consider the torque

on a differential current loop in a magnetic field B. The loop lies in the xy plane

(Figure 8.6); the sides of the loop are parallel to the x and y axes and are of length

dx and dy. The value of the magnetic field at the center of the loop is taken as B0.

Figure 8.6 A differential current loop in a magnetic field B.

The torque on the loop is d T = I (dx dyaz) × B0 = I dS × B.
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Since the loop is of differential size, the value of B at all points on the loop may be

taken as B0. (Why was this not possible in the discussion of curl and divergence?)

The total force on the loop is therefore zero, and we are free to choose the origin for

the torque at the center of the loop.

The vector force on side 1 is

dF1 = I dx ax × B0

or

dF1 = I dx(B0yaz − B0zay)

For this side of the loop the lever arm R extends from the origin to the midpoint

of the side, R1 = − 1
2
dy ay , and the contribution to the total torque is

dT1 = R1 × dF1

= − 1
2
dy ay × I dx(B0yaz − B0zay)

= − 1
2
dx dy I B0yax

The torque contribution on side 3 is found to be the same,

dT3 = R3 × dF3 = 1
2
dy ay × (−I dx ax × B0)

= − 1
2
dx dy IB0yax = dT1

and

dT1 + dT3 = −dx dy IB0yax

Evaluating the torque on sides 2 and 4, we find

dT2 + dT4 = dx dy IB0xay

and the total torque is then

dT = I dx dy(B0xay − B0yax )

The quantity within the parentheses may be represented by a cross product,

dT = I dx dy(az × B0)

or

dT = I dS× B (15)

where dS is the vector area of the differential current loop and the subscript on B0

has been dropped.

We now define the product of the loop current and the vector area of the loop as

the differential magnetic dipole moment dm, with units of A · m2. Thus

dm = I dS (16)
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and

dT = dm× B (17)

If we extend the results we obtained in Section 4.7 for the differential electric
dipole by determining the torque produced on it by an electric field, we see a similar

result,

dT = dp× E

Equations (15) and (17) are general results that hold for differential loops of any

shape, not just rectangular ones. The torque on a circular or triangular loop is also

given in terms of the vector surface or the moment by (15) or (17).

Because we selected a differential current loop so that we might assume B was

constant throughout it, it follows that the torque on a planar loop of any size or shape

in a uniform magnetic field is given by the same expression,

T = IS× B = m× B (18)

We should note that the torque on the current loop always tends to turn the loop

so as to align the magnetic field produced by the loop with the applied magnetic field

that is causing the torque. This is perhaps the easiest way to determine the direction

of the torque.

EXAMPLE 8.3

To illustrate some force and torque calculations, consider the rectangular loop shown

in Figure 8.7. Calculate the torque by using T = IS× B.

Solution. The loop has dimensions of 1 m by 2 m and lies in the uniform field

B0 = −0.6ay + 0.8azT. The loop current is 4 mA, a value that is sufficiently small to

avoid causing any magnetic field that might affect B0.

We have

T = 4 × 10−3[(1)(2)az] × (−0.6ay + 0.8az) = 4.8ax mN · m

Thus, the loop tends to rotate about an axis parallel to the positive x axis. The small

magnetic field produced by the 4 mA loop current tends to line up with B0.

EXAMPLE 8.4

Now let us find the torque once more, this time by calculating the total force and

torque contribution for each side.

Solution. On side 1 we have

F1 = IL1 × B0 = 4 × 10−3(1ax ) × (−0.6ay + 0.8az)

= −3.2ay − 2.4az mN
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Figure 8.7 A rectangular loop is located in a uniform

magnetic flux density B0.

On side 3 we obtain the negative of this result,

F3 = 3.2ay + 2.4az mN

Next, we attack side 2:

F2 = IL2 × B0 = 4 × 10−3(2ay) × (−0.6ay + 0.8az)

= 6.4ax mN

with side 4 again providing the negative of this result,

F4 = −6.4ax mN

Because these forces are distributed uniformly along each of the sides, we treat

each force as if it were applied at the center of the side. The origin for the torque may

be established anywhere since the sum of the forces is zero, and we choose the center

of the loop. Thus,

T = T1 + T2 + T3 + T4 = R1 × F1 + R2 × F2 + R3 × F3 + R4 × F4

= (−1ay) × (−3.2ay − 2.4az) + (0.5ax ) × (6.4ax )

+ (1ay) × (3.2ay + 2.4az) + (−0.5ax ) × (−6.4ax )

= 2.4ax + 2.4ax = 4.8ax mN · m

Crossing the loop moment with the magnetic flux density is certainly easier.
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D8.5. A conducting filamentary triangle joins points A(3, 1, 1), B(5, 4, 2),

and C(1, 2, 4). The segment AB carries a current of 0.2 A in the aAB direction.

There is present a magnetic field B = 0.2ax − 0.1ay + 0.3az T. Find: (a) the

force on segment BC ; (b) the force on the triangular loop; (c) the torque on the

loop about an origin at A; (d) the torque on the loop about an origin at C.

Ans. −0.08ax + 0.32ay + 0.16az N; 0; −0.16ax − 0.08ay + 0.08az N · m; −0.16ax −
0.08ay + 0.08az N · m

8.5 THE NATURE OF MAGNETIC MATERIALS

We are now in a position to combine our knowledge of the action of a magnetic field

on a current loop with a simple model of an atom and obtain some appreciation of

the difference in behavior of various types of materials in magnetic fields.

Although accurate quantitative results can only be predicted through the use

of quantum theory, the simple atomic model, which assumes that there is a central

positive nucleus surrounded by electrons in various circular orbits, yields reasonable

quantitative results and provides a satisfactory qualitative theory. An electron in an

orbit is analogous to a small current loop (in which the current is directed oppositely

to the direction of electron travel) and, as such, experiences a torque in an external

magnetic field, the torque tending to align the magnetic field produced by the orbiting

electron with the external magnetic field. If there were no other magnetic moments to

consider, we would then conclude that all the orbiting electrons in the material would

shift in such a way as to add their magnetic fields to the applied field, and thus that

the resultant magnetic field at any point in the material would be greater than it would

be at that point if the material were not present.

A second moment, however, is attributed to electron spin. Although it is tempting

to model this phenomenon by considering the electron as spinning about its own axis

and thus generating a magnetic dipole moment, satisfactory quantitative results are

not obtained from such a theory. Instead, it is necessary to digest the mathematics of

relativistic quantum theory to show that an electron may have a spin magnetic moment

of about ±9 × 10−24 A · m2; the plus and minus signs indicate that alignment aiding

or opposing an external magnetic field is possible. In an atom with many electrons

present, only the spins of those electrons in shells which are not completely filled will

contribute to a magnetic moment for the atom.

A third contribution to the moment of an atom is caused by nuclear spin. Although

this factor provides a negligible effect on the overall magnetic properties of materials,

it is the basis of the nuclear magnetic resonance imaging (MRI) procedure provided

by many of the larger hospitals.

Thus each atom contains many different component moments, and their com-

bination determines the magnetic characteristics of the material and provides its

general magnetic classification. We describe briefly six different types of material:

diamagnetic, paramagnetic, ferromagnetic, antiferromagnetic, ferrimagnetic, and

superparamagnetic.
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Let us first consider atoms in which the small magnetic fields produced by the

motion of the electrons in their orbits and those produced by the electron spin combine

to produce a net field of zero. Note that we are considering here the fields produced

by the electron motion itself in the absence of any external magnetic field; we might

also describe this material as one in which the permanent magnetic moment m0 of

each atom is zero. Such a material is termed diamagnetic. It would seem, therefore,

that an external magnetic field would produce no torque on the atom, no realignment

of the dipole fields, and consequently an internal magnetic field that is the same as the

applied field. With an error that only amounts to about one part in a hundred thousand,

this is correct.

Let us select an orbiting electron whose moment m is in the same direction as

the applied field B0 (Figure 8.8). The magnetic field produces an outward force on

the orbiting electron. Since the orbital radius is quantized and cannot change, the

inward Coulomb force of attraction is also unchanged. The force unbalance created

by the outward magnetic force must therefore be compensated for by a reduced orbital

velocity. Hence, the orbital moment decreases, and a smaller internal field results.

If we had selected an atom for whichm andB0 were opposed, the magnetic force

would be inward, the velocity would increase, the orbital moment would increase, and

greater cancellation of B0 would occur. Again a smaller internal field would result.

Metallic bismuth shows a greater diamagnetic effect than most other diamag-

netic materials, among which are hydrogen, helium, the other “inert” gases, sodium

chloride, copper, gold, silicon, germanium, graphite, and sulfur. We should also re-

alize that the diamagnetic effect is present in all materials, because it arises from an

interaction of the external magnetic field with every orbiting electron; however, it is

overshadowed by other effects in the materials we shall consider next.

Now consider an atom in which the effects of the electron spin and orbital motion

do not quite cancel. The atom as a whole has a small magnetic moment, but the random

orientation of the atoms in a larger sample produces an average magnetic moment

of zero. The material shows no magnetic effects in the absence of an external field.

Figure 8.8 An orbiting electron is shown having

a magnetic moment m in the same direction as an

applied field B0.
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When an external field is applied, however, there is a small torque on each atomic

moment, and these moments tend to become aligned with the external field. This

alignment acts to increase the value of B within the material over the external value.

However, the diamagnetic effect is still operating on the orbiting electrons and may

counteract the increase. If the net result is a decrease in B, the material is still called

diamagnetic. However, if there is an increase in B, the material is termed paramag-
netic. Potassium, oxygen, tungsten, and the rare earth elements and many of their salts,

such as erbium chloride, neodymium oxide, and yttrium oxide, one of the materials

used in masers, are examples of paramagnetic substances.

The remaining four classes of material, ferromagnetic, antiferromagnetic, fer-

rimagnetic, and superparamagnetic, all have strong atomic moments. Moreover, the

interaction of adjacent atoms causes an alignment of the magnetic moments of the

atoms in either an aiding or exactly opposing manner.

In ferromagnetic materials, each atom has a relatively large dipole moment,

caused primarily by uncompensated electron spin moments. Interatomic forces cause

these moments to line up in a parallel fashion over regions containing a large number

of atoms. These regions are called domains, and they may have a variety of shapes

and sizes ranging from one micrometer to several centimeters, depending on the size,

shape, material, and magnetic history of the sample. Virgin ferromagnetic materials

will have domains which each have a strong magnetic moment; the domain moments,

however, vary in direction from domain to domain. The overall effect is therefore one

of cancellation, and the material as a whole has no magnetic moment. Upon application

of an external magnetic field, however, those domains which have moments in the

direction of the applied field increase their size at the expense of their neighbors,

and the internal magnetic field increases greatly over that of the external field alone.

When the external field is removed, a completely random domain alignment is not

usually attained, and a residual, or remnant, dipole field remains in the macroscopic

structure. The fact that the magnetic moment of the material is different after the

field has been removed, or that the magnetic state of the material is a function of its

magnetic history, is called hysteresis, a subject which will be discussed again when

magnetic circuits are studied in Section 8.8.

Ferromagnetic materials are not isotropic in single crystals, and we will therefore

limit our discussion to polycrystalline materials, except for mentioning that one of the

characteristics of anisotropic magnetic materials is magnetostriction, or the change

in dimensions of the crystal when a magnetic field is impressed on it.

The only elements that are ferromagnetic at room temperature are iron, nickel,

and cobalt, and they lose all their ferromagnetic characteristics above a temperature

called the Curie temperature, which is 1043 K (770◦C) for iron. Some alloys of these

metals with each other and with other metals are also ferromagnetic, as for example

alnico, an aluminum-nickel-cobalt alloy with a small amount of copper. At lower

temperatures some of the rare earth elements, such as gadolinium and dysprosium,

are ferromagnetic. It is also interesting that some alloys of nonferromagnetic metals

are ferromagnetic, such as bismuth-manganese and copper-manganese-tin.

In antiferromagnetic materials, the forces between adjacent atoms cause the

atomic moments to line up in an antiparallel fashion. The net magnetic moment is
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Table 8.1 Characteristics of magnetic materials

Classificatio Magnetic Moments B Values Comments

Diamagnetic morb +mspin = 0 Bint < Bappl Bint
.= Bappl

Paramagnetic morb +mspin = small Bint > Bappl Bint
.= Bappl

Ferromagnetic |mspin| ≫ |morb| Bint ≫ Bappl Domains

Antiferromagnetic |mspin| ≫ |morb| Bint
.= Bappl Adjacent moments oppose

Ferrimagnetic |mspin| ≫ |morb| Bint > Bappl Unequal adjacent moments
oppose; low σ

Superparamagnetic |mspin| ≫ |morb| Bint > Bappl Nonmagnetic matrix;
recording tapes

zero, and antiferromagnetic materials are affected only slightly by the presence of

an external magnetic field. This effect was first discovered in manganese oxide, but

several hundred antiferromagnetic materials have been identified since then. Many

oxides, sulfides, and chlorides are included, such as nickel oxide (NiO), ferrous sulfide

(FeS), and cobalt chloride (CoCl2). Antiferromagnetism is only present at relatively

low temperatures, often well below room temperature. The effect is not of engineering

importance at present.

The ferrimagnetic substances also show an antiparallel alignment of adjacent

atomic moments, but the moments are not equal. A large response to an exter-

nal magnetic field therefore occurs, although not as large as that in ferromagnetic

materials. The most important group of ferrimagnetic materials are the ferrites, in

which the conductivity is low, several orders of magnitude less than that of semi-

conductors. The fact that these substances have greater resistance than the ferro-

magnetic materials results in much smaller induced currents in the material when

alternating fields are applied, as for example in transformer cores that operate at

the higher frequencies. The reduced currents (eddy currents) lead to lower ohmic

losses in the transformer core. The iron oxide magnetite (Fe3O4), a nickel-zinc fer-

rite (Ni1/2Zn1/2Fe2O4), and a nickel ferrite (NiFe2O4) are examples of this class of

materials. Ferrimagnetism also disappears above the Curie temperature.

Superparamagnetic materials are composed of an assembly of ferromagnetic

particles in a nonferromagnetic matrix. Although domains exist within the individual

particles, the domain walls cannot penetrate the intervening matrix material to the

adjacent particle. An important example is the magnetic tape used in audiotape or

videotape recorders.

Table 8.1 summarizes the characteristics of the six types of magnetic materials

we have discussed.

8.6 MAGNETIZATION AND PERMEABILITY

To place our description of magnetic materials on a more quantitative basis, we will

now devote a page or so to showing how the magnetic dipoles act as a distributed

source for the magnetic field. Our result will be an equation that looks very much like

Ampère’s circuital law,
∮

H · dL = I . The current, however, will be the movement of
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bound charges (orbital electrons, electron spin, and nuclear spin), and the field, which

has the dimensions of H, will be called the magnetization M. The current produced

by the bound charges is called a bound current or Amperian current.
Let us begin by defining the magnetization M in terms of the magnetic dipole

moment m. The bound current Ib circulates about a path enclosing a differential area

dS, establishing a dipole moment (A · m2),

m = IbdS
If there are n magnetic dipoles per unit volume and we consider a volume �ν, then

the total magnetic dipole moment is found by the vector sum

mtotal =
n�ν
∑

i=1

mi (19)

Each of themi may be different. Next, we define the magnetizationM as the magnetic
dipole moment per unit volume,

M = lim
�ν→0

1

�ν

n�ν
∑

i=1

mi

and see that its units must be the same as for H, amperes per meter.

Now let us consider the effect of some alignment of the magnetic dipoles as

the result of the application of a magnetic field. We shall investigate this alignment

along a closed path, a short portion of which is shown in Figure 8.9. The figure shows

several magnetic moments m that make an angle θ with the element of path dL; each

moment consists of a bound current Ib circulating about an area dS. We are therefore

considering a small volume, dS cos θdL , or dS · dL, within which there are ndS · dL
magnetic dipoles. In changing from a random orientation to this partial alignment,

the bound current crossing the surface enclosed by the path (to our left as we travel in

the aL direction in Figure 8.9) has increased by Ib for each of the ndS · dL dipoles.

Thus the differential change in the net bound current IB over the segment dL will be

d IB = nIbdS · dL = M · dL (20)

and within an entire closed contour,

IB =
∮

M · dL (21)

Figure 8.9 A section dL of a closed path along which magnetic dipoles have been

partially aligned by some external magnetic field. The alignment has caused the bound

current crossing the surface defined by the closed path to increase by nI bdS · dL A.
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Equation (21) merely says that if we go around a closed path and find dipole moments

going our way more often than not, there will be a corresponding current composed

of, for example, orbiting electrons crossing the interior surface.

This last expression has some resemblance to Ampère’s circuital law, and we

may now generalize the relationship between B and H so that it applies to media

other than free space. Our present discussion is based on the forces and torques on

differential current loops in a B field, and we therefore take B as our fundamental

quantity and seek an improved definition of H. We thus write Ampère’s circuital law

in terms of the total current, bound plus free,
∮ B

µ0

· dL = IT (22)

where

IT = IB + I

and I is the total free current enclosed by the closed path. Note that the free current

appears without subscript since it is the most important type of current and will be

the only current appearing in Maxwell’s equations.

Combining these last three equations, we obtain an expression for the free current

enclosed,

I = IT − IB =
∮ (

B
µ0

−M
)

· dL (23)

We may now define H in terms of B and M,

H =
B
µ0

−M (24)

and we see that B = µ0H in free space where the magnetization is zero. This rela-

tionship is usually written in a form that avoids fractions and minus signs:

B = µ0(H+M) (25)

We may now use our newly defined H field in (23),

I =
∮

H · dL (26)

obtaining Ampère’s circuital law in terms of the free currents.

Using the several current densities, we have

IB =
∫

S
JB · dS

IT =
∫

S
JT · dS

I =
∫

S
J · dS
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With the help of Stokes’ theorem, we may therefore transform (21), (26), and (22)

into the equivalent curl relationships:

∇ ×M = JB

∇ ×
B
µ0

= JT

∇ ×H = J (27)

We will emphasize only (26) and (27), the two expressions involving the free

charge, in the work that follows.

The relationship between B, H, and M expressed by (25) may be simplified for

linear isotropic media where a magnetic susceptibility χm can be defined:

M = χmH (28)

Thus we have

B = µ0(H+ χmH)

= µ0µrH

where

µr = 1 + χm (29)

is defined as the relative permeability µr . We next define the permeability µ:

µ = µ0µr (30)

and this enables us to write the simple relationship between B and H,

B = µH (31)

EXAMPLE 8.5

Given a ferrite material that we shall specify to be operating in a linear mode with

B = 0.05 T, let us assume µr = 50, and calculate values for χm , M, and H.

Solution. Because µr = 1 + χm , we have

χm = µr − 1 = 49

Also,

B = µrµ0 H

and

H =
0.05

50 × 4π × 10−7
= 796 A/m
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The magnetization is M = χm H, or 39, 000 A/m. The alternate ways of relating B
and H are, first,

B = µ0(H + M)

or

0.05 = 4π × 10−7(796 + 39, 000)

showing that Amperian currents produce 49 times the magnetic field intensity that

the free charges do; and second,

B = µrµ0 H

or

0.05 = 50 × 4π × 10−7 × 796

where we use a relative permeability of 50 and let this quantity account completely

for the notion of the bound charges. We shall emphasize the latter interpretation in

the chapters that follow.

The first two laws that we investigated for magnetic fields were the Biot-Savart

law and Ampère’s circuital law. Both were restricted to free space in their application.

We may now extend their use to any homogeneous, linear, isotropic magnetic material

that may be described in terms of a relative permeability µr .

Just as we found for anisotropic dielectric materials, the permeability of an

anisotropic magnetic material must be given as a 3 × 3 matrix, and B and H are

both 3 × 1 matrices. We have

Bx = µxx Hx + µxy Hy + µxz Hz

By = µyx Hx + µyy Hy + µyz Hz

Bz = µzx Hx + µzy Hy + µzz Hz

For anisotropic materials, then, B = µH is a matrix equation; however, B =
µ0(H + M) remains valid, although B, H, and M are no longer parallel in general.

The most common anisotropic magnetic material is a single ferromagnetic crystal,

although thin magnetic films also exhibit anisotropy. Most applications of ferromag-

netic materials, however, involve polycrystalline arrays that are much easier to make.

Our definitions of susceptibility and permeability also depend on the assumption

of linearity. Unfortunately, this is true only in the less interesting paramagnetic and

diamagnetic materials for which the relative permeability rarely differs from unity

by more than one part in a thousand. Some typical values of the susceptibility for

diamagnetic materials are hydrogen, −2 × 10−5; copper, −0.9 × 10−5; germanium,

−0.8 × 10−5; silicon, −0.3 × 10−5; and graphite,−12 × 10−5. Several representative

paramagnetic susceptibilities are oxygen, 2×10−6; tungsten, 6.8×10−5; ferric oxide

(Fe2O3), 1.4 × 10−3; and yttrium oxide (Y2O3), 0.53 × 10−6. If we simply take the

ratio of B to µ0 H as the relative permeability of a ferromagnetic material, typical
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values of µr would range from 10 to 100, 000. Diamagnetic, paramagnetic, and

antiferromagnetic materials are commonly said to be nonmagnetic.

D8.6. Find the magnetization in a magnetic material where: (a) µ = 1.8 ×
10−5 H/m and H = 120 A/m; (b) µr = 22, there are 8.3 × 1028 atoms/m3, and

each atom has a dipole moment of 4.5 × 10−27 A · m2; (c) B = 300 µT and

χm = 15.

Ans. 1599 A/m; 374 A/m; 224 A/m

D8.7. The magnetization in a magnetic material for which χm = 8 is given in

a certain region as 150z2ax A/m. At z = 4 cm, find the magnitude of: (a) JT ;

(b) J; (c) JB .

Ans. 13.5 A/m2; 1.5 A/m2; 12 A/m2

8.7 MAGNETIC BOUNDARY CONDITIONS

We should have no difficulty in arriving at the proper boundary conditions to apply to

B, H, and M at the interface between two different magnetic materials, for we have

solved similar problems for both conducting materials and dielectrics. We need no

new techniques.

Figure 8.10 shows a boundary between two isotropic homogeneous linear materi-

als with permeabilities µ1 and µ2. The boundary condition on the normal components

Figure 8.10 A gaussian surface and a closed path are

constructed at the boundary between media 1 and 2, having

permeabilities of µ1 and µ2, respectively. From this we determine the

boundary conditions BN1 = BN2 and Ht1 − Ht2 = K , the component

of the surface current density directed into the page.
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is determined by allowing the surface to cut a small cylindrical gaussian surface.

Applying Gauss’s law for the magnetic field from Section 7.5,
∮

S
B · dS = 0

we find that

BN1�S − BN2�S = 0

or

BN2 = BN1 (32)

Thus

HN2 =
µ1

µ2

HN1 (33)

The normal component of B is continuous, but the normal component of H is discon-

tinuous by the ratio µ1/µ2.

The relationship between the normal components of M, of course, is fixed once

the relationship between the normal components of H is known. For linear magnetic

materials, the result is written simply as

MN2 = χm2

µ1

µ2

HN1 =
χm2µ1

χm1µ2

MN1 (34)

Next, Ampère’s circuital law
∮

H · dL = I

is applied about a small closed path in a plane normal to the boundary surface, as

shown to the right in Figure 8.10. Taking a clockwise trip around the path, we find

that

Ht1�L − Ht2�L = K�L

where we assume that the boundary may carry a surface current K whose component

normal to the plane of the closed path is K. Thus

Ht1 − Ht2 = K (35)

The directions are specified more exactly by using the cross product to identify the

tangential components,

(H1 −H2) × aN12 = K

where aN12 is the unit normal at the boundary directed from region 1 to region 2. An

equivalent formulation in terms of the vector tangential components may be more

convenient for H:

Ht1 −Ht2 = aN12 ×K
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For tangential B, we have

Bt1

µ1

−
Bt2

µ2

= K (36)

The boundary condition on the tangential component of the magnetization for linear

materials is therefore

Mt2 =
χm2

χm1

Mt1 − χm2 K (37)

The last three boundary conditions on the tangential components are much sim-

pler, of course, if the surface current density is zero. This is a free current density,

and it must be zero if neither material is a conductor.

EXAMPLE 8.6

To illustrate these relationships with an example, let us assume that µ = µ1 = 4 µH/m

in region 1 where z > 0, whereas µ2 = 7 µH/m in region 2 wherever z < 0. Moreover,

let K = 80ax A/m on the surface z = 0. We establish a field, B1 = 2ax − 3ay +
az mT, in region 1 and seek the value of B2.

Solution. The normal component of B1 is

BN1 = (B1 · aN12)aN12 = [(2ax − 3ay + az) · (−az)](−az) = az mT

Thus,

BN2 = BN1 = az mT

We next determine the tangential components:

Bt1 = B1 − BN1 = 2ax − 3ay mT

and

Ht1 =
Bt1

µ1

=
(2ax − 3ay)10−3

4 × 10−6
= 500ax − 750ay A/m

Thus,

Ht2 = Ht1 − aN12 ×K = 500ax − 750ay − (−az) × 80ax

= 500ax − 750ay + 80ay = 500ax − 670ay A/m

and

Bt2 = µ2Ht2 = 7 × 10−6(500ax − 670ay) = 3.5ax − 4.69ay mT

Therefore,

B2 = BN2 + Bt2 = 3.5ax − 4.69ay + az mT
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D8.8. Let the permittivity be 5 µH/m in region A where x < 0, and 20 µH/m

in region B where x > 0. If there is a surface current density K = 150ay −
200az A/m at x = 0, and if HA = 300ax − 400ay + 500az A/m, find: (a) |Ht A|;
(b) |HN A|; (c) |Ht B |; (d) |HN B |.

Ans. 640 A/m; 300 A/m; 695 A/m; 75 A/m

8.8 THE MAGNETIC CIRCUIT

In this section, we digress briefly to discuss the fundamental techniques involved in

solving a class of magnetic problems known as magnetic circuits. As we will see

shortly, the name arises from the great similarity to the dc-resistive-circuit analysis

with which it is assumed we are all familiar. The only important difference lies in the

nonlinear nature of the ferromagnetic portions of the magnetic circuit; the methods

which must be adopted are similar to those required in nonlinear electric circuits which

contain diodes, thermistors, incandescent filaments, and other nonlinear elements.

As a convenient starting point, let us identify those field equations on which

resistive circuit analysis is based. At the same time we will point out or derive the

analogous equations for the magnetic circuit. We begin with the electrostatic potential

and its relationship to electric field intensity,

E = −∇V (38a)

The scalar magnetic potential has already been defined, and its analogous relation to

the magnetic field intensity is

H = −∇Vm (38b)

In dealing with magnetic circuits, it is convenient to call Vm the magnetomotive force,
or mmf, and we shall acknowledge the analogy to the electromotive force, or emf,

by doing so. The units of the mmf are, of course, amperes, but it is customary to

recognize that coils with many turns are often employed by using the term “ampere-

turns.” Remember that no current may flow in any region in which Vm is defined.

The electric potential difference between points A and B may be written as

VAB =
∫ B

A
E · dL (39a)

and the corresponding relationship between the mmf and the magnetic field intensity,

Vm AB =
∫ B

A
H · dL (39b)

was developed in Chapter 7, where we learned that the path selected must not cross

the chosen barrier surface.
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Ohm’s law for the electric circuit has the point form

J = σE (40a)

and we see that the magnetic flux density will be the analog of the current density,

B = µH (40b)

To find the total current, we must integrate:

I =
∫

S
J · dS (41a)

A corresponding operation is necessary to determine the total magnetic flux flowing

through the cross section of a magnetic circuit:

� =
∫

S
B · dS (41b)

We then defined resistance as the ratio of potential difference and current, or

V = IR (42a)

and we shall now define reluctance as the ratio of the magnetomotive force to the

total flux; thus

Vm = �ℜ (42b)

where reluctance is measured in ampere-turns per weber (A · t/Wb). In resistors that

are made of a linear isotropic homogeneous material of conductivity σ and have a

uniform cross section of area S and length d , the total resistance is

R =
d
σS

(43a)

If we are fortunate enough to have such a linear isotropic homogeneous magnetic

material of length d and uniform cross section S, then the total reluctance is

ℜ =
d

µS
(43b)

The only such material to which we shall commonly apply this relationship is air.

Finally, let us consider the analog of the source voltage in an electric circuit. We

know that the closed line integral of E is zero,
∮

E · dL = 0

In other words, Kirchhoff’s voltage law states that the rise in potential through the

source is exactly equal to the fall in potential through the load. The expression for
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magnetic phenomena takes on a slightly different form,
∮

H · dL = Itotal

for the closed line integral is not zero. Because the total current linked by the path

is usually obtained by allowing a current I to flow through an N -turn coil, we may

express this result as

∮

H · dL = NI (44)

In an electric circuit, the voltage source is a part of the closed path; in the magnetic

circuit, the current-carrying coil will surround or link the magnetic circuit. In tracing

a magnetic circuit, we will not be able to identify a pair of terminals at which the

magnetomotive force is applied. The analogy is closer here to a pair of coupled circuits

in which induced voltages exist (and in which we will see in Chapter 9 that the closed

line integral of E is also not zero).

Let us try out some of these ideas on a simple magnetic circuit. In order to avoid

the complications of ferromagnetic materials at this time, we will assume that we

have an air-core toroid with 500 turns, a cross-sectional area of 6 cm2, a mean radius

of 15 cm, and a coil current of 4 A. As we already know, the magnetic field is confined

to the interior of the toroid, and if we consider the closed path of our magnetic circuit

along the mean radius, we link 2000 A · t,

Vm, source = 2000 A · t

Although the field in the toroid is not quite uniform, we may assume that it is, for all

practical purposes, and calculate the total reluctance of the circuit as

ℜ =
d

µS
=

2π (0.15)

4π10−7 × 6 × 10−4
= 1.25 × 109 A·t/Wb

Thus

� =
Vm,S

ℜ
=

2000

1.25 × 109
= 1.6 × 10−6 Wb

This value of the total flux is in error by less than 1
4

percent, in comparison with the

value obtained when the exact distribution of flux over the cross section is used.

Hence

B =
�

S
=

1.6 × 10−6

6 × 10−4
= 2.67 × 10−3 T

and finally,

H =
B
µ

=
2.67 × 10−3

4π10−7
= 2120 A·t/m

As a check, we may apply Ampère’s circuital law directly in this symmetrical problem,

Hφ2πr = NI



258 ENGINEERING ELECTROMAGNETICS

and obtain

Hφ =
NI
2πr

=
500 × 4

6.28 × 0.15
= 2120 A/m

at the mean radius.

Our magnetic circuit in this example does not give us any opportunity to find the

mmf across different elements in the circuit, for there is only one type of material.

The analogous electric circuit is, of course, a single source and a single resistor. We

could make it look just as long as the preceding analysis, however, if we found the

current density, the electric field intensity, the total current, the resistance, and the

source voltage.

More interesting and more practical problems arise when ferromagnetic materials

are present in the circuit. Let us begin by considering the relationship between B and

H in such a material. We may assume that we are establishing a curve of B versus

H for a sample of ferromagnetic material which is completely demagnetized; both

B and H are zero. As we begin to apply an mmf, the flux density also rises, but not

linearly, as the experimental data of Figure 8.11 show near the origin. After H reaches

a value of about 100 A · t/m, the flux density rises more slowly and begins to saturate

when H is several hundred A · t/m. Having reached partial saturation, let us now turn

to Figure 8.12, where we may continue our experiment at point x by reducing H. As

we do so, the effects of hysteresis begin to show, and we do not retrace our original

curve. Even after H is zero, B = Br, the remnant flux density. As H is reversed,

then brought back to zero, and the complete cycle traced several times, the hysteresis

loop of Figure 8.12 is obtained. The mmf required to reduce the flux density to zero

is identified as Hc, the coercive “force.” For smaller maximum values of H , smaller

Figure 8.11 Magnetization curve of a sample of silicon sheet

steel.
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Figure 8.12 A hysteresis loop for silicon steel. The

coercive force Hc and remnant flux density Br are

indicated.

hysteresis loops are obtained, and the locus of the tips is about the same as the virgin

magnetization curve of Figure 8.11.

EXAMPLE 8.7

Let us use the magnetization curve for silicon steel to solve a magnetic circuit problem

that is slightly different from our previous example. We use a steel core in the toroid,

except for an air gap of 2 mm. Magnetic circuits with air gaps occur because gaps

are deliberately introduced in some devices, such as inductors, which must carry

large direct currents, because they are unavoidable in other devices such as rotating

machines, or because of unavoidable problems in assembly. There are still 500 turns

about the toroid, and we ask what current is required to establish a flux density of 1 T

everywhere in the core.

Solution. This magnetic circuit is analogous to an electric circuit containing a voltage

source and two resistors, one of which is nonlinear. Because we are given the “current,”

it is easy to find the “voltage” across each series element, and hence the total “emf.”

In the air gap,

ℜair =
dair

µS
=

2 × 10−3

4π10−7 × 6 × 10−4
= 2.65 × 106 A·t/Wb

Knowing the total flux,

� = BS = 1(6 × 10−4) = 6 × 10−4 Wb
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which is the same in both steel and air, we may find the mmf required for the gap,

Vm,air = (6 × 10−4)(2.65 × 106) = 1590 A·t

Referring to Figure 8.11, a magnetic field strength of 200 A · t/m is required to produce

a flux density of 1 T in the steel. Thus,

Hsteel = 200 A·t
Vm,steel = Hsteeldsteel = 200 × 0.30π

= 188 A·t

The total mmf is therefore 1778 A·t, and a coil current of 3.56 A is required.

We have made several approximations in obtaining this answer. We have already

mentioned the lack of a completely uniform cross section, or cylindrical symmetry;

the path of every flux line is not of the same length. The choice of a “mean” path

length can help compensate for this error in problems in which it may be more

important than it is in our example. Fringing flux in the air gap is another source of

error, and formulas are available by which we may calculate an effective length and

cross-sectional area for the gap which will yield more accurate results. There is also

a leakage flux between the turns of wire, and in devices containing coils concentrated

on one section of the core, a few flux lines bridge the interior of the toroid. Fringing

and leakage are problems that seldom arise in the electric circuit because the ratio

of the conductivities of air and the conductive or resistive materials used is so high.

In contrast, the magnetization curve for silicon steel shows that the ratio of H to B
in the steel is about 200 up to the “knee” of the magnetization curve; this compares

with a ratio in air of about 800, 000. Thus, although flux prefers steel to air by the

commanding ratio of 4000 to 1, this is not very close to the ratio of conductivities of,

say, 1015 for a good conductor and a fair insulator.

EXAMPLE 8.8

As a last example, let us consider the reverse problem. Given a coil current of 4 A in

the magnetic circuit of Example 8.7, what will the flux density be?

Solution. First let us try to linearize the magnetization curve by a straight line from

the origin to B = 1, H = 200. We then have B = H/200 in steel and B = µ0 H in air.

The two reluctances are found to be 0.314×106 for the steel path and 2.65×106 for the

air gap, or 2.96×106A · t/Wb total. Since Vm is 2000 A · t, the flux is 6.76×10−4 Wb,

and B = 1.13 T. A more accurate solution may be obtained by assuming several values

of B and calculating the necessary mmf. Plotting the results enables us to determine

the true value of B by interpolation. With this method we obtain B = 1.10 T. The good

accuracy of the linear model results from the fact that the reluctance of the air gap

in a magnetic circuit is often much greater than the reluctance of the ferromagnetic

portion of the circuit. A relatively poor approximation for the iron or steel can thus

be tolerated.
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Figure 8.13 See Problem D8.9.

D8.9. Given the magnetic circuit of Figure 8.13, assume B = 0.6 T at the

midpoint of the left leg and find: (a) Vm,air; (b) Vm,steel; (c) the current required

in a 1300-turn coil linking the left leg.

Ans. 3980 A · t; 72 A · t; 3.12 A

D8.10. The magnetization curve for material X under normal operating con-

ditions may be approximated by the expression B = (H/160)(0.25 + e−H/320),

where H is in A/m and B is in T. If a magnetic circuit contains a 12 cm length

of material X , as well as a 0.25-mm air gap, assume a uniform cross section

of 2.5 cm2 and find the total mmf required to produce a flux of (a) 10 µWb;

(b) 100 µWb.

Ans. 8.58 A · t; 86.7 A · t

8.9 POTENTIAL ENERGY AND FORCES
ON MAGNETIC MATERIALS

In the electrostatic field we first introduced the point charge and the experimental law

of force between point charges. After defining electric field intensity, electric flux

density, and electric potential, we were able to find an expression for the energy in an

electrostatic field by establishing the work necessary to bring the prerequisite point

charges from infinity to their final resting places. The general expression for energy is

WE =
1

2

∫

vol

D ·E dν (45)

where a linear relationship between D and E is assumed.

This is not as easily done for the steady magnetic field. It would seem that we

might assume two simple sources, perhaps two current sheets, find the force on one
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due to the other, move the sheet a differential distance against this force, and equate

the necessary work to the change in energy. If we did, we would be wrong, because

Faraday’s law (coming up in Chapter 9) shows that there will be a voltage induced

in the moving current sheet against which the current must be maintained. Whatever

source is supplying the current sheet turns out to receive half the energy we are putting

into the circuit by moving it.

In other words, energy density in the magnetic field may be determined more

easily after time-varying fields are discussed. We will develop the appropriate expres-

sion in discussing Poynting’s theorem in Chapter 11.

An alternate approach would be possible at this time, however, for we might

define a magnetostatic field based on assumed magnetic poles (or “magnetic

charges”). Using the scalar magnetic potential, we could then develop an energy

expression by methods similar to those used in obtaining the electrostatic energy

relationship. These new magnetostatic quantities we would have to introduce would

be too great a price to pay for one simple result, and we will therefore merely present

the result at this time and show that the same expression arises in the Poynting the-

orem later. The total energy stored in a steady magnetic field in which B is linearly

related to H is

WH =
1

2

∫

vol

B ·H dν (46)

Letting B = µH, we have the equivalent formulations

WH =
1

2

∫

vol

µH 2dν (47)

or

WH =
1

2

∫

vol

B2

µ
dν (48)

It is again convenient to think of this energy as being distributed throughout the

volume with an energy density of 1
2
B ·H J/m3, although we have no mathematical

justification for such a statement.

In spite of the fact that these results are valid only for linear media, we may use

them to calculate the forces on nonlinear magnetic materials if we focus our attention

on the linear media (usually air) which may surround them. For example, suppose

that we have a long solenoid with a silicon-steel core. A coil containing n turns/m

with a current I surrounds it. The magnetic field intensity in the core is therefore

nI A · t/m, and the magnetic flux density can be obtained from the magnetization

curve for silicon steel. Let us call this value Bst. Suppose that the core is composed of

two semi-infinite cylinders2 that are just touching. We now apply a mechanical force

to separate these two sections of the core while keeping the flux density constant. We

apply a force F over a distance dL , thus doing work F dL . Faraday’s law does not

2 A semi-infinite cylinder is a cylinder of infinite length having one end located in finite space.
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apply here, for the fields in the core have not changed, and we can therefore use the

principle of virtual work to determine that the work we have done in moving one core

appears as stored energy in the air gap we have created. By (48), this increase is

dWH = F dL =
1

2

B2
st

µ0

S dL

where S is the core cross-sectional area. Thus

F =
B2

stS
2µ0

If, for example, the magnetic field intensity is sufficient to produce saturation in the

steel, approximately 1.4 T, the force is

F = 7.80 × 105S N

or about 113 lb f /in2.

D8.11. (a) What force is being exerted on the pole faces of the circuit de-

scribed in Problem D8.9 and Figure 8.13? (b) Is the force trying to open or close

the air gap?

Ans. 1194 N; as Wilhelm Eduard Weber would put it, “schliessen”

8.10 INDUCTANCE AND MUTUAL
INDUCTANCE

Inductance is the last of the three familiar parameters from circuit theory that we are

defining in more general terms. Resistance was defined in Chapter 5 as the ratio of

the potential difference between two equipotential surfaces of a conducting material

to the total current crossing either equipotential surface. The resistance is a function

of conductor geometry and conductivity only. Capacitance was defined in the same

chapter as the ratio of the total charge on either of two equipotential conducting

surfaces to the potential difference between the surfaces. Capacitance is a function

only of the geometry of the two conducting surfaces and the permittivity of the

dielectric medium between or surrounding them.

As a prelude to defining inductance, we first need to introduce the concept of flux

linkage. Let us consider a toroid of N turns in which a current I produces a total flux

�. We assume first that this flux links or encircles each of the N turns, and we also

see that each of the N turns links the total flux �. The flu linkage N� is defined as

the product of the number of turns N and the flux � linking each of them.3 For a coil

having a single turn, the flux linkage is equal to the total flux.

3 The symbol λ is commonly used for flux linkages. We will only occasionally use this concept,

however, and we will continue to write it as N�.
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We now define inductance (or self-inductance) as the ratio of the total flux link-

ages to the current which they link,

L =
N�

I
(49)

The current I flowing in the N -turn coil produces the total flux � and N� flux

linkages, where we assume for the moment that the flux � links each turn. This

definition is applicable only to magnetic media which are linear, so that the flux is

proportional to the current. If ferromagnetic materials are present, there is no single

definition of inductance which is useful in all cases, and we shall restrict our attention

to linear materials.

The unit of inductance is the henry (H), equivalent to one weber-turn per ampere.

Let us apply (49) in a straightforward way to calculate the inductance per meter

length of a coaxial cable of inner radius a and outer radius b. We may take the

expression for total flux developed as Eq. (42) in Chapter 7,

� =
µ0 Id
2π

ln
b
a

and obtain the inductance rapidly for a length d ,

L =
µ0d
2π

ln
b
a

H

or, on a per-meter basis,

L =
µ0

2π
ln

b
a

H/m (50)

In this case, N = 1 turn, and all the flux links all the current.

In the problem of a toroidal coil of N turns and a current I , as shown in Fig-

ure 7.12b, we have

Bφ =
µ0 NI
2πρ

If the dimensions of the cross section are small compared with the mean radius of the

toroid ρ0, then the total flux is

� =
µ0NIS
2πρ0

where S is the cross-sectional area. Multiplying the total flux by N , we have the flux

linkages, and dividing by I , we have the inductance

L =
µ0 N 2S
2πρ0

(51)

Once again we have assumed that all the flux links all the turns, and this is a

good assumption for a toroidal coil of many turns packed closely together. Suppose,

however, that our toroid has an appreciable spacing between turns, a short part of

which might look like Figure 8.14. The flux linkages are no longer the product of the
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Figure 8.14 A portion of a coil showing partial flux

linkages. The total flux linkages are obtained by adding

the fluxes linking each turn.

flux at the mean radius times the total number of turns. In order to obtain the total

flux linkages we must look at the coil on a turn-by-turn basis.

(N�)total = �1 + �2 + · · · + �i + · · · + �N

=
N

∑

i=1

�i

where �i is the flux linking the i th turn. Rather than doing this, we usually rely on

experience and empirical quantities called winding factors and pitch factors to adjust

the basic formula to apply to the real physical world.

An equivalent definition for inductance may be made using an energy point

of view,

L =
2WH

I 2
(52)

where I is the total current flowing in the closed path and WH is the energy in the

magnetic field produced by the current. After using (52) to obtain several other general

expressions for inductance, we will show that it is equivalent to (49). We first express

the potential energy WH in terms of the magnetic fields,

L =
∫

vol
B ·H dν

I 2
(53)

and then replace B by ∇ × A,

L =
1

I 2

∫

vol

H · (∇ × A)dν
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The vector identity

∇ · (A×H) ≡ H · (∇ × A) − A · (∇ ×H) (54)

may be proved by expansion in rectangular coordinates. The inductance is then

L =
1

I 2

[∫

vol

∇ · (A×H) dν +

∫

vol

A · (∇ ×H) dν

]

(55)

After applying the divergence theorem to the first integral and letting ∇ × H = J in

the second integral, we have

L =
1

I 2

[∮

S
(A×H) · dS+

∫

vol

A · J dν

]

The surface integral is zero, as the surface encloses the volume containing all the

magnetic energy, and this requires that A and H be zero on the bounding surface. The

inductance may therefore be written as

L =
1

I 2

∫

vol

A · J dν (56)

Equation (56) expresses the inductance in terms of an integral of the values of

A and J at every point. Because current density exists only within the conductor, the

integrand is zero at all points outside the conductor, and the vector magnetic potential

need not be determined there. The vector potential is that which arises from the current

J, and any other current source contributing a vector potential field in the region of

the original current density is to be ignored for the present. Later we will see that this

leads to a mutual inductance.

The vector magnetic potential A due to J is given by Eq. (51), Chapter 7,

A =

∫

vol

µJ
4πR

dν

and the inductance may therefore be expressed more basically as a rather formidable

double volume integral,

L =
1

I 2

∫

vol

(∫

vol

µJ
4πR

dν

)

· J dν (57)

A slightly simpler integral expression is obtained by restricting our attention to

current filaments of small cross section for which J dν may be replaced by I dL and

the volume integral by a closed line integral along the axis of the filament,

L =
1

I 2

∮ (∮

µI dL
4πR

)

· I dL

=
µ

4π

∮ (∮ dL
R

)

· dL
(58)

Our only present interest in Eqs. (57) and (58) lies in their implication that the

inductance is a function of the distribution of the current in space or the geometry of

the conductor configuration.

To obtain our original definition of inductance (49), let us hypothesize a uniform

current distribution in a filamentary conductor of small cross section so that J dν
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in (56) becomes I dL,

L =
1

I

∮

A · dL (59)

For a small cross section, dL may be taken along the center of the filament. We now

apply Stokes’ theorem and obtain

L =
1

I

∫

S
(∇ × A) · dS

or

L =
1

I

∫

S
B · dS

or

L =
�

I
(60)

Retracing the steps by which (60) is obtained, we should see that the flux � is

that portion of the total flux that passes through any and every open surface whose

perimeter is the filamentary current path.

If we now let the filament make N identical turns about the total flux, an idealiza-

tion that may be closely realized in some types of inductors, the closed line integral

must consist of N laps about this common path, and (60) becomes

L =
N�

I
(61)

The flux � is now the flux crossing any surface whose perimeter is the path occupied

by any one of the N turns. The inductance of an N -turn coil may still be obtained

from (60), however, if we realize that the flux is that which crosses the complicated

surface4 whose perimeter consists of all N turns.

Use of any of the inductance expressions for a true filamentary conductor (having

zero radius) leads to an infinite value of inductance, regardless of the configuration

of the filament. Near the conductor, Ampère’s circuital law shows that the magnetic

field intensity varies inversely with the distance from the conductor, and a simple

integration soon shows that an infinite amount of energy and an infinite amount of

flux are contained within any finite cylinder about the filament. This difficulty is

eliminated by specifying a small but finite filamentary radius.

The interior of any conductor also contains magnetic flux, and this flux links a

variable fraction of the total current, depending on its location. These flux linkages

lead to an internal inductance, which must be combined with the external inductance

to obtain the total inductance. The internal inductance of a long, straight wire of

circular cross section, radius a, and uniform current distribution is

La,int =
µ

8π
H/m (62)

a result requested in Problem 8.43 at the end of this chapter.

4 Somewhat like a spiral ramp.
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In Chapter 11, we will see that the current distribution in a conductor at high

frequencies tends to be concentrated near the surface. The internal flux is reduced, and

it is usually sufficient to consider only the external inductance. At lower frequencies,

however, internal inductance may become an appreciable part of the total inductance.

We conclude by defining the mutual inductance between circuits 1 and 2, M12,

in terms of mutual flux linkages,

M12 =
N2�12

I1

(63)

where �12 signifies the flux produced by I1 which links the path of the filamentary

current I2, and N2 is the number of turns in circuit 2. The mutual inductance, there-

fore, depends on the magnetic interaction between two currents. With either current

alone, the total energy stored in the magnetic field can be found in terms of a single

inductance, or self-inductance; with both currents having nonzero values, the total

energy is a function of the two self-inductances and the mutual inductance. In terms

of a mutual energy, it can be shown that (63) is equivalent to

M12 =
1

I1 I2

∫

vol

(B1 ·H2)dν (64)

or

M12 =
1

I1 I2

∫

vol

(µH1 ·H2)dν (65)

where B1 is the field resulting from I1 (with I2 = 0) and H2 is the field arising from

I2 (with I1 = 0). Interchange of the subscripts does not change the right-hand side of

(65), and therefore

M12 = M21 (66)

Mutual inductance is also measured in henrys, and we rely on the context to allow

us to differentiate it from magnetization, also represented by M .

EXAMPLE 8.9

Calculate the self-inductances of and the mutual inductances between two coaxial

solenoids of radius R1 and R2, R2 > R1, carrying currents I1 and I2 with n1 and

n2 turns/m, respectively.

Solution. We first attack the mutual inductances. From Eq. (15), Chapter 7, we let

n1 = N/d , and obtain

H1 = n1 I1az (0 < ρ < R1)

= 0 (ρ > R1)

and

H2 = n2 I2az (0 < ρ < R2)

= 0 (ρ > R2)
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Thus, for this uniform field

�12 = µ0n1 I1πR2
1

and

M12 = µ0n1n2πR2
1

Similarly,

�21 = µ0n2 I2πR2
1

M21 = µ0n1n2πR2
1 = M12

If n1 = 50 turns/cm, n2 = 80 turns/cm, R1 = 2 cm, and R2 = 3 cm, then

M12 = M21 = 4π × 10−7(5000)(8000)π (0.022) = 63.2 mH/m

The self-inductances are easily found. The flux produced in coil 1 by I1 is

�11 = µ0n1 I1πR2
1

and thus

L1 = µ0n2
1S1d H

The inductance per unit length is therefore

L1 = µ0n2
1S1 H/m

or

L1 = 39.5 mH/m

Similarly,

L2 = µ0n2
2S2 = 22.7 mH/m

We see, therefore, that there are many methods available for the calculation of

self-inductance and mutual inductance. Unfortunately, even problems possessing a

high degree of symmetry present very challenging integrals for evaluation, and only

a few problems are available for us to try our skill on.

Inductance will be discussed in circuit terms in Chapter 10.

D8.12. Calculate the self-inductance of: (a) 3.5 m of coaxial cable with a =
0.8 mm and b = 4 mm, filled with a material for which µr = 50; (b) a toroidal

coil of 500 turns, wound on a fiberglass form having a 2.5 × 2.5 cm square

cross section and an inner radius of 2 cm; (c) a solenoid having 500 turns about

a cylindrical core of 2 cm radius in which µr = 50 for 0 < ρ < 0.5 cm and

µr = 1 for 0.5 < ρ < 2 cm; the length of the solenoid is 50 cm.

Ans. 56.3 µH; 1.01 mH; 3.2 mH
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D8.13. A solenoid is 50 cm long, 2 cm in diameter, and contains 1500 turns.

The cylindrical core has a diameter of 2 cm and a relative permeability of 75.

This coil is coaxial with a second solenoid, also 50 cm long, but with a 3 cm

diameter and 1200 turns. Calculate: (a) L for the inner solenoid; (b) L for the

outer solenoid; (c) M between the two solenoids.

Ans. 133.2 mH; 192 mH; 106.6 mH
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CHAPTER 8 PROBLEMS

8.1 A point charge, Q = −0.3 µC and m = 3 × 10−16 kg, is moving through

the field E = 30az V/m. Use Eq. (1) and Newton’s laws to develop the

appropriate differential equations and solve them, subject to the initial

conditions at t = 0, v = 3 × 105ax m/s at the origin. At t = 3 µs, find (a) the

position P(x, y, z) of the charge; (b) the velocity v; (c) the kinetic energy of

the charge.

8.2 Compare the magnitudes of the electric and magnetic forces on an electron

that has attained a velocity of 107 m/s. Assume an electric field intensity of

105 V/m, and a magnetic flux density associated with that of the Earth’s

magnetic field in temperate latitudes, 0.5 gauss.

8.3 A point charge for which Q = 2 × 10−16 C and m = 5 × 10−26 kg is moving

in the combined fields E = 100ax − 200ay + 300az V/m and B = −3ax +
2ay − az mT. If the charge velocity at t = 0 is v(0) = (2ax − 3ay −
4az)105 m/s (a) give the unit vector showing the direction in which the

charge is accelerating at t = 0; (b) find the kinetic energy of the charge at

t = 0.

8.4 Show that a charged particle in a uniform magnetic field describes a circular

orbit with an orbital period that is independent of the radius. Find the

relationship between the angular velocity and magnetic flux density for an

electron (the cyclotron frequency).

8.5 A rectangular loop of wire in free space joins point A(1, 0, 1) to point

B(3, 0, 1) to point C(3, 0, 4) to point D(1, 0, 4) to point A. The wire carries a
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current of 6 mA, flowing in the az direction from B to C . A filamentary

current of 15 A flows along the entire z axis in the az direction. (a) Find F on

side BC . (b) Find F on side AB. (c) Find Ftotal on the loop.

8.6 Show that the differential work in moving a current element I dL through a

distance dl in a magetic field B is the negative of that done in moving the

element I dl through a distance dL in the same field.

8.7 Uniform current sheets are located in free space as follows: 8az A/m at

y = 0, −4az A/m at y = 1, and −4az A/m at y = −1. Find the vector force

per meter length exerted on a current filament carrying 7 mA in the aL
direction if the filament is located at (a) x = 0, y = 0.5, and aL = az ;

(b) y = 0.5, z = 0, and aL = ax ; (c) x = 0, y = 1.5, and aL = az .

8.8 Two conducting strips, having infinite length in the z direction, lie in the xz
plane. One occupies the region d/2 < x < b + d/2 and carries surface

current density K = K0az ; the other is situated at −(b + d/2) < x < −d/2

and carries surface current density −K0az . (a) Find the force per unit length

in z that tends to separate the two strips. (b) Let b approach zero while

maintaining constant current, I = K0b, and show that the force per unit

length approaches µ0 I 2/(2πd) N/m.

8.9 A current of −100az A/m flows on the conducting cylinder ρ = 5 mm, and

+500az A/m is present on the conducting cylinder ρ = 1 mm. Find the

magnitude of the total force per meter length that is acting to split the outer

cylinder apart along its length.

8.10 A planar transmission line consists of two conducting planes of width b
separated d m in air, carrying equal and opposite currents of I A. If b ≫ d,

find the force of repulsion per meter of length between the two conductors.

8.11 (a) Use Eq. (14), Section 8.3, to show that the force of attraction per unit

length between two filamentary conductors in free space with currents I1az
at x = 0, y = d/2, and I2az at x = 0, y = −d/2, is µ0 I1 I2/(2πd). (b) Show

how a simpler method can be used to check your result.

8.12 Two circular wire rings are parallel to each other, share the same axis, are of

radius a, and are separated by distance d , where d << a. Each ring carries

current I . Find the approximate force of attraction and indicate the relative

orientations of the currents.

8.13 A current of 6 A flows from M(2, 0, 5) to N (5, 0, 5) in a straight, solid

conductor in free space. An infinite current filament lies along the z axis

and carries 50 A in the az direction. Compute the vector torque on the wire

segment using an origin at: (a) (0, 0, 5); (b) (0, 0, 0); (c) (3, 0, 0).

8.14 A solenoid is 25 cm long, 3 cm in diameter, and carries 4 A dc in its 400

turns. Its axis is perpendicular to a uniform magnetic field of 0.8 Wb/m2 in

air. Using an origin at the center of the solenoid, calculate the torque acting

on it.
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8.15 A solid conducting filament extends from x = −b to x = b along the line

y = 2, z = 0. This filament carries a current of 3 A in the ax direction. An

infinite filament on the z axis carries 5 A in the az direction. Obtain an

expression for the torque exerted on the finite conductor about an origin

located at (0, 2, 0).

8.16 Assume that an electron is describing a circular orbit of radius a about a

positively charged nucleus. (a) By selecting an appropriate current and area,

show that the equivalent orbital dipole moment is ea2ω/2, where ω is the

electron’s angular velocity. (b) Show that the torque produced by a magnetic

field parallel to the plane of the orbit is ea2ωB/2. (c) By equating the

Coulomb and centrifugal forces, show that ω is (4πǫ0mea3/e2)−1/2, where

me is the electron mass. (d) Find values for the angular velocity, torque,

and the orbital magnetic moment for a hydrogen atom, where a is about

6 × 10−11 m; let B = 0.5 T.

8.17 The hydrogen atom described in Problem 8.16 is now subjected to a

magnetic field having the same direction as that of the atom. Show that the

forces caused by B result in a decrease of the angular velocity by eB/(2me)

and a decrease in the orbital moment by e2a2 B/(4me). What are these

decreases for the hydrogen atom in parts per million for an external magnetic

flux density of 0.5 T?

8.18 Calculate the vector torque on the square loop shown in Figure 8.15 about

an origin at A in the field B, given (a) A(0, 0, 0) and B = 100ay mT;

(b) A(0, 0, 0) and B = 200ax + 100ay mT; (c) A(1, 2, 3) and B = 200ax +
100ay − 300az mT; (d) A(1, 2, 3) and B = 200ax + 100ay − 300az mT

for x ≥ 2 and B = 0 elsewhere.

8.19 Given a material for which χm = 3.1 and within which B = 0.4yaz T, find

(a)H; (b) µ; (c) µr ; (d) M; (e) J; ( f ) JB ; (g) JT .

8.20 Find H in a material where (a) µr = 4.2, there are 2.7 × 1029 atoms/m3, and

each atom has a dipole moment of 2.6 × 10−30ay A · m2; (b) M = 270az A/m

and µ = 2µ H/m; (c) χm = 0.7 and B = 2az T. (d) Find M in a material

where bound surface current densities of 12az A/m and −9az A/m exist at

ρ = 0.3 m and 0.4 m, respectively.

8.21 Find the magnitude of the magnetization in a material for which (a) the

magnetic flux density is 0.02 Wb/m2; (b) the magnetic field intensity is

1200 A/m and the relative permeability is 1.005; (c) there are 7.2 × 1028

atoms per cubic meter, each having a dipole moment of 4 × 10−30 A·m2

in the same direction, and the magnetic susceptibility is 0.003.

8.22 Under some conditions, it is possible to approximate the effects of

ferromagnetic materials by assuming linearity in the relationship of B and

H. Let µr = 1000 for a certain material of which a cylindrical wire of

radius 1 mm is made. If I = 1 A and the current distribution is uniform,

find (a) B, (b) H, (c) M, (d) J, and (e) JB within the wire.



CHAPTER 8 Magnetic Forces, Materials, and Inductance 273

Figure 8.15 See Problem 8.18.

8.23 Calculate values for Hφ , Bφ , and Mφ at ρ = c for a coaxial cable with

a = 2.5 mm and b = 6 mm if it carries a current I = 12 A in the center

conductor, and µ = 3µH/m for 2.5 mm < ρ < 3.5 mm, µ = 5 µH/m for

3.5 mm < ρ < 4.5 mm, and µ = 10 µH/m for 4.5 mm < ρ < 6 mm. Use

c =: (a) 3 mm; (b) 4 mm; (c) 5 mm.

8.24 Two current sheets, K0ay A/m at z = 0 and −K0ay A/m at z = d , are

separated by an inhomogeneous material for which µr = az + 1, where a is

a constant. (a) Find expressions for H and B in the material. (b) Find the total

flux that crosses a 1m2 area on the yz plane.

8.25 A conducting filament at z = 0 carries 12 A in the az direction. Let µr = 1

for ρ < 1 cm, µr = 6 for 1 < ρ < 2 cm, and µr = 1 for ρ > 2 cm. Find:

(a) H everywhere; (b) B everywhere.

8.26 A long solenoid has a radius of 3 cm, 5000 turns/m, and carries current

I = 0.25 A. The region 0 < ρ < a within the solenoid has µr = 5, whereas

µr = 1 for a < ρ < 3 cm. Determine a so that (a) a total flux of 10 µWb is

present; (b) the flux is equally divided between the regions 0 < ρ < a and

a < ρ < 3 cm.

8.27 Let µr1 = 2 in region 1, defined by 2x + 3y − 4z > 1, while µr2 = 5

in region 2 where 2x + 3y − 4z < 1. In region 1, H1 = 50ax − 30ay +
20az A/m. Find (a) HN1; (b) Ht1; (c) Ht2; (d) HN2; (e) θ1, the angle between

H1 and aN21; ( f ) θ2, the angle between H2 and aN21.

8.28 For values of B below the knee on the magnetization curve for silicon steel,

approximate the curve by a straight line with µ = 5 mH/m. The core shown

in Figure 8.16 has areas of 1.6 cm2 and lengths of 10 cm in each outer leg,

and an area of 2.5 cm2 and a length of 3 cm in the central leg. A coil of

1200 turns carrying 12 mA is placed around the central leg. Find B in the

(a) center leg; (b) center leg if a 0.3 mm air gap is present in the center leg.
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Figure 8.16 See Problem 8.28.

8.29 In Problem 8.28, the linear approximation suggested in the statement of the

problem leads to flux density of 0.666 T in the central leg. Using this value

of B and the magnetization curve for silicon steel, what current is required in

the 1200-turn coil?

8.30 A rectangular core has fixed permeability µr >> 1, a square cross section of

dimensions a × a, and has centerline dimensions around its perimeter of b
and d . Coils 1 and 2, having turn numbers N1 and N2, are wound on the core.

Consider a selected core cross-sectional plane as lying within the xy plane,

such that the surface is defined by 0 < x < a, 0 < y < a. (a) With current I1

in coil 1, use Ampere’s circuital law to find the magnetic flux density as a

function of position over the core cross-section. (b) Integrate your result of

part (a) to determine the total magnetic flux within the core. (c) Find the

self-inductance of coil 1. (d) Find the mutual inductance between coils 1

and 2.

8.31 A toroid is constructed of a magnetic material having a cross-sectional area

of 2.5 cm2 and an effective length of 8 cm. There is also a short air gap of

0.25 mm length and an effective area of 2.8 cm2. An mmf of 200 A · t is

applied to the magnetic circuit. Calculate the total flux in the toroid if the

magnetic material: (a) is assumed to have infinite permeability; (b) is

assumed to be linear with µr = 1000; (c) is silicon steel.

8.32 (a) Find an expression for the magnetic energy stored per unit length in a

coaxial transmission line consisting of conducting sleeves of negligible

thickness, having radii a and b. A medium of relative permeability µr fills

the region between conductors. Assume current I flows in both conductors in

opposite directions. (b) Obtain the inductance, L , per unit length of line by

equating the energy to (1/2)L I 2.

8.33 A toroidal core has a square cross section, 2.5 cm < ρ < 3.5 cm, −0.5 cm <

z < 0.5 cm. The upper half of the toroid, 0 < z < 0.5 cm, is constructed of a

linear material for which µr = 10, while the lower half, −0.5 cm < z < 0,
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Figure 8.17 See Problem 8.35.

has µr = 20. An mmf of 150 A · t establishes a flux in the aφ direction.

For z > 0, find: (a) Hφ(ρ); (b) Bφ(ρ); (c) �z>0. (d) Repeat for z > 0.

(e) Find �total.

8.34 Determine the energy stored per unit length in the internal magnetic field of

an infinitely long, straight wire of radius a, carrying uniform current I .

8.35 The cones θ = 21◦ and θ = 159◦ are conducting surfaces and carry total

currents of 40 A, as shown in Figure 8.17. The currents return on a spherical

conducting surface of 0.25 m radius. (a) Find H in the region 0 < r < 0.25,

21◦ < θ < 159◦, 0 < φ < 2π . (b) How much energy is stored in this region?

8.36 The dimensions of the outer conductor of a coaxial cable are b and c, where

c > b. Assuming µ = µ0, find the magnetic energy stored per unit length

in the region b < ρ < c for a uniformly distributed total current I flowing

in opposite directions in the inner and outer conductors.

8.37 Find the inductance of the cone-sphere configuration described in

Problem 8.35 and Figure 8.17. The inductance is that offered at the origin

between the vertices of the cone.

8.38 A toroidal core has a rectangular cross section defined by the surfaces

ρ = 2 cm, ρ = 3 cm, z = 4 cm, and z = 4.5 cm. The core material has a

relative permeability of 80. If the core is wound with a coil containing 8000

turns of wire, find its inductance.

8.39 Conducting planes in air at z = 0 and z = d carry surface currents of

±K0ax A/m. (a) Find the energy stored in the magnetic field per unit length

(0 < x < 1) in a width w(0 < y < w). (b) Calculate the inductance per unit

length of this transmission line from WH = 1
2

LI 2, where I is the total current

in a width w in either conductor. (c) Calculate the total flux passing through
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the rectangle 0 < x < 1, 0 < z < d , in the plane y = 0, and from this result

again find the inductance per unit length.

8.40 A coaxial cable has conductor radii a and b, where a < b. Material of

permeability µr �= 1 exists in the region a < ρ < c, whereas the region

c < ρ < b is air filled. Find an expression for the inductance per unit length.

8.41 A rectangular coil is composed of 150 turns of a filamentary conductor. Find

the mutual inductance in free space between this coil and an infinite straight

filament on the z axis if the four corners of the coil are located at: (a) (0, 1, 0),

(0, 3, 0), (0, 3, 1), and (0, 1, 1); (b) (1, 1, 0), (1, 3, 0), (1, 3, 1), and (1, 1, 1).

8.42 Find the mutual inductance between two filaments forming circular rings of

radii a and �a, where �a ≪ a. The field should be determined by

approximate methods. The rings are coplanar and concentric.

8.43 (a) Use energy relationships to show that the internal inductance of a

nonmagnetic cylindrical wire of radius a carrying a uniformly distributed

current I is µ0/(8π ) H/m. (b) Find the internal inductance if the portion of

the conductor for which ρ < c < a is removed.

8.44 Show that the external inductance per unit length of a two-wire transmission

line carrying equal and opposite currents is approximately (µ/π ) ln(d/a)

H/m, where a is the radius of each wire and d is the center-to-center wire

spacing. On what basis is the approximation valid?



9C H A P T E R

Time-Varying Fields
and Maxwell’s Equations

T
he basic relationships of the electrostatic field and the steady magnetic field

were obtained in the previous eight chapters, and we are now ready to discuss

time-varying fields. The discussion will be short, for vector analysis and

vector calculus should now be more familiar tools; some of the relationships are

unchanged, and most of the relationships are changed only slightly.

Two new concepts will be introduced: the electric field produced by a changing

magnetic field and the magnetic field produced by a changing electric field. The first

of these concepts resulted from experimental research by Michael Faraday and the

second from the theoretical efforts of James Clerk Maxwell.

Maxwell actually was inspired by Faraday’s experimental work and by the mental

picture provided through the “lines of force” that Faraday introduced in developing

his theory of electricity and magnetism. He was 40 years younger than Faraday, but

they knew each other during the five years Maxwell spent in London as a young

professor, a few years after Faraday had retired. Maxwell’s theory was developed

subsequent to his holding this university position while he was working alone at his

home in Scotland. It occupied him for five years between the ages of 35 and 40.

The four basic equations of electromagnetic theory presented in this chapter bear

his name. ■

9.1 FARADAY’S LAW

After Oersted1 demonstrated in 1820 that an electric current affected a compass

needle, Faraday professed his belief that if a current could produce a magnetic field,

then a magnetic field should be able to produce a current. The concept of the “field”

1 Hans Christian Oersted was professor of physics at the University of Copenhagen in Denmark.

277
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was not available at that time, and Faraday’s goal was to show that a current could be

produced by “magnetism.”

He worked on this problem intermittently over a period of 10 years, until he

was finally successful in 1831.2 He wound two separate windings on an iron toroid

and placed a galvanometer in one circuit and a battery in the other. Upon closing

the battery circuit, he noted a momentary deflection of the galvanometer; a similar

deflection in the opposite direction occurred when the battery was disconnected. This,

of course, was the first experiment he made involving a changing magnetic field, and

he followed it with a demonstration that either a moving magnetic field or a moving

coil could also produce a galvanometer deflection.

In terms of fields, we now say that a time-varying magnetic field produces an

electromotive force (emf) that may establish a current in a suitable closed circuit.

An electromotive force is merely a voltage that arises from conductors moving in a

magnetic field or from changing magnetic fields, and we shall define it in this section.

Faraday’s law is customarily stated as

emf = −
d�

dt
V (1)

Equation (1) implies a closed path, although not necessarily a closed conducting

path; the closed path, for example, might include a capacitor, or it might be a purely

imaginary line in space. The magnetic flux is that flux which passes through any and

every surface whose perimeter is the closed path, and d�/dt is the time rate of change

of this flux.

A nonzero value of d�/dt may result from any of the following situations:

1. A time-changing flux linking a stationary closed path

2. Relative motion between a steady flux and a closed path

3. A combination of the two

The minus sign is an indication that the emf is in such a direction as to produce

a current whose flux, if added to the original flux, would reduce the magnitude of

the emf. This statement that the induced voltage acts to produce an opposing flux is

known as Lenz’s law.3

If the closed path is that taken by an N -turn filamentary conductor, it is often

sufficiently accurate to consider the turns as coincident and let

emf = −N
d�

dt
(2)

where � is now interpreted as the flux passing through any one of N coincident

paths.

2 Joseph Henry produced similar results at Albany Academy in New York at about the same time.
3 Henri Frederic Emile Lenz was born in Germany but worked in Russia. He published his law in 1834.
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We need to define emf as used in (1) or (2). The emf is obviously a scalar, and

(perhaps not so obviously) a dimensional check shows that it is measured in volts.

We define the emf as

emf =
∮

E · dL (3)

and note that it is the voltage about a specific closed path. If any part of the path is

changed, generally the emf changes. The departure from static results is clearly shown

by (3), for an electric field intensity resulting from a static charge distribution must lead

to zero potential difference about a closed path. In electrostatics, the line integral leads

to a potential difference; with time-varying fields, the result is an emf or a voltage.

Replacing � in (1) with the surface integral of B, we have

emf =
∮

E · dL = −
d
dt

∫

S
B · dS (4)

where the fingers of our right hand indicate the direction of the closed path, and

our thumb indicates the direction of dS. A flux density B in the direction of dS and

increasing with time thus produces an average value of E which is opposite to the

positive direction about the closed path. The right-handed relationship between the

surface integral and the closed line integral in (4) should always be kept in mind

during flux integrations and emf determinations.

We will divide our investigation into two parts by first finding the contribution to

the total emf made by a changing field within a stationary path (transformer emf), and

then we will consider a moving path within a constant (motional, or generator, emf).

We first consider a stationary path. The magnetic flux is the only time-varying

quantity on the right side of (4), and a partial derivative may be taken under the integral

sign,

emf =
∮

E · dL = −
∫

S

∂B
∂t

· dS (5)

Before we apply this simple result to an example, let us obtain the point form of

this integral equation. Applying Stokes’ theorem to the closed line integral, we have
∫

S
(∇ × E) · dS = −

∫

S

∂B
∂t

· dS

where the surface integrals may be taken over identical surfaces. The surfaces are

perfectly general and may be chosen as differentials,

(∇ × E) · dS = −
∂B
∂t

· dS

and

∇ × E = −
∂B
∂t

(6)
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This is one of Maxwell’s four equations as written in differential, or point, form,

the form in which they are most generally used. Equation (5) is the integral form of

this equation and is equivalent to Faraday’s law as applied to a fixed path. If B is not

a function of time, (5) and (6) evidently reduce to the electrostatic equations
∮

E · dL = 0 (electrostatics)

and

∇ × E = 0 (electrostatics)

As an example of the interpretation of (5) and (6), let us assume a simple magnetic

field which increases exponentially with time within the cylindrical region ρ < b,

B = B0ektaz (7)

where B0 = constant. Choosing the circular path ρ = a, a < b, in the z = 0 plane,

along which Eφ must be constant by symmetry, we then have from (5)

emf = 2πaEφ = −k B0ektπa2

The emf around this closed path is −k B0ektπa2. It is proportional to a2 because

the magnetic flux density is uniform and the flux passing through the surface at any

instant is proportional to the area.

If we now replace a with ρ, ρ < b, the electric field intensity at any point is

E = − 1
2
k B0ektρaφ (8)

Let us now attempt to obtain the same answer from (6), which becomes

(∇ × E)z = −k B0ekt =
1

ρ

∂(ρEφ)

∂ρ

Multiplying by ρ and integrating from 0 to ρ (treating t as a constant, since the

derivative is a partial derivative),

− 1
2
k B0ektρ2 = ρEφ

or

E = − 1
2
k B0ektρaφ

once again.

If B0 is considered positive, a filamentary conductor of resistance R would have

a current flowing in the negative aφ direction, and this current would establish a flux

within the circular loop in the negative az direction. Because Eφ increases exponen-

tially with time, the current and flux do also, and thus they tend to reduce the time rate

of increase of the applied flux and the resultant emf in accordance with Lenz’s law.

Before leaving this example, it is well to point out that the given field B does

not satisfy all of Maxwell’s equations. Such fields are often assumed (always in ac-

circuit problems) and cause no difficulty when they are interpreted properly. They
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Figure 9.1 An example illustrating the application of

Faraday’s law to the case of a constant magnetic flux density

B and a moving path. The shorting bar moves to the right

with a velocity v, and the circuit is completed through the two

rails and an extremely small high-resistance voltmeter. The

voltmeter reading is V12 = −Bvd.

occasionally cause surprise, however. This particular field is discussed further in

Problem 9.19 at the end of the chapter.

Now let us consider the case of a time-constant flux and a moving closed path.

Before we derive any special results from Faraday’s law (1), let us use the basic law to

analyze the specific problem outlined in Figure 9.1. The closed circuit consists of two

parallel conductors which are connected at one end by a high-resistance voltmeter of

negligible dimensions and at the other end by a sliding bar moving at a velocity v.

The magnetic flux density B is constant (in space and time) and is normal to the plane

containing the closed path.

Let the position of the shorting bar be given by y; the flux passing through the

surface within the closed path at any time t is then

� = Byd

From (1), we obtain

emf = −
d�

dt
= −B

dy
dt

d = −Bνd (9)

The emf is defined as
∮

E · dL and we have a conducting path, so we may actually

determine E at every point along the closed path. We found in electrostatics that the

tangential component of E is zero at the surface of a conductor, and we shall show in

Section 9.4 that the tangential component is zero at the surface of a perfect conductor

(σ = ∞) for all time-varying conditions. This is equivalent to saying that a perfect

conductor is a “short circuit.” The entire closed path in Figure 9.1 may be considered

a perfect conductor, with the exception of the voltmeter. The actual computation of
∮

E · dL then must involve no contribution along the entire moving bar, both rails,

and the voltmeter leads. Because we are integrating in a counterclockwise direction
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(keeping the interior of the positive side of the surface on our left as usual), the

contribution E �L across the voltmeter must be −Bνd , showing that the electric

field intensity in the instrument is directed from terminal 2 to terminal 1. For an up-

scale reading, the positive terminal of the voltmeter should therefore be terminal 2.

The direction of the resultant small current flow may be confirmed by noting that

the enclosed flux is reduced by a clockwise current in accordance with Lenz’s law.

The voltmeter terminal 2 is again seen to be the positive terminal.

Let us now consider this example using the concept of motional emf. The force

on a charge Q moving at a velocity v in a magnetic field B is

F = Qv× B

or

F
Q

= v× B (10)

The sliding conducting bar is composed of positive and negative charges, and each

experiences this force. The force per unit charge, as given by (10), is called the

motional electric field intensity Em ,

Em = v× B (11)

If the moving conductor were lifted off the rails, this electric field intensity would force

electrons to one end of the bar (the far end) until the static fiel due to these charges

just balanced the field induced by the motion of the bar. The resultant tangential

electric field intensity would then be zero along the length of the bar.

The motional emf produced by the moving conductor is then

emf =
∮

Em · dL =
∮

(v× B) · dL (12)

where the last integral may have a nonzero value only along that portion of the path

which is in motion, or along which v has some nonzero value. Evaluating the right

side of (12), we obtain
∮

(v× B) · dL =
∫ 0

d
νB dx = −Bνd

as before. This is the total emf, since B is not a function of time.

In the case of a conductor moving in a uniform constant magnetic field, we may

therefore ascribe a motional electric field intensity Em = v × B to every portion of

the moving conductor and evaluate the resultant emf by

emf =
∮

E · dL =
∮

Em · dL =
∮

(v× B) · dL (13)

If the magnetic flux density is also changing with time, then we must include

both contributions, the transformer emf (5) and the motional emf (12),

emf =
∮

E · dL = −
∫

S

∂B
∂t

· dS+
∮

(v× B) · dL (14)
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Figure 9.2 An apparent increase in flux linkages does

not lead to an induced voltage when one part of a circuit

is simply substituted for another by opening the switch.

No indication will be observed on the voltmeter.

This expression is equivalent to the simple statement

emf = −
d�

dt
(1)

and either can be used to determine these induced voltages.

Although (1) appears simple, there are a few contrived examples in which its

proper application is quite difficult. These usually involve sliding contacts or switches;

they always involve the substitution of one part of a circuit by a new part.4 As an

example, consider the simple circuit of Figure 9.2, which contains several perfectly

conducting wires, an ideal voltmeter, a uniform constant field B, and a switch. When

the switch is opened, there is obviously more flux enclosed in the voltmeter circuit;

however, it continues to read zero. The change in flux has not been produced by either

a time-changing B [first term of (14)] or a conductor moving through a magnetic field

[second part of (14)]. Instead, a new circuit has been substituted for the old. Thus it

is necessary to use care in evaluating the change in flux linkages.

The separation of the emf into the two parts indicated by (14), one due to the time

rate of change of B and the other to the motion of the circuit, is somewhat arbitrary

in that it depends on the relative velocity of the observer and the system. A field that

is changing with both time and space may look constant to an observer moving with

the field. This line of reasoning is developed more fully in applying the special theory

of relativity to electromagnetic theory.5

D9.1. Within a certain region, ǫ = 10−11 F/m and µ = 10−5 H/m. If Bx =
2×10−4 cos 105t sin 10−3 y T: (a) use ∇ ×H = ǫ

∂E
∂t

to findE; (b) find the total

magnetic flux passing through the surface x = 0, 0 < y < 40 m, 0 < z < 2 m,

4 See Bewley, in References at the end of the chapter, particularly pp. 12–19.
5 This is discussed in several of the references listed in the References at the end of the chapter.

See Panofsky and Phillips, pp. 142–51; Owen, pp. 231–45; and Harman in several places.
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at t = 1 µs; (c) find the value of the closed line integral of E around the peri-

meter of the given surface.

Ans. −20 000 sin 105t cos 10−3 yaz V/m; 0.318 mWb; −3.19 V

D9.2. With reference to the sliding bar shown in Figure 9.1, let d = 7 cm,

B = 0.3az T, and v = 0.1aye20y m/s. Let y = 0 at t = 0. Find: (a) ν(t = 0);

(b) y(t = 0.1); (c) ν(t = 0.1); (d) V12 at t = 0.1.

Ans. 0.1 m/s; 1.12 cm; 0.125 m/s; −2.63 mV

9.2 DISPLACEMENT CURRENT

Faraday’s experimental law has been used to obtain one of Maxwell’s equations in

differential form,

∇ × E = −
∂B
∂t

(15)

which shows us that a time-changing magnetic field produces an electric field. Re-

membering the definition of curl, we see that this electric field has the special property

of circulation; its line integral about a general closed path is not zero. Now let us turn

our attention to the time-changing electric field.

We should first look at the point form of Ampère’s circuital law as it applies to

steady magnetic fields,

∇ ×H = J (16)

and show its inadequacy for time-varying conditions by taking the divergence of each

side,

∇ · ∇ ×H ≡ 0 = ∇ · J

The divergence of the curl is identically zero, so ∇ · J is also zero. However, the

equation of continuity,

∇ · J = −
∂ρν

∂t
then shows us that (16) can be true only if ∂ρν/∂t = 0. This is an unrealistic limitation,

and (16) must be amended before we can accept it for time-varying fields. Suppose

we add an unknown term G to (16),

∇ ×H = J+G

Again taking the divergence, we have

0 = ∇ · J+ ∇ ·G

Thus

∇ ·G =
∂ρν

∂t
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Replacing ρν with ∇ ·D,

∇ ·G =
∂

∂t
(∇ ·D) = ∇ ·

∂D
∂t

from which we obtain the simplest solution for G,

G =
∂D
∂t

Ampère’s circuital law in point form therefore becomes

∇ ×H = J+
∂D
∂t

(17)

Equation (17) has not been derived. It is merely a form we have obtained that

does not disagree with the continuity equation. It is also consistent with all our other

results, and we accept it as we did each experimental law and the equations derived

from it. We are building a theory, and we have every right to our equations until they
are proved wrong. This has not yet been done.

We now have a second one of Maxwell’s equations and shall investigate its sig-

nificance. The additional term ∂D/∂t has the dimensions of current density, amperes

per square meter. Because it results from a time-varying electric flux density (or dis-

placement density), Maxwell termed it a displacement current density. We sometimes

denote it by Jd :

∇ ×H = J+ Jd

Jd =
∂D
∂t

This is the third type of current density we have met. Conduction current density,

J = σE

is the motion of charge (usually electrons) in a region of zero net charge density, and

convection current density,

J = ρνv

is the motion of volume charge density. Both are represented by J in (17). Bound

current density is, of course, included in H. In a nonconducting medium in which no

volume charge density is present, J = 0, and then

∇ ×H =
∂D
∂t

(if J = 0) (18)

Notice the symmetry between (18) and (15):

∇ × E = −
∂B
∂t

(15)

Again, the analogy between the intensity vectors E and H and the flux density

vectorsD andB is apparent. We cannot place too much faith in this analogy, however,

for it fails when we investigate forces on particles. The force on a charge is related toE
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Figure 9.3 A filamentary conductor forms a loop connecting the

two plates of a parallel-plate capacitor. A time-varying magnetic

field inside the closed path produces an emf of V0 cos ωt around

the closed path. The conduction current I is equal to the

displacement current between the capacitor plates.

and toB, and some good arguments may be presented showing an analogy betweenE
andB and betweenD andH. We omit them, however, and merely say that the concept

of displacement current was probably suggested to Maxwell by the symmetry first

mentioned in this paragraph.6

The total displacement current crossing any given surface is expressed by the

surface integral,

Id =
∫

S
Jd · dS =

∫

S

∂D
∂t

· dS

and we may obtain the time-varying version of Ampère’s circuital law by integrating

(17) over the surface S,
∫

S
(∇ ×H) · dS =

∫

S
J · dS+

∫

S

∂D
∂t

· dS

and applying Stokes’ theorem,

∮

H · dL = I + Id = I +
∫

S

∂D
∂t

· dS (19)

What is the nature of displacement current density? Let us study the simple circuit of

Figure 9.3, which contains a filamentary loop and a parallel-plate capacitor. Within

6 The analogy that relates B to D and H to E is strongly advocated by Fano, Chu, and Adler (see

References for Chapter 6); the case for comparing B to E and D to H is presented in Halliday and

Resnick (see References for this chapter).
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the loop, a magnetic field varying sinusoidally with time is applied to produce an

emf about the closed path (the filament plus the dashed portion between the capacitor

plates), which we shall take as

emf = V0 cos ωt

Using elementary circuit theory and assuming that the loop has negligible resis-

tance and inductance, we may obtain the current in the loop as

I = −ωCV0 sin ωt

= −ω
ǫS
d

V0 sin ωt

where the quantities ǫ, S, and d pertain to the capacitor. Let us apply Ampère’s circuital

law about the smaller closed circular path k and neglect displacement current for the

moment:
∮

k
H · dL = Ik

The path and the value of H along the path are both definite quantities (although

difficult to determine), and
∮

k H · dL is a definite quantity. The current Ik is that

current through every surface whose perimeter is the path k. If we choose a sim-

ple surface punctured by the filament, such as the plane circular surface defined by

the circular path k, the current is evidently the conduction current. Suppose now

we consider the closed path k as the mouth of a paper bag whose bottom passes

between the capacitor plates. The bag is not pierced by the filament, and the con-

ductor current is zero. Now we need to consider displacement current, for within the

capacitor

D = ǫE = ǫ

(
V0

d
cos ωt

)

and therefore

Id =
∂D
∂t

S = −ω
ǫS
d

V0 sin ωt

This is the same value as that of the conduction current in the filamentary loop.

Therefore the application of Ampère’s circuital law, including displacement current

to the path k, leads to a definite value for the line integral of H. This value must be

equal to the total current crossing the chosen surface. For some surfaces the current

is almost entirely conduction current, but for those surfaces passing between the

capacitor plates, the conduction current is zero, and it is the displacement current

which is now equal to the closed line integral of H.

Physically, we should note that a capacitor stores charge and that the electric field

between the capacitor plates is much greater than the small leakage fields outside.

We therefore introduce little error when we neglect displacement current on all those

surfaces which do not pass between the plates.

Displacement current is associated with time-varying electric fields and therefore

exists in all imperfect conductors carrying a time-varying conduction current. The last
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part of the following drill problem indicates the reason why this additional current

was never discovered experimentally.

D9.3. Find the amplitude of the displacement current density: (a) adjacent to

an automobile antenna where the magnetic field intensity of an FM signal is

Hx = 0.15 cos[3.12(3 × 108t − y)] A/m; (b) in the air space at a point within a

large power distribution transformer whereB = 0.8 cos[1.257×10−6(3×108t−
x)]ay T; (c) within a large, oil-filled power capacitor where ǫr = 5 and E =
0.9 cos[1.257 × 10−6(3 × 108t − z

√
5)]ax MV/m; (d) in a metallic conductor

at 60 Hz, if ǫ = ǫ0, µ = µ0, σ = 5.8 × 107 S/m, and J = sin(377t − 117.1z)ax
MA/m2.

Ans. 0.468 A/m2; 0.800 A/m2; 0.0150 A/m2; 57.6 pA/m2

9.3 MAXWELL’S EQUATIONS
IN POINT FORM

We have already obtained two of Maxwell’s equations for time-varying fields,

∇ × E = −
∂B
∂t

(20)

and

∇ ×H = J+
∂D
∂t

(21)

The remaining two equations are unchanged from their non-time-varying form:

∇ ·D = ρν (22)

∇ ·B = 0 (23)

Equation (22) essentially states that charge density is a source (or sink) of electric

flux lines. Note that we can no longer say that all electric flux begins and terminates

on charge, because the point form of Faraday’s law (20) shows that E, and hence D,

may have circulation if a changing magnetic field is present. Thus the lines of electric

flux may form closed loops. However, the converse is still true, and every coulomb

of charge must have one coulomb of electric flux diverging from it.

Equation (23) again acknowledges the fact that “magnetic charges,” or poles, are

not known to exist. Magnetic flux is always found in closed loops and never diverges

from a point source.

These four equations form the basis of all electromagnetic theory. They are partial

differential equations and relate the electric and magnetic fields to each other and to
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their sources, charge and current density. The auxiliary equations relating D and E,

D = ǫE (24)

relating B and H,

B = µH (25)

defining conduction current density,

J = σE (26)

and defining convection current density in terms of the volume charge density ρν ,

J = ρνv (27)

are also required to define and relate the quantities appearing in Maxwell’s equations.

The potentials V and A have not been included because they are not strictly

necessary, although they are extremely useful. They will be discussed at the end of

this chapter.

If we do not have “nice” materials to work with, then we should replace (24) and

(25) with the relationships involving the polarization and magnetization fields,

D = ǫ0E+ P (28)

B = µ0(H+M) (29)

For linear materials we may relate P to E

P = χeǫ0E (30)

and M to H

M = χmH (31)

Finally, because of its fundamental importance we should include the Lorentz

force equation, written in point form as the force per unit volume,

f = ρν(E+ v× B) (32)

The following chapters are devoted to the application of Maxwell’s equations to

several simple problems.
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D9.4. Let µ = 10−5 H/m, ǫ = 4 × 10−9 F/m, σ = 0, and ρν = 0. Find k
(including units) so that each of the following pairs of fields satisfies Maxwell’s

equations: (a) D = 6ax − 2yay + 2zaz nC/m2, H = kxax + 10yay − 25zaz
A/m; (b) E = (20y − kt)ax V/m, H = (y + 2 × 106t)az A/m.

Ans. 15 A/m2; −2.5 × 108 V/(m · s)

9.4 MAXWELL’S EQUATIONS
IN INTEGRAL FORM

The integral forms of Maxwell’s equations are usually easier to recognize in terms of

the experimental laws from which they have been obtained by a generalization process.

Experiments must treat physical macroscopic quantities, and their results therefore

are expressed in terms of integral relationships. A differential equation always rep-

resents a theory. Let us now collect the integral forms of Maxwell’s equations from

Section 9.3.

Integrating (20) over a surface and applying Stokes’ theorem, we obtain Faraday’s

law,
∮

E · dL = −
∫

S

∂B
∂t

· dS (33)

and the same process applied to (21) yields Ampère’s circuital law,

∮

H · dL = I +
∫

S

∂D
∂t

· dS (34)

Gauss’s laws for the electric and magnetic fields are obtained by integrating (22)

and (23) throughout a volume and using the divergence theorem:

∮

S
D · dS =

∫

vol

ρνdv (35)

∮

S
B · dS = 0 (36)

These four integral equations enable us to find the boundary conditions on B, D, H,

and E, which are necessary to evaluate the constants obtained in solving Maxwell’s

equations in partial differential form. These boundary conditions are in general un-

changed from their forms for static or steady fields, and the same methods may be

used to obtain them. Between any two real physical media (where K must be zero on

the boundary surface), (33) enables us to relate the tangential E-field components,

Et1 = Et2 (37)
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and from (34),

Ht1 = Ht2 (38)

The surface integrals produce the boundary conditions on the normal components,

DN1 − DN2 = ρS (39)

and

BN1 = BN2 (40)

It is often desirable to idealize a physical problem by assuming a perfect conductor

for which σ is infinite but J is finite. From Ohm’s law, then, in a perfect conductor,

E = 0

and it follows from the point form of Faraday’s law that

H = 0

for time-varying fields. The point form of Ampère’s circuital law then shows that the

finite value of J is

J = 0

and current must be carried on the conductor surface as a surface current K. Thus, if

region 2 is a perfect conductor, (37) to (40) become, respectively,

Et1 = 0 (41)

Ht1 = K (Ht1 = K× aN ) (42)

DN1 = ρs (43)

BN1 = 0 (44)

where aN is an outward normal at the conductor surface.

Note that surface charge density is considered a physical possibility for either di-

electrics, perfect conductors, or imperfect conductors, but that surface current density

is assumed only in conjunction with perfect conductors.

The preceding boundary conditions are a very necessary part of Maxwell’s

equations. All real physical problems have boundaries and require the solution of

Maxwell’s equations in two or more regions and the matching of these solutions at

the boundaries. In the case of perfect conductors, the solution of the equations within

the conductor is trivial (all time-varying fields are zero), but the application of the

boundary conditions (41) to (44) may be very difficult.

Certain fundamental properties of wave propagation are evident when Maxwell’s

equations are solved for an unbounded region. This problem is treated in Chapter 11.

It represents the simplest application of Maxwell’s equations because it is the only

problem which does not require the application of any boundary conditions.
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D9.5. The unit vector 0.64ax + 0.6ay − 0.48az is directed from region 2

(ǫr = 2, µr = 3, σ2 = 0) toward region 1 (ǫr1 = 4, µr1 = 2, σ1 = 0).

If B1 = (ax − 2ay + 3az) sin 300t T at point P in region 1 adjacent to the

boundary, find the amplitude at P of: (a) BN1; (b) Bt1; (c) BN2; (d) B2.

Ans. 2.00 T; 3.16 T; 2.00 T; 5.15 T

D9.6. The surface y = 0 is a perfectly conducting plane, whereas the region

y > 0 has ǫr = 5, µr = 3, and σ = 0. LetE = 20 cos(2×108t −2.58z)ay V/m

for y > 0, and find at t = 6 ns; (a) ρS at P(2, 0, 0.3); (b) H at P; (c) K at P.

Ans. 0.81 nC/m2; −62.3ax mA/m; −62.3az mA/m

9.5 THE RETARDED POTENTIALS

The time-varying potentials, usually called retarded potentials for a reason that we

will see shortly, find their greatest application in radiation problems (to be addressed

in Chapter 14) in which the distribution of the source is known approximately. We

should remember that the scalar electric potential V may be expressed in terms of a

static charge distribution,

V =
∫

vol

ρνdν

4πǫR
(static) (45)

and the vector magnetic potential may be found from a current distribution which is

constant with time,

A =
∫

vol

µJ dv
4πR

(dc) (46)

The differential equations satisfied by V ,

∇2V = −
ρν

ǫ
(static) (47)

and A,

∇2A = −µJ (dc) (48)

may be regarded as the point forms of the integral equations (45) and (46), respectively.

Having found V and A, the fundamental fields are then simply obtained by using

the gradient,

E = −∇V (static) (49)

or the curl,

B = ∇ × A (dc) (50)

We now wish to define suitable time-varying potentials which are consistent with

the preceding expressions when only static charges and direct currents are involved.

Equation (50) apparently is still consistent with Maxwell’s equations. These

equations state that ∇ ·B = 0, and the divergence of (50) leads to the divergence of
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the curl that is identically zero. Let us therefore tentatively accept (50) as satisfactory

for time-varying fields and turn our attention to (49).

The inadequacy of (49) is obvious because application of the curl operation to

each side and recognition of the curl of the gradient as being identically zero confront

us with ∇ × E = 0. However, the point form of Faraday’s law states that ∇ × E is

not generally zero, so let us try to effect an improvement by adding an unknown term

to (49),

E = −∇V + N

taking the curl,

∇ × E = 0 + ∇ × N

using the point form of Faraday’s law,

∇ × N = −
∂B
∂t

and using (50), giving us

∇ × N = −
∂

∂t
(∇ × A)

or

∇ × N = −∇ ×
∂A
∂t

The simplest solution of this equation is

N = −
∂A
∂t

and this leads to

E = −∇V −
∂A
∂t

(51)

We still must check (50) and (51) by substituting them into the remaining two of

Maxwell’s equations:

∇ ×H = J+
∂D
∂t

∇ ·D = ρν

Doing this, we obtain the more complicated expressions

1

µ
∇ × ∇ × A = J+ ǫ

(

−∇
∂V
∂t

−
∂2A
∂t2

)

and

ǫ

(

−∇ · ∇V −
∂

∂t
∇ ·A

)

= ρν

or

∇(∇ ·A) − ∇2A = µJ− µǫ

(

∇
∂V
∂t

+
∂2A
∂t2

)

(52)
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and

∇2V +
∂

∂t
(∇ ·A) = −

ρν

ǫ
(53)

There is no apparent inconsistency in (52) and (53). Under static or dc conditions

∇ ·A = 0, and (52) and (53) reduce to (48) and (47), respectively. We will therefore

assume that the time-varying potentials may be defined in such a way that B and

E may be obtained from them through (50) and (51). These latter two equations do

not serve, however, to define A and V completely. They represent necessary, but not

sufficient, conditions. Our initial assumption was merely that B = ∇ × A, and a

vector cannot be defined by giving its curl alone. Suppose, for example, that we have

a very simple vector potential field in which Ay and Az are zero. Expansion of (50)

leads to

Bx = 0

By =
∂Ax

∂z

Bz = −
∂Ax

∂y
and we see that no information is available about the manner in which Ax varies with

x . This information could be found if we also knew the value of the divergence of A,

for in our example

∇ ·A =
∂ Ax

∂x
Finally, we should note that our information aboutA is given only as partial derivatives

and that a space-constant term might be added. In all physical problems in which the

region of the solution extends to infinity, this constant term must be zero, for there

can be no fields at infinity.

Generalizing from this simple example, we may say that a vector field is defined

completely when both its curl and divergence are given and when its value is known at

any one point (including infinity). We are therefore at liberty to specify the divergence

of A, and we do so with an eye on (52) and (53), seeking the simplest expressions.

We define

∇ ·A = −µǫ
∂V
∂t

(54)

and (52) and (53) become

∇2A = −µJ+ µǫ
∂2A
∂t2

(55)

and

∇2V = −
ρν

ǫ
+ µǫ

∂2V
∂t2

(56)

These equations are related to the wave equation, which will be discussed in

Chapters 10 and 11. They show considerable symmetry, and we should be highly
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pleased with our definitions of V and A,

B = ∇ × A (50)

∇ ·A = −µǫ
∂V
∂t

(54)

E = −∇V −
∂A
∂t

(51)

The integral equivalents of (45) and (46) for the time-varying potentials follow

from the definitions (50), (51), and (54), but we shall merely present the final results

and indicate their general nature. In Chapter 11, we will find that any electromagnetic

disturbance will travel at a velocity

ν =
1

√
µǫ

through any homogeneous medium described by µ and ǫ. In the case of free space,

this velocity turns out to be the velocity of light, approximately 3 × 108 m/s. It is

logical, then, to suspect that the potential at any point is due not to the value of the

charge density at some distant point at the same instant, but to its value at some

previous time, because the effect propagates at a finite velocity. Thus (45) becomes

V =
∫

vol

[ρν]

4πǫR
dν (57)

where [ρν] indicates that every t appearing in the expression for ρν has been replaced

by a retarded time,

t ′ = t −
R
ν

Thus, if the charge density throughout space were given by

ρν = e−r cos ωt

then

[ρν] = e−r cos

[

ω

(

t −
R
ν

)]

where R is the distance between the differential element of charge being considered

and the point at which the potential is to be determined.

The retarded vector magnetic potential is given by

A =
∫

vol

µ[J]

4πR
dν (58)

The use of a retarded time has resulted in the time-varying potentials being given

the name of retarded potentials. In Chapter 14 we will apply (58) to the simple situation

of a differential current element in which I is a sinusoidal function of time. Other

simple applications of (58) are considered in several problems at the end of this chapter.
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We may summarize the use of the potentials by stating that a knowledge of the

distribution of ρν and J throughout space theoretically enables us to determine V and

A from (57) and (58). The electric and magnetic fields are then obtained by applying

(50) and (51). If the charge and current distributions are unknown, or reasonable

approximations cannot be made for them, these potentials usually offer no easier path

toward the solution than does the direct application of Maxwell’s equations.

D9.7. A point charge of 4 cos 108π t µC is located at P+(0, 0, 1.5), whereas

−4 cos 108π t µC is at P−(0, 0, −1.5), both in free space. Find V at P(r = 450,

θ, φ = 0) at t = 15 ns for θ =: (a) 0◦; (b) 90◦; (c) 45◦.

Ans. 159.8 V; 0; 143 V
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level in Chapter 15.

CHAPTER 9 PROBLEMS

9.1 In Figure 9.4, let B = 0.2 cos 120π t T, and assume that the conductor

joining the two ends of the resistor is perfect. It may be assumed that the

magnetic field produced by I (t) is negligible. Find (a) Vab(t); (b) I (t).

9.2 In the example described by Figure 9.1, replace the constant magnetic flux

density by the time-varying quantity B = B0 sin ωt az . Assume that U is

constant and that the displacement y of the bar is zero at t = 0. Find the emf

at any time, t .
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Figure 9.4 See Problem 9.1.

9.3 Given H = 300az cos(3 × 108t − y) A/m in free space, find the emf

developed in the general aφ direction about the closed path having corners

at (a) (0, 0, 0), (1, 0, 0), (1, 1, 0), and (0, 1, 0); (b) (0, 0, 0) (2π , 0, 0),

(2π , 2π , 0), and (0, 2π , 0).

9.4 A rectangular loop of wire containing a high-resistance voltmeter has

corners initially at (a/2, b/2, 0), (−a/2, b/2, 0), (−a/2, −b/2, 0), and

(a/2, −b/2, 0). The loop begins to rotate about the x axis at constant

angular velocity ω, with the first-named corner moving in the az direction at

t = 0. Assume a uniform magnetic flux density B = B0az . Determine the

induced emf in the rotating loop and specify the direction of the current.

9.5 The location of the sliding bar in Figure 9.5 is given by x = 5t + 2t3,

and the separation of the two rails is 20 cm. Let B = 0.8x2az T. Find the

voltmeter reading at (a) t = 0.4 s; (b) x = 0.6 m.

9.6 Let the wire loop of Problem 9.4 be stationary in its t = 0 position and find

the induced emf that results from a magnetic flux density given by

B(y, t) = B0 cos(ωt − βy) az , where ω and β are constants.

Figure 9.5 See Problem 9.5.
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Figure 9.6 See Problem 9.7.

9.7 The rails in Figure 9.6 each have a resistance of 2.2 �/m. The bar moves to

the right at a constant speed of 9 m/s in a uniform magnetic field of 0.8 T.

Find I (t), 0 < t < 1 s, if the bar is at x = 2 m at t = 0 and (a) a 0.3 �

resistor is present across the left end with the right end open-circuited; (b) a

0.3 � resistor is present across each end.

9.8 A perfectly conducting filament is formed into a circular ring of radius a. At

one point, a resistance R is inserted into the circuit, and at another a battery

of voltage V0 is inserted. Assume that the loop current itself produces

negligible magnetic field. (a) Apply Faraday’s law, Eq. (4), evaluating each

side of the equation carefully and independently to show the equality; (b)

repeat part a, assuming the battery is removed, the ring is closed again, and

a linearly increasing B field is applied in a direction normal to the loop

surface.

9.9 A square filamentary loop of wire is 25 cm on a side and has a resistance of

125 � per meter length. The loop lies in the z = 0 plane with its corners at

(0, 0, 0), (0.25, 0, 0), (0.25, 0.25, 0), and (0, 0.25, 0) at t = 0. The loop is

moving with a velocity vy = 50 m/s in the field Bz = 8 cos(1.5 ×
108t − 0.5x) µT. Develop a function of time that expresses the ohmic power

being delivered to the loop.

9.10 (a) Show that the ratio of the amplitudes of the conduction current density

and the displacement current density is σ/ωǫ for the applied field E =
Em cos ωt . Assume µ = µ0. (b) What is the amplitude ratio if the applied

field is E = Eme−t/τ , where τ is real?

9.11 Let the internal dimensions of a coaxial capacitor be a = 1.2 cm, b = 4 cm,

and l = 40 cm. The homogeneous material inside the capacitor has the

parameters ǫ = 10−11 F/m, µ = 10−5 H/m, and σ = 10−5 S/m. If the

electric field intensity is E = (106/ρ) cos 105taρ V/m, find (a) J; (b) the
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total conduction current Ic through the capacitor; (c) the total displacement

current Id through the capacitor; (d) the ratio of the amplitude of Id to that

of Ic, the quality factor of the capacitor.

9.12 Find the displacement current density associated with the magnetic field

H = A1 sin(4x) cos(ωt − βz) ax + A2 cos(4x) sin(ωt − βz) az .

9.13 Consider the region defined by |x |, |y|, and |z| < 1. Let ǫr = 5, µr = 4, and

σ = 0. If Jd = 20 cos(1.5 × 108t − bx)ay µA/m2 (a) find D and E; (b) use

the point form of Faraday’s law and an integration with respect to time to

find B and H; (c) use ∇ ×H = Jd + J to find Jd . (d) What is the numerical

value of b?

9.14 A voltage source V0 sin ωt is connected between two concentric conducting

spheres, r = a and r = b, b > a, where the region between them is a

material for which ǫ = ǫrǫ0, µ = µ0, and σ = 0. Find the total

displacement current through the dielectric and compare it with the source

current as determined from the capacitance (Section 6.3) and

circuit-analysis methods.

9.15 Let µ = 3 × 10−5 H/m, ǫ = 1.2 × 10−10 F/m, and σ = 0 everywhere.

If H = 2 cos(1010t − βx)az A/m, use Maxwell’s equations to obtain

expressions for B, D, E, and β.

9.16 Derive the continuity equation from Maxwell’s equations.

9.17 The electric field intensity in the region 0 < x < 5, 0 < y < π/12, 0 < z <

0.06 m in free space is given by E = C sin 12y sin az cos 2 × 1010tax V/m.

Beginning with the ∇ × E relationship, use Maxwell’s equations

to find a numerical value for a, if it is known that a is greater than zero.

9.18 The parallel-plate transmission line shown in Figure 9.7 has dimensions

b = 4 cm and d = 8 mm, while the medium between the plates is

characterized by µr = 1, ǫr = 20, and σ = 0. Neglect fields outside the

dielectric. Given the field H = 5 cos(109t − βz)ay A/m, use Maxwell’s

Figure 9.7 See Problem 9.18.
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equations to help find (a) β, if β > 0; (b) the displacement current density

at z = 0; (c) the total displacement current crossing the surface x = 0.5d ,

0 < y < b, 0 < z < 0.1 m in the ax direction.

9.19 In Section 9.1, Faraday’s law was used to show that the field

E = − 1
2
k B0ektρaφ results from the changing magnetic field B = B0ektaz .

(a) Show that these fields do not satisfy Maxwell’s other curl equation.

(b) If we let B0 = 1 T and k = 106 s−1, we are establishing a fairly large

magnetic flux density in 1 µs. Use the ∇ ×H equation to show that the rate

at which Bz should (but does not) change with ρ is only about 5 × 10−6 T

per meter in free space at t = 0.

9.20 Given Maxwell’s equations in point form, assume that all fields vary as est

and write the equations without explicitly involving time.

9.21 (a) Show that under static field conditions, Eq. (55) reduces to Ampère’s

circuital law. (b) Verify that Eq. (51) becomes Faraday’s law when we take

the curl.

9.22 In a sourceless medium in which J = 0 and ρν = 0, assume a rectangular

coordinate system in which E and H are functions only of z and t . The

medium has permittivity ǫ and permeability µ. (a) If E = Exax and

H = Hyay , begin with Maxwell’s equations and determine the second-order

partial differential equation that Ex must satisfy. (b) Show that

Ex = E0 cos(ωt − βz) is a solution of that equation for a particular value of

β. (c) Find β as a function of given parameters.

9.23 In region 1, z < 0, ǫ1 = 2 × 10−11 F/m, µ1 = 2 × 10−6 H/m, and σ1 =
4 × 10−3 S/m; in region 2, z > 0, ǫ2 = ǫ1/2, µ2 = 2µ1, and σ2 = σ1/4. It is

known that E1 = (30ax + 20ay + 10az) cos 109t V/m at P(0, 0, 0−). (a)

Find EN1, Et1, DN1, and Dt1 at P1. (b) Find JN1 and Jt1 at P1. (c) Find Et2,

Dt2, and Jt2 at P2(0, 0, 0+). (d) (Harder) Use the continuity equation to help

show that JN1 − JN2 = ∂ DN2/∂t − ∂ DN1/∂t , and then determine DN2,

JN2, and EN2.

9.24 A vector potential is given as A = A0 cos(ωt − kz) ay . (a) Assuming as

many components as possible are zero, find H, E, and V . (b) Specify k in

terms of A0, ω, and the constants of the lossless medium, ǫ and µ.

9.25 In a region where µr = ǫr = 1 and σ = 0, the retarded potentials are given

by V = x(z − ct) V and A = x
( z

c
− t

)

az Wb/m, where c = 1
√

µ0ǫ0.

(a) Show that ∇ ·A = −µǫ
∂V
∂t

. (b) Find B, H, E, and D. (c) Show that

these results satisfy Maxwell’s equations if J and ρν are zero.

9.26 Write Maxwell’s equations in point form in terms of E and H as they apply

to a sourceless medium, where J and ρv are both zero. Replace ǫ by µ, µ by

ǫ, E by H, and H by −E, and show that the equations are unchanged. This

is a more general expression of the duality principle in circuit theory.
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Transmission Lines

T
ransmission lines are used to transmit electric energy and signals from one

point to another, specifically from a source to a load. Examples include the

connection between a transmitter and an antenna, connections between com-

puters in a network, or connections between a hydroelectric generating plant and a

substation several hundred miles away. Other familiar examples include the intercon-

nects between components of a stereo system and the connection between a cable

service provider and your television set. Examples that are less familiar include the

connections between devices on a circuit board that are designed to operate at high

frequencies.

What all of these examples have in common is that the devices to be connected

are separated by distances on the order of a wavelength or much larger, whereas in

basic circuit analysis methods, connections between elements are assumed to have

negligible length. The latter condition enabled us, for example, to take for granted

that the voltage across a resistor on one side of a circuit was exactly in phase with

the voltage source on the other side, or, more generally, that the time measured at

the source location is precisely the same time as measured at all other points in the

circuit. When distances are sufficiently large between source and receiver, time delay

effects become appreciable, leading to delay-induced phase differences. In short, we

deal with wave phenomena on transmission lines in the same manner that we deal

with point-to-point energy propagation in free space or in dielectrics.

The basic elements in a circuit, such as resistors, capacitors, inductors, and the

connections between them, are considered lumped elements if the time delay in

traversing the elements is negligible. On the other hand, if the elements or inter-

connections are large enough, it may be necessary to consider them as distributed
elements. This means that their resistive, capacitive, and inductive characteristics

must be evaluated on a per-unit-distance basis. Transmission lines have this prop-

erty in general, and thus they become circuit elements in themselves, possessing

impedances that contribute to the circuit problem. The basic rule is that one must

consider elements as distributed if the propagation delay across the element dimen-

sion is on the order of the shortest time interval of interest. In the time-harmonic case,

301
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this condition would lead to a measurable phase difference between each end of the

device in question.

In this chapter, we investigate wave phenomena in transmission lines. Our

objectives include (1) to understand how to treat transmission lines as circuit elements

possessing complex impedances that are functions of line length and frequency, (2) to

understand wave propagation on lines, including cases in which losses may occur,

(3) to learn methods of combining different transmission lines to accomplish a desired

objective, and (4) to understand transient phenomena on lines. ■

10.1 PHYSICAL DESCRIPTION OF
TRANSMISSION LINE PROPAGATION

To obtain a feel for the manner in which waves propagate on transmission lines,

the following demonstration may be helpful. Consider a lossless line, as shown in

Figure 10.1. By lossless, we mean that all power that is launched into the line at the

input end eventually arrives at the output end. A battery having voltage V0 is con-

nected to the input by closing switch S1 at time t = 0. When the switch is closed, the

effect is to launch voltage, V + = V0. This voltage does not instantaneously appear

everywhere on the line, but rather begins to travel from the battery toward the load

resistor, R, at a certain velocity. The wavefront, represented by the vertical dashed

line in Figure 10.1, represents the instantaneous boundary between the section of the

line that has been charged to V0 and the remaining section that is yet to be charged.

It also represents the boundary between the section of the line that carries the charg-

ing current, I +, and the remaining section that carries no current. Both current and

voltage are discontinuous across the wavefront.

As the line charges, the wavefront moves from left to right at velocity ν, which

is to be determined. On reaching the far end, all or a fraction of the wave voltage

and current will reflect, depending on what the line is attached to. For example, if

the resistor at the far end is left disconnected (switch S2 is open), then all of the

wavefront voltage will be reflected. If the resistor is connected, then some fraction

of the incident voltage will reflect. The details of this will be treated in Section 10.9.

Of interest at the moment are the factors that determine the wave velocity. The key

R
V0

V  = V+
0

+

_

S1
S2

+I

Figure 10.1 Basic transmission line circuit, showing voltage and current waves

initiated by closing switch S1.
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L1

R
V0

L2 L3 L4

C1 C2 C3

Figure 10.2 Lumped-element model of a transmission line. All inductance

values are equal, as are all capacitance values.

to understanding and quantifying this is to note that the conducting transmission line

will possess capacitance and inductance that are expressed on a per-unit-length basis.

We have already derived expressions for these and evaluated them in Chapters 6 and

8 for certain transmission line geometries. Knowing these line characteristics, we can

construct a model for the transmission line using lumped capacitors and inductors, as

shown in Figure 10.2. The ladder network thus formed is referred to as a pulse-forming
network, for reasons that will soon become clear.1

Consider now what happens when connecting the same switched voltage source

to the network. Referring to Figure 10.2, on closing the switch at the battery location,

current begins to increase in L1, allowing C1 to charge. As C1 approaches full charge,

current in L2 begins to increase, allowing C2 to charge next. This progressive charging

process continues down the network, until all three capacitors are fully charged. In the

network, a “wavefront” location can be identified as the point between two adjacent

capacitors that exhibit the most difference between their charge levels. As the charging

process continues, the wavefront moves from left to right. Its speed depends on how

fast each inductor can reach its full-current state and, simultaneously, by how fast

each capacitor is able to charge to full voltage. The wave is faster if the values of L i
and Ci are lower. We therefore expect the wave velocity to be inversely proportional

to a function involving the product of inductance and capacitance. In the lossless

transmission line, it turns out (as will be shown) that the wave velocity is given by

ν = 1/
√

LC , where L and C are specified per unit length.

Similar behavior is seen in the line and network when either is initially charged. In

this case, the battery remains connected, and a resistor can be connected (by a switch)

across the output end, as shown in Figure 10.2. In the case of the ladder network,

the capacitor nearest the shunted end (C3) will discharge through the resistor first,

followed by the next-nearest capacitor, and so on. When the network is completely

discharged, a voltage pulse has been formed across the resistor, and so we see why this

ladder configuration is called a pulse-forming network. Essentially identical behavior

is seen in a charged transmission line when connecting a resistor between conductors

at the output end. The switched voltage exercises, as used in these discussions, are ex-

amples of transient problems on transmission lines. Transients will be treated in detail

in Section 10.14. In the beginning, line responses to sinusoidal signals are emphasized.

1 Designs and applications of pulse-forming networks are discussed in Reference 1.
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Finally, we surmise that the existence of voltage and current across and within the

transmission line conductors implies the existence of electric and magnetic fields in

the space around the conductors. Consequently, we have two possible approaches to

the analysis of transmission lines: (1) We can solve Maxwell’s equations subject to the

line configuration to obtain the fields, and with these find general expressions for the

wave power, velocity, and other parameters of interest. (2) Or we can (for now) avoid

the fields and solve for the voltage and current using an appropriate circuit model. It is

the latter approach that we use in this chapter; the contribution of field theory is solely

in the prior (and assumed) evaluation of the inductance and capacitance parameters.

We will find, however, that circuit models become inconvenient or useless when

losses in transmission lines are to be fully characterized, or when analyzing more

complicated wave behavior (i.e., moding) which may occur as frequencies get high.

The loss issues will be taken up in Section 10.5. Moding phenomena will be considered

in Chapter 13.

10.2 THE TRANSMISSION LINE EQUATIONS

Our first goal is to obtain the differential equations, known as the wave equations,
which the voltage or current must satisfy on a uniform transmission line. To do this,

we construct a circuit model for an incremental length of line, write two circuit

equations, and use these to obtain the wave equations.

Our circuit model contains the primary constants of the transmission line. These

include the inductance, L, and capacitance, C, as well as the shunt conductance, G,

and series resistance, R—all of which have values that are specified per unit length.

The shunt conductance is used to model leakage current through the dielectric that

may occur throughout the line length; the assumption is that the dielectric may possess

conductivity, σd , in addition to a dielectric constant, ǫr , where the latter affects the

capacitance. The series resistance is associated with any finite conductivity, σc, in

the conductors. Either one of the latter parameters, R and G, will be responsible for

power loss in transmission. In general, both are functions of frequency. Knowing the

frequency and the dimensions, we can determine the values of R, G, L , and C by

using formulas developed in earlier chapters.

We assume propagation in the az direction. Our model consists of a line section

of length �z containing resistance R�z, inductance L�z, conductance G�z, and

capacitance C�z, as indicated in Figure 10.3. Because the section of the line looks

the same from either end, we divide the series elements in half to produce a symmet-

rical network. We could equally well have placed half the conductance and half the

capacitance at each end.

Our objective is to determine the manner and extent to which the output voltage

and current are changed from their input values in the limit as the length approaches

a very small value. We will consequently obtain a pair of differential equations that

describe the rates of change of voltage and current with respect to z. In Figure 10.3,

the input and output voltages and currents differ respectively by quantities �V and�I ,

which are to be determined. The two equations are obtained by successive applications

of Kirchoff’s voltage law (KVL) and Kirchoff’s current law (KCL).
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+

+
g

c

KCL

KVL

Figure 10.3 Lumped-element model of a short transmission line section

with losses. The length of the section is �z. Analysis involves applying

Kirchoff’s voltage and current laws (KVL and KCL) to the indicated loop

and node, respectively.

First, KVL is applied to the loop that encompasses the entire section length, as

shown in Figure 10.3:

V =
1

2
RI�z +

1

2
L

∂ I
∂t

�z +
1

2
L

(

∂ I
∂t

+
∂�I
∂t

)

�z

+
1

2
R(I + �I )�z + (V + �V ) (1)

We can solve Eq. (1) for the ratio, �V/�z, obtaining:

�V
�z

= −
(

RI + L
∂ I
∂t

+
1

2
L

∂�I
∂t

+
1

2
R�I

)

(2)

Next, we write:

�I =
∂ I
∂z

�z and �V =
∂V
∂z

�z (3)

which are then substituted into (2) to result in

∂V
∂z

= −
(

1 +
�z
2

∂

∂z

) (

RI + L
∂ I
∂t

)

(4)

Now, in the limit as �z approaches zero (or a value small enough to be negligible),

(4) simplifies to the final form:

∂V
∂z

= −
(

RI + L
∂ I
∂t

)

(5)

Equation (5) is the first of the two equations that we are looking for. To find the

second equation, we apply KCL to the upper central node in the circuit of Figure 10.3,

noting from the symmetry that the voltage at the node will be V + �V/2:

I = Ig + Ic + (I + �I ) = G�z
(

V +
�V

2

)

+ C�z
∂

∂t

(

V +
�V

2

)

+ (I + �I ) (6)
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Then, using (3) and simplifying, we obtain

∂ I
∂z

= −
(

1 +
�z
2

∂

∂z

) (

GV + C
∂V
∂t

)

(7)

Again, we obtain the final form by allowing �z to be reduced to a negligible magni-

tude. The result is

∂ I
∂z

= −
(

GV + C
∂V
∂t

)

(8)

The coupled differential equations, (5) and (8), describe the evolution of current

and voltage in any transmission line. Historically, they have been referred to as the

telegraphist’s equations. Their solution leads to the wave equation for the transmission

line, which we now undertake. We begin by differentiating Eq. (5) with respect to z
and Eq. (8) with respect to t , obtaining:

∂2V
∂z2

= −R
∂ I
∂z

− L
∂2I
∂t∂z

(9)

and

∂ I
∂z∂t

= −G
∂V
∂t

− C
∂2V
∂t2

(10)

Next, Eqs. (8) and (10) are substituted into (9). After rearranging terms, the result is:

∂2V
∂z2

= LC
∂2V
∂t2

+ (LG + RC)
∂V
∂t

+ RGV (11)

An analogous procedure involves differentiating Eq. (5) with respect to t and Eq. (8)

with respect to z. Then, Eq. (5) and its derivative are substituted into the derivative of

(8) to obtain an equation for the current that is in identical form to that of (11):

∂2I
∂z2

= LC
∂2I
∂t2

+ (LG + RC)
∂I
∂t

+ RGI (12)

Equations (11) and (12) are the general wave equations for the transmission line.

Their solutions under various conditions form a major part of our study.

10.3 LOSSLESS PROPAGATION

Lossless propagation means that power is not dissipated or otherwise deviated as the

wave travels down the transmission line; all power at the input end eventually reaches

the output end. More realistically, any mechanisms that would cause losses to occur

have negligible effect. In our model, lossless propagation occurs when R = G = 0.
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Under this condition, only the first term on the right-hand side of either Eq. (11) or

Eq. (12) survives. Eq. (11), for example, becomes

∂2V
∂z2

= LC
∂2V
∂t2

(13)

In considering the voltage function that will satisfy (13), it is most expedient to

simply state the solution, and then show that it is correct. The solution of (13) is of

the form:

V (z, t) = f1

(

t −
z
ν

)

+ f2

(

t +
z
ν

)

= V + + V − (14)

where ν, the wave velocity, is a constant. The expressions (t ± z/ν) are the arguments

of functions f1 and f2. The identities of the functions themselves are not critical to

the solution of (13). Therefore, f1 and f2 can be any function.

The arguments of f1 and f2 indicate, respectively, travel of the functions in the

forward and backward z directions. We assign the symbols V + and V − to identify

the forward and backward voltage wave components. To understand the behavior,

consider for example the value of f1 (whatever this might be) at the zero value of its

argument, occurring when z = t = 0. Now, as time increases to positive values (as

it must), and if we are to keep track of f1(0), then the value of z must also increase

to keep the argument (t − z/ν) equal to zero. The function f1 therefore moves (or

propagates) in the positive z direction. Using similar reasoning, the function f2 will

propagate in the negative z direction, as z in the argument (t + z/ν) must decrease to

offset the increase in t . Therefore we associate the argument (t − z/ν) with forward
z propagation, and the argument (t + z/ν) with backward z travel. This behavior

occurs irrespective of what f1 and f2 are. As is evident in the argument forms, the

propagation velocity is ν in both cases.

We next verify that functions having the argument forms expressed in (14) are

solutions to (13). First, we take partial derivatives of f1, for example with respect to

z and t . Using the chain rule, the z partial derivative is

∂ f1

∂z
=

∂ f1

∂(t − z/ν)

∂(t − z/ν)

∂z
= −

1

ν
f ′
1 (15)

where it is apparent that the primed function, f ′
1, denotes the derivative of f1 with

respect to its argument. The partial derivative with respect to time is

∂ f1

∂t
=

∂ f1

∂(t − z/ν)

∂(t − z/ν)

∂t
= f ′

1 (16)

Next, the second partial derivatives with respect to z and t can be taken using similar

reasoning:

∂2 f1

∂z2
=

1

ν2
f ′′
1 and

∂2 f1

∂t2
= f ′′

1 (17)
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where f ′′
1 is the second derivative of f1 with respect to its argument. The results in

(17) can now be substituted into (13), obtaining

1

ν2
f ′′
1 = LC f ′′

1 (18)

We now identify the wave velocity for lossless propagation, which is the condition

for equality in (18):

ν =
1

√
LC

(19)

Performing the same procedure using f2 (and its argument) leads to the same expres-

sion for ν.

The form of ν as expressed in Eq. (19) confirms our original expectation that the

wave velocity would be in some inverse proportion to L and C . The same result will

be true for current, as Eq. (12) under lossless conditions would lead to a solution of

the form identical to that of (14), with velocity given by (19). What is not known yet,

however, is the relation between voltage and current.

We have already found that voltage and current are related through the tele-

graphist’s equations, (5) and (8). These, under lossless conditions (R = G = 0),

become

∂V
∂z

= −L
∂ I
∂t

(20)

∂ I
∂z

= −C
∂V
∂t

(21)

Using the voltage function, we can substitute (14) into (20) and use the methods

demonstrated in (15) to write

∂ I
∂t

= −
1

L
∂V
∂z

=
1

Lν
( f ′

1 − f ′
2) (22)

We next integrate (22) over time, obtaining the current in terms of its forward and

backward propagating components:

I (z, t) =
1

Lν

[

f1

(

t −
z
ν

)

− f2

(

t +
z
ν

)]

= I + + I − (23)

In performing this integration, all integration constants are set to zero. The reason

for this, as demonstrated by (20) and (21), is that a time-varying voltage must lead

to a time-varying current, with the reverse also true. The factor 1/Lν appearing

in (23) multiplies voltage to obtain current, and so we identify the product Lν as

the characteristic impedance, Z0, of the lossless line. Z0 is defined as the ratio of
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−

−

Figure 10.4 Current directions in waves having positive voltage

polarity.

the voltage to the current in a single propagating wave. Using (19), we write the

characteristic impedance as

Z0 = Lν =
√

L
C

(24)

By inspecting (14) and (23), we now note that

V + = Z0 I + (25a)

and

V − = −Z0 I − (25b)

The significance of the preceding relations can be seen in Figure 10.4. The figure

shows forward- and backward-propagating voltage waves, V + and V −, both of which

have positive polarity. The currents that are associated with these voltages will flow in

opposite directions. We define positive current as having a clockwise flow in the line,

and negative current as having a counterclockwise flow. The minus sign in (25b) thus

assures that negative current will be associated with a backward-propagating wave

that has positive polarity. This is a general convention, applying to lines with losses

also. Propagation with losses is studied by solving (11) under the assumption that

either R or G (or both) are not zero. We will do this in Section 10.7 under the special

case of sinusoidal voltages and currents. Sinusoids in lossless transmission lines are

considered in Section 10.4.

10.4 LOSSLESS PROPAGATION
OF SINUSOIDAL VOLTAGES

An understanding of sinusoidal waves on transmission lines is important because any

signal that is transmitted in practice can be decomposed into a discrete or continuous

summation of sinusoids. This is the basis of frequency domain analysis of signals on
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lines. In such studies, the effect of the transmission line on any signal can be deter-

mined by noting the effects on the frequency components. This means that one can

effectively propagate the spectrum of a given signal, using frequency-dependent line

parameters, and then reassemble the frequency components into the resultant signal in

time domain. Our objective in this section is to obtain an understanding of sinusoidal

propagation and the implications on signal behavior for the lossless line case.

We begin by assigning sinusoidal functions to the voltage functions in Eq. (14).

Specifically, we consider a specific frequency, f = ω/2π , and write f1 = f2 =
V0 cos(ωt + φ). By convention, the cosine function is chosen; the sine is obtainable,

as we know, by setting φ = −π/2. We next replace t with (t ± z/νp), obtaining

V(z, t) = |V0| cos[ω(t ± z/νp) + φ] = |V0| cos[ωt ± βz + φ] (26)

where we have assigned a new notation to the velocity, which is now called the phase
velocity, νp. This is applicable to a pure sinusoid (having a single frequency) and will

be found to depend on frequency in some cases. Choosing, for the moment, φ = 0,

we obtain the two possibilities of forward or backward z travel by choosing the minus

or plus sign in (26). The two cases are:

V f (z, t) = |V0| cos(ωt − βz) (forward z propagation) (27a)

and

Vb(z, t) = |V0| cos(ωt + βz) (backward z propagation) (27b)

where the magnitude factor, |V0|, is the value of V at z = 0, t = 0. We define the

phase constant β, obtained from (26), as

β ≡
ω

νp
(28)

We refer to the solutions expressed in (27a) and (27b) as the real instantaneous
forms of the transmission-line voltage. They are the mathematical representations of

what one would experimentally measure. The terms ωt and βz, appearing in these

equations, have units of angle and are usually expressed in radians. We know that ω

is the radian time frequency, measuring phase shift per unit time, and it has units of

rad/s. In a similar way, we see that β will be interpreted as a spatial frequency, which

in the present case measures the phase shift per unit distance along the z direction.

Its units are rad/m. If we were to fix the time at t = 0, Eqs. (27a) and (27b) would

become

V f (z, 0) = Vb(z, 0) = |V0| cos(βz) (29)

which we identify as a simple periodic function that repeats every incremental dis-

tance λ, known as the wavelength. The requirement is that βλ = 2π , and so

λ =
2π

β
=

νp

f
(30)
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We next consider a point (such as a wave crest) on the cosine function of Eq. (27a),

the occurrence of which requires the argument of the cosine to be an integer multiple

of 2π . Considering the mth crest of the wave, the condition at t = 0 becomes

βz = 2mπ

To keep track of this point on the wave, we require that the entire cosine argument be

the same multiple of 2π for all time. From (27a) the condition becomes

ωt − βz = ω(t − z/νp) = 2mπ (31)

Again, with increasing time, the position z must also increase in order to satisfy (31).

Consequently the wave crest (and the entire wave) travels in the positive z direction

at velocity νp. Eq. (27b), having cosine argument (ωt + βz), describes a wave that

travels in the negative z direction, since as time increases, z must now decrease
to keep the argument constant. Similar behavior is found for the wave current, but

complications arise from line-dependent phase differences that occur between current

and voltage. These issues are best addressed once we are familiar with complex

analysis of sinusoidal signals.

10.5 COMPLEX ANALYSIS
OF SINUSOIDAL WAVES

Expressing sinusoidal waves as complex functions is useful (and essentially indis-

pensable) because it greatly eases the evaluation and visualization of phase that will

be found to accumulate by way of many mechanisms. In addition, we will find many

cases in which two or more sinusoidal waves must be combined to form a resultant

wave—a task made much easier if complex analysis is used.

Expressing sinusoidal functions in complex form is based on the Euler identity:

e± j x = cos(x) ± j sin(x) (32)

from which we may write the cosine and sine, respectively, as the real and imaginary

parts of the complex exponent:

cos(x) = Re[e± j x ] =
1

2
(e j x + e− j x ) =

1

2
e j x + c.c. (33a)

sin(x) = ±Im[e± j x ] =
1

2 j
(e j x − e− j x ) =

1

2 j
e j x + c.c. (33b)

where j ≡
√

−1, and where c.c. denotes the complex conjugate of the preceding

term. The conjugate is formed by changing the sign of j wherever it appears in the

complex expression.

We may next apply (33a) to our voltage wave function, Eq. (26):

V(z, t) = |V0| cos[ωt ± βz + φ] =
1

2
(|V0|e jφ)
︸ ︷︷ ︸

V0

e± jβze jωt + c.c. (34)

Note that we have arranged the phases in (34) such that we identify the complex
amplitude of the wave as V0 = (|V0|e jφ). In future usage, a single symbol (V0 in the
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present example) will usually be used for the voltage or current amplitudes, with the

understanding that these will generally be complex (having magnitude and phase).

Two additional definitions follow from Eq. (34). First, we define the complex
instantaneous voltage as:

Vc(z, t) = V0e± jβze jωt (35)

The phasor voltage is then formed by dropping the e jωt factor from the complex

instantaneous form:

Vs(z) = V0e± jβz (36)

The phasor voltage can be defined provided we have sinusoidal steady-state
conditions—meaning that V0 is independent of time. This has in fact been our assump-

tion all along, because a time-varying amplitude would imply the existence of other

frequency components in our signal. Again, we are treating only a single-frequency

wave. The significance of the phasor voltage is that we are effectively letting time

stand still and observing the stationary wave in space at t = 0. The processes of

evaluating relative phases between various line positions and of combining multiple

waves is made much simpler in phasor form. Again, this works only if all waves under

consideration have the same frequency. With the definitions in (35) and (36), the real

instantaneous voltage can be constructed using (34):

V(z, t) = |V0| cos[ωt ± βz + φ] = Re[Vc(z, t)] =
1

2
Vc + c.c. (37a)

Or, in terms of the phasor voltage:

V(z, t) = |V0| cos[ωt ± βz + φ] = Re[Vs(z)e jωt ] =
1

2
Vs(z)e jωt + c.c. (37b)

In words, we may obtain our real sinusoidal voltage wave by multiplying the phasor

voltage by e jωt (reincorporating the time dependence) and then taking the real part of

the resulting expression. It is imperative that one becomes familiar with these relations

and their meaning before proceeding further.

EXAMPLE 10.1

Two voltage waves having equal frequencies and amplitudes propagate in opposite

directions on a lossless transmission line. Determine the total voltage as a function

of time and position.

Solution. Because the waves have the same frequency, we can write their combina-

tion using their phasor forms. Assuming phase constant, β, and real amplitude, V0,

the two wave voltages combine in this way:

VsT (z) = V0e− jβz + V0e+ jβz = 2V0 cos(βz)
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In real instantaneous form, this becomes

V(z, t) = Re[2V0 cos(βz)e jωt ] = 2V0 cos(βz) cos(ωt)

We recognize this as a standing wave, in which the amplitude varies, as cos(βz), and

oscillates in time, as cos(ωt). Zeros in the amplitude (nulls) occur at fixed locations,

zn = (mπ )/(2β) where m is an odd integer. We extend the concept in Section 10.10,

where we explore the voltage standing wave ratio as a measurement technique.

10.6 TRANSMISSION LINE EQUATIONS AND
THEIR SOLUTIONS IN PHASOR FORM

We now apply our results of the previous section to the transmission line equations,

beginning with the general wave equation, (11). This is rewritten as follows, for the

real instantaneous voltage, V(z, t):

∂2V

∂z2
= LC

∂2V

∂t2
+ (LG + RC)

∂V

∂t
+ RGV (38)

We next substitute V(z, t) as given by the far right-hand side of (37b), noting that

the complex conjugate term (c.c.) will form a separate redundant equation. We also

use the fact that the operator ∂/∂t , when applied to the complex form, is equivalent

to multiplying by a factor of jω. After substitution, and after all time derivatives are

taken, the factor e jωt divides out. We are left with the wave equation in terms of the

phasor voltage:

d2Vs

dz2
= −ω2LCVs + jω(LG + RC)Vs + RGVs (39)

Rearranging terms leads to the simplified form:

d2Vs

dz2
= (R + jωL)

︸ ︷︷ ︸

Z

(G + jωC)
︸ ︷︷ ︸

Y

Vs = γ 2Vs (40)

where Z and Y , as indicated, are respectively the net series impedance and the net
shunt admittance in the transmission line—both as per-unit-distance measures. The

propagation constant in the line is defined as

γ =
√

(R + jωL)(G + jωC) =
√

ZY = α + jβ (41)

The significance of the term will be explained in Section 10.7. For our immediate

purposes, the solution of (40) will be

Vs(z) = V +
0 e−γ z + V −

0 e+γ z (42a)
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The wave equation for current will be identical in form to (40). We therefore expect

the phasor current to be in the form:

Is(z) = I +
0 e−γ z + I −

0 eγ z (42b)

The relation between the current and voltage waves is now found, as before,

through the telegraphist’s equations, (5) and (8). In a manner consistent with Eq. (37b),

we write the sinusoidal current as

I(z, t) = |I0| cos(ωt ± βz + ξ ) =
1

2
(|I0|e jξ )
︸ ︷︷ ︸

I0

e± jβze jωt + c.c. =
1

2
Is(z)e jωt + c.c.

(43)

Substituting the far right-hand sides of (37b) and (43) into (5) and (8) transforms the

latter equations as follows:

∂V

∂z
= −

(

RI + L
∂I

∂t

)

⇒
dVs

dz
= −(R + jωL)Is = −Z Is (44a)

and

∂I

∂z
= −

(

GV + C
∂V

∂t

)

⇒
d Is

dz
= −(G + jωC)Vs = −Y Vs (44b)

We can now substitute (42a) and (42b) into either (44a) or (44b) [we will use (44a)]

to find:

−γ V +
0 e−γ z + γ V −

0 eγ z = −Z (I +
0 e−γ z + I −

0 eγ z) (45)

Next, equating coefficients of e−γ z and eγ z , we find the general expression for the

line characteristic impedance:

Z0 =
V +

0

I +
0

= −
V −

0

I −
0

=
Z
γ

=
Z

√
ZY

=
√

Z
Y

(46)

Incorporating the expressions for Z and Y , we find the characteristic impedance in

terms of our known line parameters:

Z0 =

√

R + jωL
G + jωC

= |Z0|e jθ (47)

Note that with the voltage and current as given in (37b) and (43), we would identify

the phase of the characteristic impedance, θ = φ − ξ .

EXAMPLE 10.2

A lossless transmission line is 80 cm long and operates at a frequency of 600 MHz.

The line parameters are L = 0.25 µH/m and C = 100 pF/m. Find the characteristic

impedance, the phase constant, and the phase velocity.
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Solution. Because the line is lossless, both R and G are zero. The characteristic

impedance is

Z0 =
√

L
C

=

√

0.25 × 10−6

100 × 10−12
= 50 �

Because γ = α + jβ =
√

(R + jωL)(G + jωC) = jω
√

LC , we see that

β = ω
√

LC = 2π (600 × 106)
√

(0.25 × 10−6)(100 × 10−12) = 18.85 rad/m

Also,

νp =
ω

β
=

2π (600 × 106)

18.85
= 2 × 108 m/s

10.7 LOW-LOSS PROPAGATION

Having obtained the phasor forms of voltage and current in a general transmission

line [Eqs. (42a) and (42b)], we can now look more closely at the significance of these

results. First we incorporate (41) into (42a) to obtain

Vs(z) = V +
0 e−αze− jβz + V −

0 eαze jβz (48)

Next, multiplying (48) by e jωt and taking the real part gives the real instantaneous

voltage:

V(z, t) = V +
0 e−αz cos(ωt − βz) + V −

0 eαz cos(ωt + βz) (49)

In this exercise, we have assigned V +
0 and V −

0 to be real. Eq. (49) is recognized

as describing forward- and backward-propagating waves that diminish in amplitude

with distance according to e−αz for the forward wave, and eαz for the backward wave.

Both waves are said to attenuate with propagation distance at a rate determined by

the attenuation coefficient α, expressed in units of nepers/m [Np/m].2

The phase constant, β, found by taking the imaginary part of (41), is likely to be a

somewhat complicated function, and will in general depend on R and G. Nevertheless,

β is still defined as the ratio ω/νp, and the wavelength is still defined as the distance

that provides a phase shift of 2π rad, so that λ = 2π/β. By inspecting (41), we

observe that losses in propagation are avoided (or α = 0) only when R = G = 0. In

that case, (41) gives γ = jβ = jω
√

LC , and so νp = 1/
√

LC , as we found before.

Expressions for α and β when losses are small can be readily obtained from (41).

In the low-loss approximation, we require R ≪ ωL and G ≪ ωC , a condition that

2 The term neper was selected (by some poor speller) to honor John Napier, a Scottish mathematician

who first proposed the use of logarithms.
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is often true in practice. Before we apply these conditions, Eq. (41) can be written in

the form:

γ = α + jβ = [(R + jωL)(G + jωC)]1/2

= jω
√

LC

[

(

1 +
R

jωL

)1/2 (

1 +
G

jωC

)1/2
]

(50)

The low-loss approximation then allows us to use the first three terms in the binomial

series:

√
1 + x .= 1 +

x
2

−
x2

8
(x ≪ 1) (51)

We use (51) to expand the terms in large parentheses in (50), obtaining:

γ
.= jω

√
LC

[(

1 +
R

j2ωL
+

R2

8ω2L2

) (

1 +
G

j2ωC
+

G2

8ω2C2

)]

(52)

All products in (52) are then carried out, neglecting the terms involving RG2, R2G,

and R2G2, as these will be negligible compared to all others. The result is

γ = α + jβ .= jω
√

LC
[

1 +
1

j2ω

(
R
L

+
G
C

)

+
1

8ω2

(
R2

L2
−

2RG
LC

+
G2

C2

)]

(53)

Now, separating real and imaginary parts of (53) yields α and β:

α
.=

1

2

(

R
√

C
L

+ G
√

L
C

)

(54a)

and

β
.= ω

√
LC

[

1 +
1

8

(
G
ωC

−
R

ωL

)2
]

(54b)

We note that α scales in direct proportion to R and G, as would be expected. We

also note that the terms in (54b) that involve R and G lead to a phase velocity,

νp = ω/β, that is frequency-dependent. Moreover, the group velocity, νg = dω/dβ,

will also depend on frequency, and will lead to signal distortion, as we will explore in

Chapter 12. Note that with nonzero R and G, phase and group velocities that are

constant with frequency can be obtained when R/L = G/C , known as Heaviside’s
condition. In this case, (54b) becomes β

.= ω
√

LC , and the line is said to be distor-
tionless. Further complications occur when accounting for possible frequency depen-

dencies within R, G, L , and C . Consequently, conditions of low-loss or distortion-free

propagation will usually occur over limited frequency ranges. As a rule, loss increases

with increasing frequency, mostly because of the increase in R with frequency. The

nature of this latter effect, known as skin effect loss, requires field theory to understand



CHAPTER 10 Transmission Lines 317

and quantify. We will study this in Chapter 11, and we will apply it to transmission

line structures in Chapter 13.

Finally, we can apply the low-loss approximation to the characteristic impedance,

Eq. (47). Using (51), we find

Z0 =

√

R + jωL
G + jωC

=

√

√

√

√

√

jωL
(

1 + R
jωL

)

jωC
(

1 + G
jωC

)
.=

√

L
C





(

1 + R
j2ωL + R2

8ω2 L2

)

(

1 + G
j2ωC + G2

8ω2C2

)



 (55)

Next, we multiply (55) by a factor of 1, in the form of the complex conjugate of

the denominator of (55) divided by itself. The resulting expression is simplified by

neglecting all terms on the order of R2G, G2R, and higher. Additionally, the approx-

imation, 1/(1 + x)
.= 1 − x , where x ≪ 1 is used. The result is

Z0
.=

√

L
C

{

1 +
1

2ω2

[

1

4

(
R
L

+
G
C

)2

−
G2

C2

]

+
j

2ω

(
G
C

−
R
L

)
}

(56)

Note that when Heaviside’s condition (again, R/L = G/C) holds, Z0 simplifies to

just
√

L/C , as is true when both R and G are zero.

EXAMPLE 10.3

Suppose in a certain transmission line G = 0, but R is finite valued and satisfies the

low-loss requirement, R ≪ ωL . Use Eq. (56) to write the approximate magnitude

and phase of Z0.

Solution. With G = 0, the imaginary part of (56) is much greater than the sec-

ond term in the real part [proportional to (R/ωL)2]. Therefore, the characteristic

impedance becomes

Z0(G = 0)
.=

√

L
C

(

1 − j
R

2ωL

)

= |Z0|e jθ

where |Z0|
.=

√
L/C , and θ = tan−1(−R/2ωL).

D10.1. At an operating radian frequency of 500 Mrad/s, typical circuit values

for a certain transmission line are: R = 0.2 �/m, L = 0.25 µH/m, G =
10 µS/m, and C = 100 pF/m. Find: (a) α; (b) β; (c) λ; (d) νp; (e) Z0.

Ans. 2.25 mNp/m; 2.50 rad/m; 2.51 m; 2 × 108 m/sec; 50.0 − j0.0350 �

10.8 POWER TRANSMISSION AND THE USE
OF DECIBELS IN LOSS
CHARACTERIZATION

Having found the sinusoidal voltage and current in a lossy transmission line, we next

evaluate the power transmitted over a specified distance as a function of voltage and

current amplitudes. We start with the instantaneous power, given simply as the product

of the real voltage and current. Consider the forward-propagating term in (49), where
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again, the amplitude, V +
0 = |V0|, is taken to be real. The current waveform will be

similar, but will generally be shifted in phase. Both current and voltage attenuate

according to the factor e−αz . The instantaneous power therefore becomes:

P(z, t) = V(z, t)I(z, t) = |V0||I0|e−2αz cos(ωt − βz) cos(ωt − βz + θ ) (57)

Usually, the time-averaged power, 〈P〉, is of interest. We find this through:

〈P〉 =
1

T

∫ T

0

|V0||I0|e−2αz cos(ωt − βz) cos(ωt − βz + θ )dt (58)

where T = 2π/ω is the time period for one oscillation cycle. Using a trigonometric

identity, the product of cosines in the integrand can be written as the sum of individual

cosines at the sum and difference frequencies:

〈P〉 =
1

T

∫ T

0

1

2
|V0||I0|e−2αz[cos(2ωt − 2βz + θ ) + cos(θ )] dt (59)

The first cosine term integrates to zero, leaving the cos θ term. The remaining integral

easily evaluates as

〈P〉 =
1

2
|V0||I0|e−2αz cos θ =

1

2

|V0|2

|Z0|
e−2αz cos θ [W] (60)

The same result can be obtained directly from the phasor voltage and current. We

begin with these, expressed as

Vs(z) = V0e−αze− jβz (61)

and

Is(z) = I0e−αze− jβz =
V0

Z0

e−αze− jβz (62)

where Z0 = |Z0|e jθ . We now note that the time-averaged power as expressed in (60)

can be obtained from the phasor forms through:

〈P〉 =
1

2
Re{Vs I ∗

s } (63)

where again, the asterisk (∗) denotes the complex conjugate (applied in this case to

the current phasor only). Using (61) and (62) in (63), it is found that

〈P〉 =
1

2
Re

{

V0e−αze− jβz V ∗
0

|Z0|e− jθ e−αze+ jβz
}

=
1

2
Re

{

V0V ∗
0

|Z0|
e−2αze jθ

}

=
1

2

|V0|2

|Z0|
e−2αz cos θ (64)

which we note is identical to the time-integrated result in (60). Eq. (63) applies to any

single-frequency wave.
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An important result of the preceding exercise is that power attenuates as e−2αz , or

〈P(z)〉 = 〈P(0)〉e−2αz (65)

Power drops at twice the exponential rate with distance as either voltage or current.

A convenient measure of power loss is in decibel units. This is based on express-

ing the power decrease as a power of 10. Specifically, we write

〈P(z)〉
〈P(0)〉

= e−2αz = 10−καz (66)

where the constant, κ , is to be determined. Setting αz = 1, we find

e−2 = 10−κ ⇒ κ = log10(e2) = 0.869 (67)

Now, by definition, the power loss in decibels (dB) is

Power loss (dB) = 10 log10

[

〈P(0)〉
〈P(z)〉

]

= 8.69αz (68)

where we note that inverting the power ratio in the argument of the log function [as

compared to the ratio in (66)] yields a positive number for the dB loss. Also, noting

that 〈P〉 ∝ |V0|2, we may write, equivalently:

Power loss (dB) = 10 log10

[

〈P(0)〉
〈P(z)〉

]

= 20 log10

[

|V0(0)|
|V0(z)|

]

(69)

where |V0(z)| = |V0(0)|e−αz .

EXAMPLE 10.4

A 20-m length of transmission line is known to produce a 2.0-dB drop in power from

end to end. (a) What fraction of the input power reaches the output? (b) What fraction

of the input power reaches the midpoint of the line? (c) What exponential attenuation

coefficient, α, does this represent?

Solution. (a) The power fraction will be

〈P(20)〉
〈P(0)〉

= 10−0.2 = 0.63

(b) 2 dB in 20 m implies a loss rating of 0.2 dB/m. So, over a 10-m span, the loss

is 1.0 dB. This represents the power fraction, 10−0.1 = 0.79.

(c) The exponential attenuation coefficient is found through

α =
2.0 dB

(8.69 dB/Np)(20 m)
= 0.012 [Np/m]

A final point addresses the question: Why use decibels? The most compelling

reason is that when evaluating the accumulated loss for several lines and devices that
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are all end-to-end connected, the net loss in dB for the entire span is just the sum of

the dB losses of the individual elements.

D10.2. Two transmission lines are to be joined end to end. Line 1 is 30 m

long and is rated at 0.1 dB/m. Line 2 is 45 m long and is rated at 0.15 dB/m.

The joint is not done well and imparts a 3-dB loss. What percentage of the input

power reaches the output of the combination?

Ans. 5.3%

10.9 WAVE REFLECTION
AT DISCONTINUITIES

The concept of wave reflection was introduced in Section 10.1. As implied there,

the need for a reflected wave originates from the necessity to satisfy all voltage

and current boundary conditions at the ends of transmission lines and at locations

at which two dissimilar lines are connected to each other. The consequences of re-

flected waves are usually less than desirable, in that some of the power that was

intended to be transmitted to a load, for example, reflects and propagates back to

the source. Conditions for achieving no reflected waves are therefore important to

understand.

The basic reflection problem is illustrated in Figure 10.5. In it, a transmission line

of characteristic impedance Z0 is terminated by a load having complex impedance,

ZL = RL + j X L . If the line is lossy, then we know that Z0 will also be complex. For

convenience, we assign coordinates such that the load is at location z = 0. Therefore,

the line occupies the region z < 0. A voltage wave is presumed to be incident on the

load, and is expressed in phasor form for all z:

Vi (z) = V0i e−αze− jβz (70a)

When the wave reaches the load, a reflected wave is generated that back-propagates:

Vr (z) = V0r e+αze+ jβz (70b)

Z  =  R  +  jXL LLZ0

z = 0

Vi

Vr

Figure 10.5 Voltage wave reflection from a complex load

impedance.



CHAPTER 10 Transmission Lines 321

The phasor voltage at the load is now the sum of the incident and reflected voltage

phasors, evaluated at z = 0:

VL = V0i + V0r (71)

Additionally, the current through the load is the sum of the incident and reflected

currents, also at z = 0:

IL = I0i + I0r =
1

Z0

[V0i − V0r ] =
VL

ZL
=

1

ZL
[V0i + V0r ] (72)

We can now solve for the ratio of the reflected voltage amplitude to the incident

voltage amplitude, defined as the reflectio coefficient Ŵ:

Ŵ ≡
V0r

V0i
=

ZL − Z0

ZL + Z0

= |Ŵ|e jφr (73)

where we emphasize the complex nature of Ŵ—meaning that, in general, a reflected

wave will experience a reduction in amplitude and a phase shift, relative to the inci-

dent wave.

Now, using (71) with (73), we may write

VL = V0i + ŴV0i (74)

from which we find the transmission coefficient defined as the ratio of the load voltage

amplitude to the incident voltage amplitude:

τ ≡
VL

V0i
= 1 + Ŵ =

2ZL

Z0 + ZL
= |τ |e jφt (75)

A point that may at first cause some alarm is that if Ŵ is a positive real number,

then τ > 1; the voltage amplitude at the load is thus greater than the incident voltage.

Although this would seem counterintuitive, it is not a problem because the load current

will be lower than that in the incident wave. We will find that this always results in

an average power at the load that is less than or equal to that in the incident wave.

An additional point concerns the possibility of loss in the line. The incident wave

amplitude that is used in (73) and (75) is always the amplitude that occurs at the
load—after loss has occurred in propagating from the input.

Usually, the main objective in transmitting power to a load is to configure the

line/load combination such that there is no reflection. The load therefore receives all

the transmitted power. The condition for this is Ŵ = 0, which means that the load

impedance must be equal to the line impedance. In such cases the load is said to be

matched to the line (or vice versa). Various impedance-matching methods exist, many

of which will be explored later in this chapter.

Finally, the fractions of the incident wave power that are reflected and dissipated

by the load need to be determined. The incident power is found from (64), where this

time we position the load at z = L , with the line input at z = 0.

〈Pi 〉 =
1

2
Re

{

V0V ∗
0

|Z0|
e−2αLe jθ

}

=
1

2

|V0|2

|Z0|
e−2αL cos θ (76a)
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The reflected power is then found by substituting the reflected wave voltage into

(76a), where the latter is obtained by multiplying the incident voltage by Ŵ:

〈Pr 〉 =
1

2
Re

{

(ŴV0)(Ŵ∗V ∗
0 )

|Z0|
e−2αLe jθ

}

=
1

2

|Ŵ|2|V0|2

|Z0|
e−2αL cos θ (76b)

The reflected power fraction at the load is now determined by the ratio of (76b) to

(76a):

〈Pr 〉
〈Pi 〉

= ŴŴ∗ = |Ŵ|2 (77a)

The fraction of the incident power that is transmitted into the load (or dissipated by it)

is therefore

〈Pt 〉
〈Pi 〉

= 1 − |Ŵ|2 (77b)

The reader should be aware that the transmitted power fraction is not |τ |2, as one

might be tempted to conclude.

In situations involving the connection of two semi-infinite transmission lines

having different characteristic impedances, reflections will occur at the junction, with

the second line being treated as the load. For a wave incident from line 1 (Z01) to

line 2 (Z02), we find

Ŵ =
Z02 − Z01

Z02 + Z01

(78)

The fraction of the power that propagates into the second line is then 1 − |Ŵ|2.

EXAMPLE 10.5

A 50-� lossless transmission line is terminated by a load impedance, ZL = 50 −
j75 �. If the incident power is 100 mW, find the power dissipated by the load.

Solution. The reflection coefficient is

Ŵ =
ZL − Z0

ZL + Z0

=
50 − j75 − 50

50 − j75 + 50
= 0.36 − j0.48 = 0.60e− j.93

Then

〈Pt 〉 = (1 − |Ŵ|2)〈Pi 〉 = [1 − (0.60)2](100) = 64 mW

EXAMPLE 10.6

Two lossy lines are to be joined end to end. The first line is 10 m long and has a loss

rating of 0.20 dB/m. The second line is 15 m long and has a loss rating of 0.10 dB/m.

The reflection coefficient at the junction (line 1 to line 2) is Ŵ = 0.30. The input
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power (to line 1) is 100 mW. (a) Determine the total loss of the combination in dB.

(b) Determine the power transmitted to the output end of line 2.

Solution. (a) The dB loss of the joint is

L j (dB) = 10 log10

(

1

1 − |Ŵ|2

)

= 10 log10

(

1

1 − 0.09

)

= 0.41 dB

The total loss of the link in dB is now

L t (dB) = (0.20)(10) + 0.41 + (0.10)(15) = 3.91 dB

(b) The output power will be Pout = 100 × 10−0.391 = 41 mW.

10.10 VOLTAGE STANDING WAVE RATIO

In many instances, characteristics of transmission line performance are amenable to

measurement. Included in these are measurements of unknown load impedances, or

input impedances of lines that are terminated by known or unknown load impedances.

Such techniques rely on the ability to measure voltage amplitudes that occur as func-

tions of position within a line, usually designed for this purpose. A typical apparatus

consists of a slotted line, which is a lossless coaxial transmission line having a longitu-

dinal gap in the outer conductor along its entire length. The line is positioned between

the sinusoidal voltage source and the impedance that is to be measured. Through the

gap in the slotted line, a voltage probe may be inserted to measure the voltage ampli-

tude between the inner and outer conductors. As the probe is moved along the length

of the line, the maximum and minimum voltage amplitudes are noted, and their ratio,

known as the voltage standing wave ratio, or VSWR, is determined. The significance

of this measurement and its utility form the subject of this section.

To understand the meaning of the voltage measurements, we consider a few

special cases. First, if the slotted line is terminated by a matched impedance, then no

reflected wave occurs; the probe will indicate the same voltage amplitude at every

point. Of course, the instantaneous voltages that the probe samples will differ in phase

by β(z2 − z1) rad as the probe is moved from z = z1 to z = z2, but the system is

insensitive to the phase of the field. The equal-amplitude voltages are characteristic

of an unattenuated traveling wave.

Second, if the slotted line is terminated by an open or short circuit (or in general

a purely imaginary load impedance), the total voltage in the line is a standing wave

and, as was shown in Example 10.1, the voltage probe provides no output when it is

located at the nodes; these occur periodically with half-wavelength spacing. As the

probe position is changed, its output varies as |cos(βz + φ)|, where z is the distance

from the load, and where the phase, φ, depends on the load impedance. For example,
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if the load is a short circuit, the requirement of zero voltage at the short leads to

a null occurring there, and so the voltage in the line will vary as |sin(βz)| (where

φ = ±π/2).

A more complicated situation arises when the reflected voltage is neither 0 nor

100 percent of the incident voltage. Some energy is absorbed by the load and some

is reflected. The slotted line, therefore, supports a voltage that is composed of both

a traveling wave and a standing wave. It is customary to describe this voltage as a

standing wave, even though a traveling wave is also present. We will see that the

voltage does not have zero amplitude at any point for all time, and the degree to

which the voltage is divided between a traveling wave and a true standing wave is

expressed by the ratio of the maximum amplitude found by the probe to the minimum

amplitude (VSWR). This information, along with the positions of the voltage minima

or maxima with respect to that of the load, enable one to determine the load impedance.

The VSWR also provides a measure of the quality of the termination. Specifically, a

perfectly matched load yields a VSWR of exactly 1. A totally reflecting load produces

an infinite VSWR.

To derive the specific form of the total voltage, we begin with the forward and

backward-propagating waves that occur within the slotted line. The load is positioned

at z = 0, and so all positions within the slotted line occur at negative values of z.

Taking the input wave amplitude as V0, the total phasor voltage is

VsT (z) = V0e− jβz + ŴV0e jβz (79)

The line, being lossless, has real characteristic impedance, Z0. The load impedance,

ZL , is in general complex, which leads to a complex reflection coefficient:

Ŵ =
ZL − Z0

ZL + Z0

= |Ŵ|e jφ (80)

If the load is a short circuit (ZL = 0), φ is equal to π ; if ZL is real and less than Z0, φ

is also equal to π ; and if ZL is real and greater than Z0, φ is zero. Using (80), we may

rewrite (79) in the form:

VsT (z) = V0

(

e− jβz + |Ŵ|e j(βz+φ)
)

= V0e jφ/2
(

e− jβze− jφ/2 + |Ŵ|e jβze jφ/2
)

(81)

To express (81) in a more useful form, we can apply the algebraic trick of adding and

subtracting the term V0(1 − |Ŵ|)e− jβz :

VsT (z) = V0(1 − |Ŵ|)e− jβz + V0|Ŵ|e jφ/2
(

e− jβze− jφ/2 + e jβze jφ/2
)

(82)

The last term in parentheses in (82) becomes a cosine, and we write

VsT (z) = V0(1 − |Ŵ|)e− jβz + 2V0|Ŵ|e jφ/2 cos(βz + φ/2) (83)
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The important characteristics of this result are most easily seen by converting it to

real instantaneous form:

V(z, t) = Re[VsT (z)e jωt ] = V0(1 − |Ŵ|) cos(ωt − βz)
︸ ︷︷ ︸

traveling wave

+ 2|Ŵ|V0 cos(βz + φ/2) cos(ωt + φ/2)
︸ ︷︷ ︸

standing wave

(84)

Equation (84) is recognized as the sum of a traveling wave of amplitude (1 − |Ŵ|)V0

and a standing wave having amplitude 2|Ŵ|V0. We can visualize events as follows:

The portion of the incident wave that reflects and back-propagates in the slotted line

interferes with an equivalent portion of the incident wave to form a standing wave.

The rest of the incident wave (which does not interfere) is the traveling wave part of

(84). The maximum amplitude observed in the line is found where the amplitudes

of the two terms in (84) add directly to give (1 + |Ŵ|)V0. The minimum amplitude

is found where the standing wave achieves a null, leaving only the traveling wave

amplitude of (1 − |Ŵ|)V0. The fact that the two terms in (84) combine in this way

with the proper phasing is not immediately apparent, but the following arguments

will show that this does occur.

To obtain the minimum and maximum voltage amplitudes, we may revisit the

first part of Eq. (81):

VsT (z) = V0

(

e− jβz + |Ŵ|e j(βz+φ)
)

(85)

First, the minimum voltage amplitude is obtained when the two terms in (85) subtract

directly (having a phase difference of π ). This occurs at locations

zmin = −
1

2β
(φ + (2m + 1)π ) (m = 0, 1, 2, . . .) (86)

Note again that all positions within the slotted line occur at negative values of z.

Substituting (86) into (85) leads to the minimum amplitude:

VsT (zmin) = V0(1 − |Ŵ|) (87)

The same result is obtained by substituting (86) into the real voltage, (84). This

produces a null in the standing wave part, and we obtain

V(zmin, t) = ±V0(1 − |Ŵ|) sin(ωt + φ/2) (88)

The voltage oscillates (through zero) in time, with amplitude V0(1 − |Ŵ|). The plus

and minus signs in (88) apply to even and odd values of m in (86), respectively.

Next, the maximum voltage amplitude is obtained when the two terms in (85)

add in-phase. This will occur at locations given by

zmax = −
1

2β
(φ + 2mπ ) (m = 0, 1, 2, . . .) (89)
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On substituting (89) into (85), we obtain

VsT (zmax) = V0(1 + |Ŵ|) (90)

As before, we may substitute (89) into the real instantaneous voltage (84). The effect

is to produce a maximum in the standing wave part, which then adds in-phase to the

running wave. The result is

V(zmax, t) = ±V0(1 + |Ŵ|) cos(ωt + φ/2) (91)

where the plus and minus signs apply to positive and negative values of m in (89),

respectively. Again, the voltage oscillates through zero in time, with amplitude

V0(1 + |Ŵ|).
Note that a voltage maximum is located at the load (z = 0) if φ = 0; moreover,

φ = 0 when Ŵ is real and positive. This occurs for real ZL when ZL > Z0. Thus

there is a voltage maximum at the load when the load impedance is greater than Z0

and both impedances are real. With φ = 0, maxima also occur at zmax = −mπ/β =
−mλ/2. For a zero-load impedance, φ = π , and the maxima are found at zmax =
−π/(2β), −3π/(2β), or zmax = −λ/4, −3λ/4, and so forth.

The minima are separated by multiples of one half-wavelength (as are the

maxima), and for a zero load impedance, the first minimum occurs when −βz = 0,

or at the load. In general, a voltage minimum is found at z = 0 whenever φ = π ;

this occurs if ZL < Z0 where ZL is real. The general results are illustrated in

Figure 10.6.

V

V

0

0

VsT

Figure 10.6 Plot of the magnitude of VsT as found from Eq. (85) as a

function of position, z, in front of the load (at z = 0). The reflection

coefficient phase is φ, which leads to the indicated locations of maximum

and minimum voltage amplitude, as found from Eqs. (86) and (89).
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Finally, the voltage standing wave ratio is defined as:

s ≡
VsT (zmax)

VsT (zmin)
=

1 + |Ŵ|
1 − |Ŵ|

(92)

Since the absolute voltage amplitudes have divided out, our measured VSWR permits

the immediate evaluation of |Ŵ|. The phase of Ŵ is then found by measuring the

location of the first maximum or minimum with respect to the load, and then using

(86) or (89) as appropriate. Once Ŵ is known, the load impedance can be found,

assuming Z0 is known.

D10.3. What voltage standing wave ratio results when Ŵ = ±1/2?

Ans. 3

EXAMPLE 10.7

Slotted line measurements yield a VSWR of 5, a 15-cm spacing between successive

voltage maxima, and the first maximum at a distance of 7.5 cm in front of the load.

Determine the load impedance, assuming a 50-� impedance for the slotted line.

Solution. The 15-cm spacing between maxima is λ/2, implying a wavelength of

30 cm. Because the slotted line is air-filled, the frequency is f = c/λ = 1 GHz. The

first maximum at 7.5 cm is thus at a distance of λ/4 from the load, which means that

a voltage minimum occurs at the load. Thus Ŵ will be real and negative. We use (92)

to write

|Ŵ| =
s − 1

s + 1
=

5 − 1

5 + 1
=

2

3

So

Ŵ = −
2

3
=

ZL − Z0

ZL + Z0

which we solve for ZL to obtain

ZL =
1

5
Z0 =

50

5
= 10 �

10.11 TRANSMISSION LINES
OF FINITE LENGTH

A new type of problem emerges when considering the propagation of sinusoidal

voltages on finite-length lines that have loads that are not impedance matched. In

such cases, numerous reflections occur at the load and at the generator, setting up a

multiwave bidirectional voltage distribution in the line. As always, the objective is

to determine the net power transferred to the load in steady state, but we must now

include the effect of the numerous forward- and backward-reflected waves.
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z = 0

in

g

Lin

z = − l

in

g

in

Figure 10.7 Finite-length transmission line configuration and its equivalent circuit.

Figure 10.7 shows the basic problem. The line, assumed to be lossless, has

characteristic impedance Z0 and is of length l. The sinusoidal voltage source at

frequency ω provides phasor voltage Vs . Associated with the souce is a complex

internal impedance, Zg , as shown. The load impedance, ZL , is also assumed to be

complex and is located at z = 0. The line thus exists along the negative z axis.

The easiest method of approaching the problem is not to attempt to analyze every

reflection individually, but rather to recognize that in steady state, there will exist one

net forward wave and one net backward wave, representing the superposition of all

waves that are incident on the load and all waves that are reflected from it. We may

thus write the total voltage in the line as

VsT (z) = V +
0 e− jβz + V −

0 e jβz (93)

in which V +
0 and V −

0 are complex amplitudes, composed respectively of the sum of

all individual forward and backward wave amplitudes and phases. In a similar way,

we may write the total current in the line:

IsT (z) = I +
0 e− jβz + I −

0 e jβz (94)

We now define the wave impedance, Zw (z), as the ratio of the total phasor voltage to

the total phasor current. Using (93) and (94), this becomes:

Zw (z) ≡
VsT (z)

IsT (z)
=

V +
0 e− jβz + V −

0 e jβz

I +
0 e− jβz + I −

0 e jβz (95)

We next use the relations V −
0 = ŴV +

0 , I +
0 = V +

0 /Z0, and I −
0 = −V −

0 /Z0. Eq. (95)

simplifies to

Zw (z) = Z0

[

e− jβz + Ŵe jβz

e− jβz − Ŵe jβz

]

(96)

Now, using the Euler identity, (32), and substituting Ŵ = (ZL − Z0)/(ZL + Z0),

Eq. (96) becomes

Zw (z) = Z0

[

ZL cos(βz) − j Z0 sin(βz)

Z0 cos(βz) − j ZL sin(βz)

]

(97)

The wave impedance at the line input is now found by evaluating (97) at z = −l,
obtaining
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Z in = Z0

[

ZL cos(βl) + j Z0 sin(βl)
Z0 cos(βl) + j ZL sin(βl)

]

(98)

This is the quantity that we need in order to create the equivalent circuit in Figure 10.7.

One special case is that in which the line length is a half-wavelength, or an integer

multiple thereof. In that case,

βl =
2π

λ

mλ

2
= mπ (m = 0, 1, 2, . . .)

Using this result in (98), we find

Z in(l = mλ/2) = ZL (99)

For a half-wave line, the equivalent circuit can be constructed simply by removing

the line completely and placing the load impedance at the input. This simplification

works, of course, provided the line length is indeed an integer multiple of a half-

wavelength. Once the frequency begins to vary, the condition is no longer satisfied,

and (98) must be used in its general form to find Z in.

Another important special case is that in which the line length is an odd multiple

of a quarter wavelength:

βl =
2π

λ
(2m + 1)

λ

4
= (2m + 1)

π

2
(m = 0, 1, 2, . . .)

Using this result in (98) leads to

Z in(l = λ/4) =
Z2

0

ZL
(100)

An immediate application of (100) is to the problem of joining two lines having

different characteristic impedances. Suppose the impedances are (from left to right)

Z01 and Z03. At the joint, we may insert an additional line whose characteristic

impedance is Z02 and whose length is λ/4. We thus have a sequence of joined lines

whose impedances progress as Z01, Z02, and Z03, in that order. A voltage wave is

now incident from line 1 onto the joint between Z01 and Z02. Now the effective load

at the far end of line 2 is Z03. The input impedance to line 2 at any frequency is now

Z in = Z02

Z03 cos β2l + j Z02 sin β2l
Z02 cos β2l + j Z03 sin β2l

(101)

Then, since the length of line 2 is λ/4,

Z in(line 2) =
Z2

02

Z03

(102)

Reflections at the Z01–Z02 interface will not occur if Z in = Z01. Therefore, we can

match the junction (allowing complete transmission through the three-line sequence)
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if Z02 is chosen so that

Z02 =
√

Z01 Z03 (103)

This technique is called quarter-wave matching and again is limited to the frequency

(or narrow band of frequencies) such that l .= (2m + 1)λ/4. We will encounter more

examples of these techniques when we explore electromagnetic wave reflection in

Chapter 12. Meanwhile, further examples that involve the use of the input impedance

and the VSWR are presented in Section 10.12.

10.12 SOME TRANSMISSION LINE
EXAMPLES

In this section, we apply many of the results that we obtained in the previous sections

to several typical transmission line problems. We simplify our work by restricting our

attention to the lossless line.

Let us begin by assuming a two-wire 300 � line (Z0 = 300 �), such as the

lead-in wire from the antenna to a television or FM receiver. The circuit is shown in

Figure 10.8. The line is 2 m long, and the values of L and C are such that the velocity

on the line is 2.5×108 m/s. We will terminate the line with a receiver having an input

resistance of 300 � and represent the antenna by its Thevenin equivalent Z = 300 �

in series with Vs = 60 V at 100 MHz. This antenna voltage is larger by a factor of

about 105 than it would be in a practical case, but it also provides simpler values to

work with; in order to think practical thoughts, divide currents or voltages by 105,

divide powers by 1010, and leave impedances alone.

Because the load impedance is equal to the characteristic impedance, the line is

matched; the reflection coefficient is zero, and the standing wave ratio is unity. For

the given velocity and frequency, the wavelength on the line is v/ f = 2.5 m, and the

phase constant is 2π/λ = 0.8π rad/m; the attenuation constant is zero. The electrical

length of the line is βl = (0.8π )2, or 1.6π rad. This length may also be expressed as

288◦, or 0.8 wavelength.

The input impedance offered to the voltage source is 300 �, and since the internal

impedance of the source is 300 �, the voltage at the input to the line is half of 60 V,

or 30 V. The source is matched to the line and delivers the maximum available power

Figure 10.8 A transmission line that is matched at both ends produces no

reflections and thus delivers maximum power to the load.
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to the line. Because there is no reflection and no attenuation, the voltage at the load

is 30 V, but it is delayed in phase by 1.6π rad. Thus,

Vin = 30 cos(2π108t) V

whereas

VL = 30 cos(2π108t − 1.6π ) V

The input current is

Iin =
Vin

300
= 0.1 cos(2π108t) A

while the load current is

IL = 0.1 cos(2π108t − 1.6π ) A

The average power delivered to the input of the line by the source must all be delivered

to the load by the line,

Pin = PL =
1

2
× 30 × 0.1 = 1.5 W

Now let us connect a second receiver, also having an input resistance of 300 �,

across the line in parallel with the first receiver. The load impedance is now 150 �,

the reflection coefficient is

Ŵ =
150 − 300

150 + 300
= −

1

3

and the standing wave ratio on the line is

s =
1 + 1

3

1 − 1
3

= 2

The input impedance is no longer 300 �, but is now

Z in = Z0

ZL cos βl + j Z0 sin βl
Z0 cos βl + j ZL sin βl

= 300
150 cos 288◦ + j300 sin 288◦

300 cos 288◦ + j150 sin 288◦

= 510� −23.8◦ = 466 − j206 �

which is a capacitive impedance. Physically, this means that this length of line stores

more energy in its electric field than in its magnetic field. The input current phasor is

thus

Is,in =
60

300 + 466 − j206
= 0.0756 � 15.0◦ A

and the power supplied to the line by the source is

Pin =
1

2
× (0.0756)2 × 466 = 1.333 W

Since there are no losses in the line, 1.333 W must also be delivered to the load.

Note that this is less than the 1.50 W which we were able to deliver to a matched

load; moreover, this power must divide equally between two receivers, and thus each
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receiver now receives only 0.667 W. Because the input impedance of each receiver is

300 �, the voltage across the receiver is easily found as

0.667 =
1

2

|Vs,L |2

300

|Vs,L | = 20 V

in comparison with the 30 V obtained across the single load.

Before we leave this example, let us ask ourselves several questions about the

voltages on the transmission line. Where is the voltage a maximum and a minimum,

and what are these values? Does the phase of the load voltage still differ from the

input voltage by 288◦? Presumably, if we can answer these questions for the voltage,

we could do the same for the current.

Equation (89) serves to locate the voltage maxima at

zmax = −
1

2β
(φ + 2mπ ) (m = 0, 1, 2, . . .)

where Ŵ = |Ŵ|e jφ . Thus, with β = 0.8π and φ = π , we find

zmax = −0.625 and −1.875 m

while the minima are λ/4 distant from the maxima;

zmin = 0 and −1.25 m

and we find that the load voltage (at z = 0) is a voltage minimum. This, of course,

verifies the general conclusion we reached earlier: a voltage minimum occurs at the

load if ZL < Z0, and a voltage maximum occurs if ZL > Z0, where both impedances

are pure resistances.

The minimum voltage on the line is thus the load voltage, 20 V; the maximum

voltage must be 40 V, since the standing wave ratio is 2. The voltage at the input end

of the line is

Vs,in = Is,in Z in = (0.0756� 15.0◦)(510� −23.8◦) = 38.5� −8.8◦

The input voltage is almost as large as the maximum voltage anywhere on the line

because the line is about three-quarters of a wavelength long, a length which would

place the voltage maximum at the input when ZL < Z0.

Finally, it is of interest to determine the load voltage in magnitude and phase.

We begin with the total voltage in the line, using (93).

VsT =
(

e− jβz + Ŵe jβz) V +
0 (104)

We may use this expression to determine the voltage at any point on the line in terms

of the voltage at any other point. Because we know the voltage at the input to the line,

we let z = −l,

Vs,in =
(

e jβl + Ŵe− jβl) V +
0 (105)

and solve for V +
0 ,

V +
0 =

Vs,in

e jβl + Ŵe− jβl =
38.5 � −8.8◦

e j1.6π − 1
3
e− j1.6π

= 30.0� 72.0◦ V
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We may now let z = 0 in (104) to find the load voltage,

Vs,L = (1 + Ŵ)V +
0 = 20� 72◦ = 20� −288◦

The amplitude agrees with our previous value. The presence of the reflected wave

causes Vs,in and Vs,L to differ in phase by about −279◦ instead of −288◦.

EXAMPLE 10.8

In order to provide a slightly more complicated example, let us now place a purely

capacitive impedance of − j300 � in parallel with the two 300 � receivers. We are

to find the input impedance and the power delivered to each receiver.

Solution. The load impedance is now 150 � in parallel with − j300 �, or

ZL =
150(− j300)

150 − j300
=

− j300

1 − j2
= 120 − j60 �

We first calculate the reflection coefficient and the VSWR:

Ŵ =
120 − j60 − 300

120 − j60 + 300
=

−180 − j60

420 − j60
= 0.447 � −153.4◦

s =
1 + 0.447

1 − 0.447
= 2.62

Thus, the VSWR is higher and the mismatch is therefore worse. Let us next calculate

the input impedance. The electrical length of the line is still 288◦, so that

Z in = 300
(120 − j60) cos 288◦ + j300 sin 288◦

300 cos 288◦ + j(120 − j60) sin 288◦ = 755 − j138.5 �

This leads to a source current of

Is,in =
VT h

ZT h + Z in

=
60

300 + 755 − j138.5
= 0.0564 � 7.47◦ A

Therefore, the average power delivered to the input of the line is Pin =
1
2
(0.0564)2(755) = 1.200 W. Since the line is lossless, it follows that PL = 1.200 W,

and each receiver gets only 0.6 W.

EXAMPLE 10.9

As a final example, let us terminate our line with a purely capacitive impedance, ZL =
− j300 �. We seek the reflection coefficient, the VSWR, and the power delivered to

the load.

Solution. Obviously, we cannot deliver any average power to the load since it is a

pure reactance. As a consequence, the reflection coefficient is

Ŵ =
− j300 − 300

− j300 + 300
= − j1 = 1� −90◦
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and the reflected wave is equal in amplitude to the incident wave. Hence, it should

not surprise us to see that the VSWR is

s =
1 + | − j1|
1 − | − j1|

= ∞

and the input impedance is a pure reactance,

Z in = 300
− j300 cos 288◦ + j300 sin 288◦

300 cos 288◦ + j(− j300) sin 288◦ = j589

Thus, no average power can be delivered to the input impedance by the source, and

therefore no average power can be delivered to the load.

Although we could continue to find numerous other facts and figures for these

examples, much of the work may be done more easily for problems of this type by

using graphical techniques. We encounter these in Section 10.13.

D10.4. A 50 W lossless line has a length of 0.4λ. The operating frequency is

300 MHz. A load ZL = 40 + j30 � is connected at z = 0, and the Thevenin-

equivalent source at z = −l is 12� 0◦ V in series with ZT h = 50 + j0 �. Find:

(a) Ŵ; (b) s; (c) Z in.

Ans. 0.333 � 90◦; 2.00; 25.5 + j5.90 �

D10.5. For the transmission line of Problem D10.4, also find: (a) the phasor

voltage at z = −l; (b) the phasor voltage at z = 0; (c) the average power

delivered to ZL .

Ans. 4.14 � 8.58◦ V; 6.32� −125.6◦ V; 0.320 W

10.13 GRAPHICAL METHODS: THE SMITH
CHART

Transmission line problems often involve manipulations with complex numbers, mak-

ing the time and effort required for a solution several times greater than are needed

for a similar sequence of operations on real numbers. One means of reducing the

labor without seriously affecting the accuracy is by using transmission-line charts.

Probably the most widely used one is the Smith chart.3

Basically, this diagram shows curves of constant resistance and constant reac-

tance; these may represent either an input impedance or a load impedance. The latter,

of course, is the input impedance of a zero-length line. An indication of location along

the line is also provided, usually in terms of the fraction of a wavelength from a voltage

maximum or minimum. Although they are not specifically shown on the chart, the

standing-wave ratio and the magnitude and angle of the reflection coefficient are very

3 P. H. Smith, “Transmission Line Calculator,” Electronics, vol. 12, pp. 29–31, January 1939.
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Figure 10.9 The polar coordinates of

the Smith chart are the magnitude and

phase angle of the reflection coefficient; the

rectangular coordinates are the real and

imaginary parts of the reflection coefficient.

The entire chart lies within the circle

|Ŵ| = 1.

quickly determined. As a matter of fact, the diagram is constructed within a circle of

unit radius, using polar coordinates, with radius variable |Ŵ| and counterclockwise

angle variable φ, where Ŵ = |Ŵ|e jφ . Figure 10.9 shows this circle. Since |Ŵ| < 1, all

our information must lie on or within the unit circle. Peculiarly enough, the reflection

coefficient itself will not be plotted on the final chart, for these additional contours

would make the chart very difficult to read.

The basic relationship upon which the chart is constructed is

Ŵ =
ZL − Z0

ZL + Z0

(106)

The impedances that we plot on the chart will be normalized with respect to the

characteristic impedance. Let us identify the normalized load impedance as zL ,

zL = r + j x =
ZL

Z0

=
RL + j X L

Z0

and thus

Ŵ =
zL − 1

zL + 1

or

zL =
1 + Ŵ

1 − Ŵ
(107)
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In polar form, we have used |Ŵ| and φ as the magnitude and angle of Ŵ. With Ŵr and

Ŵi as the real and imaginary parts of Ŵ, we write

Ŵ = Ŵr + jŴi (108)

Thus

r + j x =
1 + Ŵr + jŴi

1 − Ŵr − jŴi
(109)

The real and imaginary parts of this equation are

r =
1 − Ŵ2

r − Ŵ2
i

(1 − Ŵr )2 + Ŵ2
i

(110)

x =
2Ŵi

(1 − Ŵr )2 + Ŵ2
i

(111)

After several lines of elementary algebra, we may write (110) and (111) in forms

which readily display the nature of the curves on Ŵr , Ŵi axes,
(

Ŵr −
r

1 + r

)2

+ Ŵ2
i =

(

1

1 + r

)2

(112)

(Ŵr − 1)2 +
(

Ŵi −
1

x

)2

=
(

1

x

)2

(113)

The first equation describes a family of circles, where each circle is associated

with a specific value of resistance r . For example, if r = 0, the radius of this zero-

resistance circle is seen to be unity, and it is centered at the origin (Ŵr = 0, Ŵi = 0).

This checks, for a pure reactance termination leads to a reflection coefficient of unity

magnitude. On the other hand, if r = ∞, then zL = ∞ and we have Ŵ = 1 + j0.

The circle described by (112) is centered at Ŵr = 1, Ŵi = 0 and has zero radius. It is

therefore the point Ŵ = 1 + j0, as we decided it should be. As another example, the

circle for r = 1 is centered at Ŵr = 0.5, Ŵi = 0 and has a radius of 0.5. This circle

is shown in Figure 10.10, along with circles for r = 0.5 and r = 2. All circles are

centered on the Ŵr axis and pass through the point Ŵ = 1 + j0.

Equation (113) also represents a family of circles, but each of these circles is

defined by a particular value of x , rather than r . If x = ∞, then zL = ∞, and

Ŵ = 1 + j0 again. The circle described by (113) is centered at Ŵ = 1 + j0 and has

zero radius; it is therefore the point Ŵ = 1+ j0. If x = +1, then the circle is centered

at Ŵ = 1 + j1 and has unit radius. Only one-quarter of this circle lies within the

boundary curve |Ŵ| = 1, as shown in Figure 10.11. A similar quarter-circle appears

below the Ŵr axis for x = −1. The portions of other circles for x = 0.5, −0.5, 2,

and −2 are also shown. The “circle” representing x = 0 is the Ŵr axis; this is also

labeled in Figure 10.11.

The two families of circles both appear on the Smith chart, as shown in

Figure 10.12. It is now evident that if we are given ZL , we may divide by Z0 to
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Figure 10.10 Constant-r circles are

shown on the Ŵr , Ŵi plane. The radius of

any circle is 1/(1 + r ).

obtain zL , locate the appropriate r and x circles (interpolating as necessary), and

determine Ŵ by the intersection of the two circles. Because the chart does not have

concentric circles showing the values of |Ŵ|, it is necessary to measure the radial

distance from the origin to the intersection with dividers or a compass and use an

auxiliary scale to find |Ŵ|. The graduated line segment below the chart in Figure

10.12 serves this purpose. The angle of Ŵ is φ, and it is the counterclockwise angle

from the Ŵr axis. Again, radial lines showing the angle would clutter up the chart

Figure 10.11 The portions of the circles

of constant x lying within |Ŵ| = 1 are

shown on the Ŵr , Ŵi axes. The radius of a

given circle is 1/|x|.
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Figure 10.12 The Smith chart contains the constant-r circles and

constant-x circles, an auxiliary radial scale to determine |Ŵ|, and an

angular scale on the circumference for measuring φ.

badly, so the angle is indicated on the circumference of the circle. A straight line from

the origin through the intersection may be extended to the perimeter of the chart. As

an example, if ZL = 25 + j50 � on a 50 � line, zL = 0.5 + j1, and point A on

Figure 10.12 shows the intersection of the r = 0.5 and x = 1 circles. The reflection

coefficient is approximately 0.62 at an angle φ of 83◦.

The Smith chart is completed by adding a second scale on the circumference by

which distance along the line may be computed. This scale is in wavelength units, but

the values placed on it are not obvious. To obtain them, we first divide the voltage at

any point along the line,

Vs = V +
0 (e− jβz + Ŵe jβz)

by the current

Is =
V +

0

Z0

(e− jβz − Ŵe jβz)

obtaining the normalized input impedance

zin =
Vs

Z0 Is
=

e− jβz + Ŵe jβz

e− jβz − Ŵe jβz

Replacing z with −l and dividing numerator and denominator by e jβl , we have the

general equation relating normalized input impedance, reflection coefficient, and
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line length,

zin =
1 + Ŵe− j2βl

1 − Ŵe− j2βl =
1 + |Ŵ|e j(φ−2βl)

1 − |Ŵ|e j(φ−2βl) (114)

Note that when l = 0, we are located at the load, and zin = (1 + Ŵ)/(l − Ŵ) = zL , as

shown by (107).

Equation (114) shows that the input impedance at any point z = −l can be

obtained by replacing Ŵ, the reflection coefficient of the load, by Ŵe− j2βl . That is, we

decrease the angle of Ŵ by 2βl radians as we move from the load to the line input.

Only the angle of Ŵ is changed; the magnitude remains constant.

Thus, as we proceed from the load zL to the input impedance zin, we move

toward the generator a distance l on the transmission line, but we move through a

clockwise angle of 2βl on the Smith chart. Since the magnitude of Ŵ stays constant, the

movement toward the source is made along a constant-radius circle. One lap around

the chart is accomplished whenever βl changes by π rad, or when l changes by one-

half wavelength. This agrees with our earlier discovery that the input impedance of a

half-wavelength lossless line is equal to the load impedance.

The Smith chart is thus completed by the addition of a scale showing a change

of 0.5λ for one circumnavigation of the unit circle. For convenience, two scales are

usually given, one showing an increase in distance for clockwise movement and

the other an increase for counterclockwise travel. These two scales are shown in

Figure 10.13. Note that the one marked “wavelengths toward generator” (wtg) shows

increasing values of l/λ for clockwise travel, as described previously. The zero point

of the wtg scale is rather arbitrarily located to the left. This corresponds to input

impedances having phase angles of 0◦ and RL < Z0. We have also seen that voltage

minima are always located here.

EXAMPLE 10.10

The use of the transmission line chart is best shown by example. Let us again consider

a load impedance, ZL = 25 + j50 �, terminating a 50-� line. The line length is

60 cm and the operating frequency is such that the wavelength on the line is 2 m. We

desire the input impedance.

Solution. We have zL = 0.5 + j1, which is marked as A on Figure 10.14, and we

read Ŵ = 0.62� 82◦. By drawing a straight line from the origin through A to the

circumference, we note a reading of 0.135 on the wtg scale. We have l/λ = 0.6/2 =
0.3, and it is, therefore, 0.3λ from the load to the input. We therefore find zin on the

|Ŵ| = 0.62 circle opposite a wtg reading of 0.135 + 0.300 = 0.435. This construction

is shown in Figure 10.14, and the point locating the input impedance is marked B.

The normalized input impedance is read as 0.28 − j0.40, and thus Z in = 14 − j20.

A more accurate analytical calculation gives Z in = 13.7 − j20.2.

Information concerning the location of the voltage maxima and minima is also

readily obtained on the Smith chart. We already know that a maximum or minimum
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Figure 10.13 A photographic reduction of one version of a useful Smith chart (courtesy of the

Emeloid Company, Hillside, NJ ). For accurate work, larger charts are available wherever fine

technical books are sold.

must occur at the load when ZL is a pure resistance; if RL > Z0 there is a maximum

at the load, and if RL < Z0 there is a minimum. We may extend this result now

by noting that we could cut off the load end of a transmission line at a point where

the input impedance is a pure resistance and replace that section with a resistance

Rin; there would be no changes on the generator portion of the line. It follows, then,

that the location of voltage maxima and minima must be at those points where Z in

is a pure resistance. Purely resistive input impedances must occur on the x = 0

line (the Ŵr axis) of the Smith chart. Voltage maxima or current minima occur when

r > 1, or at wtg = 0.25, and voltage minima or current maxima occur when r < 1,
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Figure 10.14 Normalized input

impedance produced by a normalized

load impedance zL = 0.5 + j 1 on a line

0.3λ long is zin = 0.28 − j 0.40.

or at wtg = 0. In Example 10.10, then, the maximum at wtg = 0.250 must occur

0.250 − 0.135 = 0.115 wavelengths toward the generator from the load. This is a

distance of 0.115 × 200, or 23 cm from the load.

We should also note that because the standing wave ratio produced by a resistive

load RL is either RL/R0 or R0/RL , whichever is greater than unity, the value of s may

be read directly as the value of r at the intersection of the |Ŵ| circle and the r axis,

r > 1. In our example, this intersection is marked point C , and r = 4.2; thus, s = 4.2.

Transmission line charts may also be used for normalized admittances, although

there are several slight differences in such use. We let yL = YL/Y0 = g + jb and

use the r circles as g circles and the x circles as b circles. The two differences are,

first, the line segment where g > 1 and b = 0 corresponds to a voltage minimum;

and second, 180◦ must be added to the angle of Ŵ as read from the perimeter of the

chart. We shall use the Smith chart in this way in Section 10.14.

Special charts are also available for non-normalized lines, particularly 50 �

charts and 20 mS charts.

D10.6. A load ZL = 80 − j100 � is located at z = 0 on a lossless 50-� line.

The operating frequency is 200 MHz and the wavelength on the line is 2 m.

(a) If the line is 0.8 m in length, use the Smith chart to find the input impedance.

(b) What is s? (c) What is the distance from the load to the nearest voltage

maximum? (d) What is the distance from the input to the nearest point at which

the remainder of the line could be replaced by a pure resistance?

Ans. 79 + j99 �: 4.50; 0.0397 m; 0.760 m
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Figure 10.15 A sketch of a coaxial slotted line. The distance scale is on the

slotted line. With the load in place, s = 2.5, and the minimum occurs at a scale

reading of 47 cm. For a short circuit, the minimum is located at a scale reading of

26 cm. The wavelength is 75 cm.

We next consider two examples of practical transmission line problems. The first

is the determination of load impedance from experimental data, and the second is the

design of a single-stub matching network.

Let us assume that we have made experimental measurements on a 50 � slotted

line that show there is a voltage standing wave ratio of 2.5. This has been determined

by moving a sliding carriage back and forth along the line to determine maximum and

minimum voltage readings. A scale provided on the track along which the carriage

moves indicates that a minimum occurs at a scale reading of 47.0 cm, as shown in

Figure 10.15. The zero point of the scale is arbitrary and does not correspond to the

location of the load. The location of the minimum is usually specified instead of the

maximum because it can be determined more accurately than that of the maximum;

think of the sharper minima on a rectified sine wave. The frequency of operation is

400 MHz, so the wavelength is 75 cm. In order to pinpoint the location of the load,

we remove it and replace it with a short circuit; the position of the minimum is then

determined as 26.0 cm.

We know that the short circuit must be located an integral number of half-

wavelengths from the minimum; let us arbitrarily locate it one half-wavelength away

at 26.0 − 37.5 = −11.5 cm on the scale. Since the short circuit has replaced the

load, the load is also located at −11.5 cm. Our data thus show that the minimum

is 47.0 − (−11.5) = 58.5 cm from the load, or subtracting one-half wavelength, a

minimum is 21.0 cm from the load. The voltage maximum is thus 21.0 − (37.5/2) =
2.25 cm from the load, or 2.25/75 = 0.030 wavelength from the load.

With this information, we can now turn to the Smith chart. At a voltage maximum,

the input impedance is a pure resistance equal to s R0; on a normalized basis, zin = 2.5.
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Figure 10.16 If zin = 2.5 + j 0

on a line 0.3 wavelengths long, then

zL = 2.1 + j 0.8.

We therefore enter the chart at zin = 2.5 and read 0.250 on the wtg scale. Subtracting

0.030 wavelength to reach the load, we find that the intersection of the s = 2.5 (or

|Ŵ| = 0.429) circle and the radial line to 0.220 wavelength is at zL = 2.1+ j0.8. The

construction is sketched on the Smith chart of Figure 10.16. Thus ZL = 105+ j40 �,

a value that assumes its location at a scale reading of −11.5 cm, or an integral number

of half-wavelengths from that position. Of course, we may select the “location” of

our load at will by placing the short circuit at the point that we wish to consider the

load location. Since load locations are not well defined, it is important to specify the

point (or plane) at which the load impedance is determined.

As a final example, let us try to match this load to the 50 � line by placing a

short-circuited stub of length d1 a distance d from the load (see Figure 10.17). The

stub line has the same characteristic impedance as the main line. The lengths d and

d1 are to be determined.

Figure 10.17 A short-circuited stub of length d1,

located at a distance d from a load ZL , is used to

provide a matched load to the left of the stub.
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The input impedance to the stub is a pure reactance; when combined in parallel

with the input impedance of the length d containing the load, the resultant input

impedance must be 1 + j0. Because it is much easier to combine admittances in

parallel than impedances, let us rephrase our goal in admittance language: the input

admittance of the length d containing the load must be 1 + jbin for the addition of

the input admittance of the stub jbstub to produce a total admittance of 1 + j0. Hence

the stub admittance is − jbin. We will therefore use the Smith chart as an admittance

chart instead of an impedance chart.

The impedance of the load is 2.1 + j0.8, and its location is at −11.5 cm. The

admittance of the load is therefore 1/(2.1 + j0.8), and this value may be determined

by adding one-quarter wavelength on the Smith chart, as Z in for a quarter-wavelength

line is R2
0/ZL , or zin = 1/zL , or yin = zL . Entering the chart (Figure 10.18) at

zL = 2.1 + j0.8, we read 0.220 on the wtg scale; we add (or subtract) 0.250 and

find the admittance 0.41 − j0.16 corresponding to this impedance. This point is

still located on the s = 2.5 circle. Now, at what point or points on this circle is

the real part of the admittance equal to unity? There are two answers, 1 + j0.95 at

wtg = 0.16, and 1 − j0.95 at wtg = 0.34, as shown in Figure 10.18. We select the

former value since this leads to the shorter stub. Hence ystub = − j0.95, and the stub

location corresponds to wtg = 0.16. Because the load admittance was found at wtg =
0.470, then we must move (0.5 − 0.47) + 0.16 = 0.19 wavelength to get to the stub

location.

Finally, we may use the chart to determine the necessary length of the short-

circuited stub. The input conductance is zero for any length of short-circuited stub,

so we are restricted to the perimeter of the chart. At the short circuit, y = ∞ and

wtg = 0.250. We find that bin = −0.95 is achieved at wtg = 0.379, as shown in

Figure 10.18. The stub is therefore 0.379 − 0.250 = 0.129 wavelength, or 9.67 cm

long.

Figure 10.18 A normalized load, zL = 2.1 + j 0.8, is

matched by placing a 0.129-wavelength short-circuited

stub 0.19 wavelengths from the load.
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D10.7. Standing wave measurements on a lossless 75-� line show maxima

of 18 V and minima of 5 V. One minimum is located at a scale reading of 30 cm.

With the load replaced by a short circuit, two adjacent minima are found at scale

readings of 17 and 37 cm. Find: (a) s; (b) λ; (c) f ; (d) ŴL ; (e) ZL .

Ans. 3.60; 0.400 m; 750 MHz; 0.704 � −33.0; 77.9 + j104.7 �

D10.8. A normalized load, zL = 2− j1, is located at z = 0 on a lossless 50-�

line. Let the wavelength be 100 cm. (a) A short-circuited stub is to be located

at z = −d . What is the shortest suitable value for d? (b) What is the shortest

possible length of the stub? Find s: (c) on the main line for z < −d; (d) on the

main line for −d < z < 0; (e) on the stub.

Ans. 12.5 cm; 12.5 cm; 1.00; 2.62; ∞

10.14 TRANSIENT ANALYSIS

Throughout most of this chapter, we have considered the operation of transmission

lines under steady-state conditions, in which voltage and current were sinusoidal and at

a single frequency. In this section we move away from the simple time-harmonic case

and consider transmission line responses to voltage step functions and pulses, grouped

under the general heading of transients. These situations were briefly considered in

Section 10.2 with regard to switched voltages and currents. Line operation in transient

mode is important to study because it allows us to understand how lines can be

used to store and release energy (in pulse-forming applications, for example). Pulse

propagation is important in general since digital signals, composed of sequences of

pulses, are widely used.

We will confine our discussion to the propagation of transients in lines that are

lossless and have no dispersion, so that the basic behavior and analysis methods

may be learned. We must remember, however, that transient signals are necessarily

composed of numerous frequencies, as Fourier analysis will show. Consequently, the

question of dispersion in the line arises, since, as we have found, line propagation

constants and reflection coefficients at complex loads will be frequency-dependent.

So, in general, pulses are likely to broaden with propagation distance, and pulse

shapes may change when reflecting from a complex load. These issues will not be

considered in detail here, but they are readily addressed when the precise frequency

dependences of β and Ŵ are known. In particular, β(ω) can be found by evaluating

the imaginary part of γ , as given in Eq. (41), which would in general include the

frequency dependences of R, C , G, and L arising from various mechanisms. For

example, the skin effect (which affects both the conductor resistance and the internal

inductance) will result in frequency-dependent R and L . Once β(ω) is known, pulse

broadening can be evaluated using the methods to be presented in Chapter 12.

We begin our basic discussion of transients by considering a lossless transmission

line of length l terminated by a matched load, RL = Z0, as shown in Figure 10.19a.
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Figure 10.19 (a) Closing the switch at time t = 0 initiates voltage and current waves

V + and I +. The leading edge of both waves is indicated by the dashed line, which

propagates in the lossless line toward the load at velocity ν. In this case, V + = V0;

the line voltage is V + everywhere to the left of the leading edge, where current is

I + = V +/Z0. To the right of the leading edge, voltage and current are both zero.

Clockwise current, indicated here, is treated as positive and will occur when V + is

positive. (b) Voltage across the load resistor as a function of time, showing the one-way

transit time delay, l /ν.

At the front end of the line is a battery of voltage V0, which is connected to the line

by closing a switch. At time t = 0, the switch is closed, and the line voltage at z = 0

becomes equal to the battery voltage. This voltage, however, does not appear across

the load until adequate time has elapsed for the propagation delay. Specifically, at

t = 0, a voltage wave is initiated in the line at the battery end, which then propagates

toward the load. The leading edge of the wave, labeled V + in Figure 10.19, is of value

V + = V0. It can be thought of as a propagating step function, because at all points to

the left of V +, the line voltage is V0; at all points to the right (not yet reached by the

leading edge), the line voltage is zero. The wave propagates at velocity ν, which in

general is the group velocity in the line.4 The wave reaches the load at time t = l/ν

4 Because we have a step function (composed of many frequencies) as opposed to a sinusoid at a single

frequency, the wave will propagate at the group velocity. In a lossless line with no dispersion as

considered in this section, β = ω
√

LC , where L and C are constant with frequency. In this case, we

would find that the group and phase velocities are equal; that is, dω/dβ = ω/β = ν = 1/
√

LC . We

will thus write the velocity as ν, knowing it to be both νp and νg .
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and then does not reflect, as the load is matched. The transient phase is thus over, and

the load voltage is equal to the battery voltage. A plot of load voltage as a function

of time is shown in Figure 10.19b, indicating the propagation delay of t = l/ν.

Associated with the voltage wave V + is a current wave whose leading edge is

of value I +. This wave is a propagating step function as well, whose value at all

points to the left of V + is I + = V +/Z0; at all points to the right, current is zero. A

plot of current through the load as a function of time will thus be identical in form

to the voltage plot of Figure 10.19b, except that the load current at t = l/ν will be

IL = V +/Z0 = V0/RL .

We next consider a more general case, in which the load of Figure 10.19a is again

a resistor but is not matched to the line (RL �= Z0). Reflections will thus occur at the

load, complicating the problem. At t = 0, the switch is closed as before and a voltage

wave, V +
1 = V0, propagates to the right. Upon reaching the load, however, the wave

will now reflect, producing a back-propagating wave, V −
1 . The relation between V −

1

and V +
1 is through the reflection coefficient at the load:

V −
1

V +
1

= ŴL =
RL − Z0

RL + Z0

(115)

As V −
1 propagates back toward the battery, it leaves behind its leading edge a total

voltage of V +
1 + V −

1 . Voltage V +
1 exists everywhere ahead of the V −

1 wave until it

reaches the battery, whereupon the entire line now is charged to voltage V +
1 + V −

1 .

At the battery, the V −
1 wave reflects to produce a new forward wave, V +

2 . The ratio

of V +
2 and V −

1 is found through the reflection coefficient at the battery:

V +
2

V −
1

= Ŵg =
Zg − Z0

Zg + Z0

=
0 − Z0

0 + Z0

= −1 (116)

where the impedance at the generator end, Zg , is that of the battery, or zero.

V +
2 (equal to −V −

1 ) now propagates to the load, where it reflects to produce

backward wave V −
2 = ŴL V +

2 . This wave then returns to the battery, where it reflects

with Ŵg = −1, and the process repeats. Note that with each round trip the wave

voltage is reduced in magnitude because |ŴL | < 1. Because of this the propagating

wave voltages will eventually approach zero, and steady state is reached.

The voltage across the load resistor can be found at any given time by summing

the voltage waves that have reached the load and have reflected from it up to that time.

After many round trips, the load voltage will be, in general,

VL = V +
1 + V −

1 + V +
2 + V −

2 + V +
3 + V −

3 + · · ·

= V +
1

(

1 + ŴL + ŴgŴL + ŴgŴ
2
L + Ŵ2

gŴ
2
L + Ŵ2

gŴ
3
L + · · ·

)

With a simple factoring operation, the preceding equation becomes

VL = V +
1 (1 + ŴL )

(

1 + ŴgŴL + Ŵ2
gŴ

2
L + · · ·

)

(117)
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Figure 10.20 With series resistance at the battery location, voltage

division occurs when the switch is closed, such that V0 = Vr g + V +
1 .

Shown is the first reflected wave, which leaves voltage V +
1 + V −

1 behind its

leading edge. Associated with the wave is current I −
1 , which is −V −

1 /Z0.

Counterclockwise current is treated as negative and will occur when V −
1 is

positive.

Allowing time to approach infinity, the second term in parentheses in (117) becomes

the power series expansion for the expression 1/(1 −ŴgŴL ). Thus, in steady state we

obtain

VL = V +
1

(

1 + ŴL

1 − ŴgŴL

)

(118)

In our present example, V +
1 = V0 and Ŵg = −1. Substituting these into (118), we

find the expected result in steady state: VL = V0.

A more general situation would involve a nonzero impedance at the battery

location, as shown in Figure 10.20. In this case, a resistor of value Rg is positioned in

series with the battery. When the switch is closed, the battery voltage appears across

the series combination of Rg and the line characteristic impedance, Z0. The value of

the initial voltage wave, V +
1 , is thus found through simple voltage division, or

V +
1 =

V0 Z0

Rg + Z0

(119)

With this initial value, the sequence of reflections and the development of the voltage

across the load occurs in the same manner as determined by (117), with the steady-

state value determined by (118). The value of the reflection coefficient at the generator

end, determined by (116), is Ŵg = (Rg − Z0)/(Rg + Z0).

A useful way of keeping track of the voltage at any point in the line is through

a voltage reflectio diagram. Such a diagram for the line of Figure 10.20 is shown

in Figure 10.21a. It is a two-dimensional plot in which position on the line, z, is

shown on the horizontal axis. Time is plotted on the vertical axis and is conveniently

expressed as it relates to position and velocity through t = z/ν. A vertical line, located

at z = l, is drawn, which, together with the ordinate, defines the z axis boundaries of

the transmission line. With the switch located at the battery position, the initial voltage

wave, V +
1 , starts at the origin, or lower-left corner of the diagram (z = t = 0). The

location of the leading edge of V +
1 as a function of time is shown as the diagonal line
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(a)

(b)

Figure 10.21 (a) Voltage reflection diagram for the line of Figure 10.20. A

reference line, drawn at z = 3l /4, is used to evaluate the voltage at that

position as a function of time. (b) The line voltage at z = 3l /4 as determined

from the reflection diagram of (a). Note that the voltage approaches the

expected V0 RL/(Rg + RL ) as time approaches infinity.

that joins the origin to the point along the right-hand vertical line that corresponds to

time t = l/ν (the one-way transit time). From there (the load location), the position

of the leading edge of the reflected wave, V −
1 , is shown as a “reflected” line that joins

the t = l/ν point on the right boundary to the t = 2l/ν point on the ordinate. From

there (at the battery location), the wave reflects again, forming V +
2 , shown as a line

parallel to that for V +
1 . Subsequent reflected waves are shown, and their values are

labeled.



350 ENGINEERING ELECTROMAGNETICS

The voltage as a function of time at a given position in the line can now be

determined by adding the voltages in the waves as they intersect a vertical line drawn

at the desired location. This addition is performed starting at the bottom of the diagram

(t = 0) and progressing upward (in time). Whenever a voltage wave crosses the

vertical line, its value is added to the total at that time. For example, the voltage

at a location three-fourths the distance from the battery to the load is plotted in

Figure 10.21b. To obtain this plot, the line z = (3/4)l is drawn on the diagram.

Whenever a wave crosses this line, the voltage in the wave is added to the voltage that

has accumulated at z = (3/4)l over all earlier times. This general procedure enables

one to easily determine the voltage at any specific time and location. In doing so, the

terms in (117) that have occurred up to the chosen time are being added, but with

information on the time at which each term appears.

Line current can be found in a similar way through a current reflectio diagram.

It is easiest to construct the current diagram directly from the voltage diagram by

determining a value for current that is associated with each voltage wave. In dealing

with current, it is important to keep track of the sign of the current because it relates to

the voltage waves and their polarities. Referring to Figures 10.19a and 10.20, we use

the convention in which current associated with a forward-z traveling voltage wave

of positive polarity is positive. This would result in current that flows in the clock-

wise direction, as shown in Figure 10.19a. Current associated with a backward-z
traveling voltage wave of positive polarity (thus flowing counterclockwise) is negative.

Such a case is illustrated in Figure 10.20. In our two-dimensional transmission-line

drawings, we assign positive polarity to voltage waves propagating in either direction

if the upper conductor carries a positive charge and the lower conductor a negative

charge. In Figures 10.19a and 10.20, both voltage waves are of positive polarity, so

their associated currents will be net positive for the forward wave and net negative

for the backward wave. In general, we write

I + =
V +

Z0

(120)

and

I − = −
V −

Z0

(121)

Finding the current associated with a backward-propagating voltage wave immedi-

ately requires a minus sign, as (121) indicates.

Figure 10.22a shows the current reflection diagram that is derived from the

voltage diagram of Figure 10.21a. Note that the current values are labeled in terms of

the voltage values, with the appropriate sign added as per (120) and (121). Once the

current diagram is constructed, current at a given location and time can be found in

exactly the same manner as voltage is found using the voltage diagram. Figure 10.22b
shows the current as a function of time at the z = (3/4)l position, determined by

summing the current wave values as they cross the vertical line drawn at that location.
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(a)

(b)

Figure 10.22 (a) Current reflection diagram for the line of Figure 10.20 as

obtained from the voltage diagram of Figure 10.21a. (b) Current at the z = 3l /4

position as determined from the current reflection diagram, showing the

expected steady-state value of V0/(RL + Rg).

EXAMPLE 10.11

In Figure 10.20, Rg = Z0 = 50 �, RL = 25 �, and the battery voltage is V0 = 10 V.

The switch is closed at time t = 0. Determine the voltage at the load resistor and the

current in the battery as functions of time.

Solution. Voltage and current reflection diagrams are shown in Figure 10.23a and b.

At the moment the switch is closed, half the battery voltage appears across the
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V

V

(a)

A

A

(b)

Figure 10.23 Voltage (a) and current

(b) reflection diagrams for Example 10.11.

50-� resistor, with the other half comprising the initial voltage wave. Thus V +
1 =

(1/2)V0 = 5 V. The wave reaches the 25-� load, where it reflects with reflection

coefficient

ŴL =
25 − 50

25 + 50
= −

1

3

So V −
1 = −(1/3)V +

1 = −5/3 V. This wave returns to the battery, where it encoun-

ters reflection coefficient Ŵg = 0. Thus, no further waves appear; steady state is

reached.

Once the voltage wave values are known, the current reflection diagram can be

constructed. The values for the two current waves are

I +
1 =

V +
1

Z0

=
5

50
=

1

10
A
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and

I −
1 = −

V −
1

Z0

= −
(

−
5

3

) (

1

50

)

=
1

30
A

Note that no attempt is made here to derive I −
1 from I +

1 . They are both obtained

independently from their respective voltages.

The voltage at the load as a function of time is now found by summing the

voltages along the vertical line at the load position. The resulting plot is shown in

Figure 10.24a. Current in the battery is found by summing the currents along the

vertical axis, with the resulting plot shown as Figure 10.24b. Note that in steady

state, we treat the circuit as lumped, with the battery in series with the 50- and 25-�

resistors. Therefore, we expect to see a steady-state current through the battery (and

everywhere else) of

IB(steady state) =
10

50 + 25
=

1

7.5
A

(a)

(b)

Figure 10.24 Voltage across the load (a) and current in the

battery (b) as determined from the reflection diagrams of

Figure 10.23 (Example 10.11).
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Figure 10.25 In an initially charged line, closing the switch as shown initiates a

voltage wave of opposite polarity to that of the initial voltage. The wave thus

depletes the line voltage and will fully discharge the line in one round trip if

Rg = Z0.

This value is also found from the current reflection diagram for t > 2l/ν. Similarly,

the steady-state load voltage should be

VL (steady state) = V0

RL

Rg + RL
=

(10)(25)

50 + 25
=

10

3
V

which is found also from the voltage reflection diagram for t > l/ν.

Another type of transient problem involves lines that are initially charged. In

these cases, the manner in which the line discharges through a load is of interest.

Consider the situation shown in Figure 10.25, in which a charged line of characteristic

impedance Z0 is discharged through a resistor of value Rg when a switch at the resistor

location is closed.5 We consider the resistor at the z = 0 location; the other end of

the line is open (as would be necessary) and is located at z = l.
When the switch is closed, current IR begins to flow through the resistor, and the

line discharge process begins. This current does not immediately flow everywhere

in the transmission line but begins at the resistor and establishes its presence at

more distant parts of the line as time progresses. By analogy, consider a long line

of automobiles at a red light. When the light turns green, the cars at the front move

through the intersection first, followed successively by those further toward the rear.

The point that divides cars in motion and those standing still is, in fact, a wave that

propagates toward the back of the line. In the transmission line, the flow of charge

progresses in a similar way. A voltage wave, V +
1 , is initiated and propagates to the

right. To the left of its leading edge, charge is in motion; to the right of the leading

edge, charge is stationary and carries its original density. Accompanying the charge

in motion to the left of V +
1 is a drop in the charge density as the discharge process

occurs, and so the line voltage to the left of V +
1 is partially reduced. This voltage will

be given by the sum of the initial voltage, V0, and V +
1 , which means that V +

1 must

5 Even though this is a load resistor, we will call it Rg because it is located at the front (generator) end

of the line.
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in fact be negative (or of opposite sign to V0). The line discharge process is analyzed

by keeping track of V +
1 as it propagates and undergoes multiple reflections at the two

ends. Voltage and current reflection diagrams are used for this purpose in much the

same way as before.

Referring to Figure 10.25, we see that for positive V0 the current flowing through

the resistor will be counterclockwise and hence negative. We also know that continuity

requires that the resistor current be equal to the current associated with the voltage

wave, or

IR = I +
1 =

V +
1

Z0

Now the resistor voltage will be

VR = V0 + V +
1 = −IR Rg = −I +

1 Rg = −
V +

1

Z0

Rg

where the minus signs arise from the fact that VR (having positive polarity) is produced

by the negative current, IR . We solve for V +
1 to obtain

V +
1 =

−V0 Z0

Z0 + Rg
(122)

Having found V +
1 , we can set up the voltage and current reflection diagrams. The

diagram for voltage is shown in Figure 10.26. Note that the initial condition of voltage

V0 everywhere on the line is accounted for by assigning voltage V0 to the horizontal

axis of the voltage diagram. The diagram is otherwise drawn as before, but with

ŴL = 1 (at the open-circuited load end). Variations in how the line discharges thus

depend on the resistor value at the switch end, Rg , which determines the reflection

coefficient, Ŵg , at that location. The current reflection diagram is derived from the

voltage diagram in the usual way. There is no initial current to consider.

Figure 10.26 Voltage reflection diagram for

the charged line of Figure 10.25, showing the

initial condition of V0 everywhere on the line at

t = 0.
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Figure 10.27 Voltage across the resistor as a function of time, as

determined from the reflection diagram of Figure 10.26, in which

Rg = Z0 (Ŵ = 0).

A special case of practical importance is that in which the resistor is matched

to the line, or Rg = Z0. In this case, Eq. (122) gives V +
1 = −V0/2. The line fully

discharges in one round trip of V +
1 and produces a voltage across the resistor of value

VR = V0/2, which persists for time T = 2l/ν. The resistor voltage as a function

of time is shown in Figure 10.27. The transmission line in this application is known

as a pulse-forming line; pulses that are generated in this way are well formed and

of low noise, provided the switch is sufficiently fast. Commercial units are available

that are capable of generating high-voltage pulses of widths on the order of a few

nanoseconds, using thyratron-based switches.

When the resistor is not matched to the line, full discharge still occurs, but does

so over several reflections, leading to a complicated pulse shape.

EXAMPLE 10.12

In the charged line of Figure 10.25, the characteristic impedance is Z0 = 100 �, and

Rg = 100/3 �. The line is charged to an initial voltage, V0 = 160 V, and the switch is

closed at time t = 0. Determine and plot the voltage and current through the resistor

for time 0 < t < 8l/ν (four round trips).

Solution. With the given values of Rg and Z0, Eq. (47) gives Ŵg = −1/2. Then,

with ŴL = 1, and using (122), we find

V +
1 = V −

1 = −3/4V0 = −120 V

V +
2 = V −

2 = ŴgV −
1 = + 60 V

V +
3 = V −

3 = ŴgV −
2 = −30 V

V +
4 = V −

4 = ŴgV −
3 = +15 V

Using these values on the voltage reflection diagram, we evaluate the voltage in time

at the resistor location by moving up the left-hand vertical axis, adding voltages as

we progress, and beginning with V0 + V +
1 at t = 0. Note that when we add voltages

along the vertical axis, we are encountering the intersection points between incident
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and reflected waves, which occur (in time) at each integer multiple of 2l/ν. So, when

moving up the axis, we add the voltages of both waves to our total at each occurrence.

The voltage within each time interval is thus:

VR = V0 + V +
1 = 40 V (0 < t < 2l/ν)

= V0 + V +
1 + V −

1 + V +
2 = −20 V (2l/ν < t < 4l/ν)

= V0 + V +
1 + V −

1 + V +
2 + V −

2 + V +
3 = 10 V (4l/ν < t < 6l/ν)

= V0 + V +
1 + V −

1 + V +
2 + V −

2 + V +
3 + V −

3 + V +
4 = −5 V (6l/ν < t < 8l/ν)

The resulting voltage plot over the desired time range is shown in Figure 10.28a.

Figure 10.28 Resistor voltage (a) and current (b) as

functions of time for the line of Figure 10.25, with values

as specified in Example 10.12.
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The current through the resistor is most easily obtained by dividing the voltages

in Figure 10.28a by −Rg . As a demonstration, we can also use the current diagram

of Figure 10.22a to obtain this result. Using (120) and (121), we evaluate the current

waves as follows:

I +
1 = V +

1 /Z0 = −1.2 A

I −
1 = −V −

1 /Z0 = +1.2 A

I +
2 = −I −

2 = V +
2 /Z0 = +0.6 A

I +
3 = −I −

3 = V +
3 /Z0 = −0.30 A

I +
4 = −I −

4 = V +
4 /Z0 = +0.15 A

Using these values on the current reflection diagram, Figure 10.22a, we add up

currents in the resistor in time by moving up the left-hand axis, as we did with

the voltage diagram. The result is shown in Figure 10.28b. As a further check to the

correctness of our diagram construction, we note that current at the open end of the

line (Z = l) must always be zero. Therefore, summing currents up the right-hand

axis must give a zero result for all time. The reader is encouraged to verify this.
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CHAPTER 10 PROBLEMS

10.1 The parameters of a certain transmission line operating at ω = 6 × 108 rad/s

are L = 0.35 µH/m, C = 40 pF/m, G = 75 µS/m, and R = 17 �/m. Find

γ , α, β, λ, and Z0.

10.2 A sinusoidal wave on a transmission line is specified by voltage and current

in phasor form:

Vs(z) = V0 eαz e jβz and Is(z) = I0 eαz e jβz e jφ

where V0 and I0 are both real. (a) In which direction does this wave

propagate and why? (b) It is found that α = 0, Z0 = 50 �, and the wave

velocity is v p = 2.5 × 108 m/s, with ω = 108 s−1. Evaluate R, G, L , C , λ,

and φ.
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10.3 The characteristic impedance of a certain lossless transmission line is 72 �.

If L = 0.5 µH/m, find (a) C ; (b) νp; (c) β if f = 80 MHz. (d) The line is

terminated with a load of 60 �. Find Ŵ and s.

10.4 A sinusoidal voltage wave of amplitude V0, frequency ω, and phase

constant β propagates in the forward z direction toward the open load end in

a lossless transmission line of characteristic impedance Z0. At the end, the

wave totally reflects with zero phase shift, and the reflected wave now

interferes with the incident wave to yield a standing wave pattern over the

line length (as per Example 10.1). Determine the standing wave pattern for

the current in the line. Express the result in real instantaneous form and

simplify.

10.5 Two characteristics of a certain lossless transmission line are Z0 = 50 �

and γ = 0 + j0.2π m−1 at f = 60 MHz (a) find L and C for the line. (b) A

load ZL = 60 + j80 � is located at z = 0. What is the shortest distance

from the load to a point at which Z in = Rin + j0?

10.6 A 50-� load is attached to a 50-m section of the transmission line of

Problem 10.1, and a 100-W signal is fed to the input end of the line. (a)

Evaluate the distributed line loss in dB/m. (b) Evaluate the reflection

coefficient at the load. (c) Evaluate the power that is dissipated by the load

resistor. (d) What power drop in dB does the dissipated power in the load

represent when compared to the original input power? (e) On partial

reflection from the load, how much power returns to the input and what dB

drop does this represent when compared to the original 100-W input

power?

10.7 A transmitter and receiver are connected using a cascaded pair of

transmission lines. At the operating frequency, line 1 has a measured loss of

0.1 dB/m, and line 2 is rated at 0.2 dB/m. The link is composed of 40 m of

line 1 joined to 25 m of line 2. At the joint, a splice loss of 2 dB is

measured. If the transmitted power is 100 mW, what is the received power?

10.8 An absolute measure of power is the dBm scale, in which power is specified

in decibels relative to one milliwatt. Specifically,

P(dBm) = 10 log10[P(mW)/1 mW]. Suppose that a receiver is rated as

having a sensitivity of −20 dBm, indicating the mimimum power that it

must receive in order to adequately interpret the transmitted electronic data.

Suppose this receiver is at the load end of a 50-� transmission line having

100-m length and loss rating of 0.09 dB/m. The receiver impedance is 75 �,

and so is not matched to the line. What is the minimum required input

power to the line in (a) dBm, (b) mW?

10.9 A sinusoidal voltage source drives the series combination of an impedance,

Zg = 50 − j50 �, and a lossless transmission line of length L , shorted at

the load end. The line characteristic impedance is 50 �, and wavelength λ is

measured on the line. (a) Determine, in terms of wavelength, the shortest

line length that will result in the voltage source driving a total impedance of
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50 �. (b) Will other line lengths meet the requirements of part (a)? If so,

what are they?

10.10 Two lossless transmission lines having different characteristic impedances

are to be joined end to end. The impedances are Z01 = 100 � and

Z03 = 25 �. The operating frequency is 1 GHz. (a) Find the required

characteristic impedance, Z02, of a quarter-wave section to be inserted

between the two, which will impedance-match the joint, thus allowing total

power transmission through the three lines. (b) The capacitance per unit

length of the intermediate line is found to be 100 pF/m. Find the shortest

length in meters of this line that is needed to satisfy the

impedance-matching condition. (c) With the three-segment setup as found

in parts (a) and (b), the frequency is now doubled to 2 GHz. Find the input

impedance at the line-1-to-line-2 junction, seen by waves incident from

line 1. (d) Under the conditions of part (c), and with power incident from

line 1, evaluate the standing wave ratio that will be measured in line 1, and

the fraction of the incident power from line 1 that is reflected and

propagates back to the line 1 input.

10.11 A transmission line having primary constants L , C, R, and G has length ℓ

and is terminated by a load having complex impedance RL + j X L . At the

input end of the line, a dc voltage source, V0, is connected. Assuming all

parameters are known at zero frequency, find the steady-state power

dissipated by the load if (a) R = G = 0; (b) R �= 0, G = 0; (c) R = 0,

G �= 0; (d) R �= 0, G �= 0.

10.12 In a circuit in which a sinusoidal voltage source drives its internal impedance

in series with a load impedance, it is known that maximum power transfer

to the load occurs when the source and load impedances form a complex

conjugate pair. Suppose the source (with its internal impedance) now drives

a complex load of impedance ZL = RL + j X L that has been moved to the

end of a lossless transmission line of length ℓ having characteristic

impedance Z0. If the source impedance is Zg = Rg + j Xg , write an

equation that can be solved for the required line length, ℓ, such that the

displaced load will receive the maximum power.

10.13 The incident voltage wave on a certain lossless transmission line for which

Z0 = 50 � and νp = 2 × 108 m/s is V +(z, t) = 200 cos(ωt − π z) V. (a)

Find ω. (b) Find I +(z, t). The section of line for which z > 0 is replaced by

a load ZL = 50 + j30 � at z = 0. Find: (c) ŴL ; (d) V −
s (z); (e) Vs at

z = −2.2 m.

10.14 A lossless transmission line having characteristic impedance Z0 = 50 � is

driven by a source at the input end that consists of the series combination of

a 10-V sinusoidal generator and a 50-� resistor. The line is one-quarter

wavelength long. At the other end of the line, a load impedance,

ZL = 50 − j50 � is attached. (a) Evaluate the input impedance to the line
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Figure 10.29 See Problem 10.15.

seen by the voltage source-resistor combination; (b) evaluate the power that

is dissipated by the load; (c) evaluate the voltage amplitude that appears

across the load.

10.15 For the transmission line represented in Figure 10.29, find Vs,out if f =
(a) 60 Hz; (b) 500 kHz.

10.16 A 100-� lossless transmission line is connected to a second line of 40-�

impedance, whose length is λ/4. The other end of the short line is

terminated by a 25-� resistor. A sinusoidal wave (of frequency f ) having

50 W average power is incident from the 100-� line. (a) Evaluate the input

impedance to the quarter-wave line. (b) Determine the steady-state power

that is dissipated by the resistor. (c) Now suppose that the operating

frequency is lowered to one-half its original value. Determine the new input

impedance, Z ′
in , for this case. (d) For the new frequency, calculate the

power in watts that returns to the input end of the line after reflection.

10.17 Determine the average power absorbed by each resistor in Figure 10.30.

10.18 The line shown in Figure 10.31 is lossless. Find s on both sections 1 and 2.

10.19 A lossless transmission line is 50 cm in length and operates at a frequency

of 100 MHz. The line parameters are L = 0.2 µH/m and C = 80 pF/m. The

line is terminated in a short circuit at z = 0, and there is a load

ZL = 50 + j20 � across the line at location z = −20 cm. What average

power is delivered to ZL if the input voltage is 100 � 0◦ V?

10.20 (a) Determine s on the transmission line of Figure 10.32. Note that the

dielectric is air. (b) Find the input impedance. (c) If ωL = 10 �, find Is .

(d) What value of L will produce a maximum value for |Is | at ω = 1

Figure 10.30 See Problem 10.17.
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Figure 10.31 See Problem 10.18.

Grad/s? For this value of L , calculate the average power (e) supplied by the

source; ( f ) delivered to ZL = 40 + j30 �.

10.21 A lossless line having an air dielectric has a characteristic impedance of

400 �. The line is operating at 200 MHz and Z in = 200 − j200 �. Use

analytic methods or the Smith chart (or both) to find (a) s; (b) ZL , if the line

is 1 m long; (c) the distance from the load to the nearest voltage maximum.

10.22 A lossless 75-� line is terminated by an unknown load impedance. A

VSWR of 10 is measured, and the first voltage minimum occurs at 0.15

wavelengths in front of the load. Using the Smith chart, find (a) the load

impedance; (b) the magnitude and phase of the reflection coefficient; (c) the

shortest length of line necessary to achieve an entirely resistive input

impedance.

10.23 The normalized load on a lossless transmission line is 2 + j1. Let λ = 20 m

and make use of the Smith chart to find (a) the shortest distance from the

load to a point at which zin = rin + j0, where rin > 0; (b) zin at this point.

(c) The line is cut at this point and the portion containing zL is thrown away.

A resistor r = rin of part (a) is connected across the line. What is s on the

remainder of the line? (d) What is the shortest distance from this resistor to

a point at which zin = 2 + j1?

10.24 With the aid of the Smith chart, plot a curve of |Z in| versus l for the

transmission line shown in Figure 10.33. Cover the range 0 < l/λ < 0.25.

10.25 A 300-� transmission line is short-circuited at z = 0. A voltage maximum,

|V |max = 10 V, is found at z = −25 cm, and the minimum voltage, |V |min =
0, is at z = −50 cm. Use the Smith chart to find ZL (with the short circuit

L

Figure 10.32 See Problem 10.20.
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Figure 10.33 See Problem 10.24.

replaced by the load) if the voltage readings are (a) |V |max = 12 V at z =
−5 cm, and |V |min = 5 V; (b) |V |max = 17 V at z = −20 cm, and

|V |min = 0.

10.26 A 50-� lossless line is of length 1.1 λ. It is terminated by an unknown load

impedance. The input end of the 50-� line is attached to the load end of a

lossless 75-� line. A VSWR of 4 is measured on the 75-� line, on which

the first voltage maximum occurs at a distance of 0.2 λ in front of the

junction between the two lines. Use the Smith chart to find the unknown

load impedance.

10.27 The characteristic admittance (Y0 = 1/Z0) of a lossless transmission line is

20 mS. The line is terminated in a load YL = 40 − j20 mS. Use the Smith

chart to find (a) s; (b) Yin if l = 0.15λ; (c) the distance in wavelengths from

YL to the nearest voltage maximum.

10.28 The wavelength on a certain lossless line is 10 cm. If the normalized input

impedance is zin = 1 + j2, use the Smith chart to determine (a) s; (b) zL , if

the length of the line is 12 cm; (c) xL , if zL = 2 + j xL where xL > 0.

10.29 A standing wave ratio of 2.5 exists on a lossless 60 � line. Probe

measurements locate a voltage minimum on the line whose location is

marked by a small scratch on the line. When the load is replaced by a short

circuit, the minima are 25 cm apart, and one minimum is located at a point

7 cm toward the source from the scratch. Find ZL .

10.30 A two-wire line constructed of lossless wire of circular cross section is

gradually flared into a coupling loop that looks like an egg beater. At the

point X , indicated by the arrow in Figure 10.34, a short circuit is placed

Figure 10.34 See Problem 10.30.
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across the line. A probe is moved along the line and indicates that the first

voltage minimum to the left of X is 16 cm from X . With the short circuit

removed, a voltage minimum is found 5 cm to the left of X , and a voltage

maximum is located that is 3 times the voltage of the minimum. Use the

Smith chart to determine (a) f ; (b) s; (c) the normalized input impedance

of the egg beater as seen looking to the right at point X .

10.31 In order to compare the relative sharpness of the maxima and minima of a

standing wave, assume a load zL = 4 + j0 is located at z = 0. Let

|V |min = 1 and λ = 1 m. Determine the width of the (a) minimum where

|V | < 1.1; (b) maximum where |V | > 4/1.1.

10.32 In Figure 10.17, let ZL = 250 �, Z0 = 50 �, find the shortest attachment

distance d and the shortest length d1 of a short-circuited stub line that will

provide a perfect match on the main line to the left of the stub. Express all

answers in wavelengths.

10.33 In Figure 10.17, let ZL = 40 − j10 �, Z0 = 50 �, f = 800 MHz, and

v = c. (a) Find the shortest length d1 of a short-circuited stub, and the

shortest distance d that it may be located from the load to provide a perfect

match on the main line to the left of the stub. (b) Repeat for an

open-circuited stub.

10.34 The lossless line shown in Figure 10.35 is operating with λ = 100 cm. If

d1 = 10 cm, d = 25 cm, and the line is matched to the left of the stub, what

is ZL?

10.35 A load, ZL = 25 + j75 �, is located at z = 0 on a lossless two-wire line for

which Z0 = 50 � and v = c. (a) If f = 300 MHz, find the shortest distance

d (z = −d) at which the input admittance has a real part equal to 1/Z0

and a negative imaginary part. (b) What value of capacitance C should be

connected across the line at that point to provide unity standing wave ratio

on the remaining portion of the line?

10.36 The two-wire lines shown in Figure 10.36 are all lossless and have Z0 =
200 �. Find d and the shortest possible value for d1 to provide a matched

load if λ = 100 cm.

Figure 10.35 See Problem 10.34.
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Figure 10.36 See Problem 10.36.

10.37 In the transmission line of Figure 10.20, Rg = Z0 = 50 �, and RL = 25 �.

Determine and plot the voltage at the load resistor and the current in the

battery as functions of time by constructing appropriate voltage and current

reflection diagrams.

10.38 Repeat Problem 10.37, with Z0 = 50 �, and RL = Rg = 25 �. Carry out

the analysis for the time period 0 < t < 8l/ν.

10.39 In the transmission line of Figure 10.20, Z0 = 50 �, and RL = Rg = 25 �.

The switch is closed at t = 0 and is opened again at time t = l/4ν, thus

creating a rectangular voltage pulse in the line. Construct an appropriate

voltage reflection diagram for this case and use it to make a plot of the

voltage at the load resistor as a function of time for 0 < t < 8l/ν (note that

the effect of opening the switch is to initiate a second voltage wave, whose

value is such that it leaves a net current of zero in its wake).

10.40 In the charged line of Figure 10.25, the characteristic impedance is Z0 =
100 �, and Rg = 300 �. The line is charged to initial voltage, V0 = 160 V,

and the switch is closed at t = 0. Determine and plot the voltage and current

through the resistor for time 0 < t < 8l/ν (four round-trips). This problem

accompanies Example 10.12 as the other special case of the basic

charged-line problem, in which now Rg > Z0.

10.41 In the transmission line of Figure 10.37, the switch is located midway down

the line and is closed at t = 0. Construct a voltage reflection diagram for this

case, where RL = Z0. Plot the load resistor voltage as a function of time.

Figure 10.37 See Problem 10.41.
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Figure 10.38 See Problem 10.42.

V0

Z0

t = 0

RL = Z0

Rg

Figure 10.39 See Problem 10.43.

10.42 A simple frozen wave generator is shown in Figure 10.38. Both switches are

closed simultaneously at t = 0. Construct an appropriate voltage reflection

diagram for the case in which RL = Z0. Determine and plot the load

resistor voltage as a function of time.

10.43 In Figure 10.39, RL = Z0 and Rg = Z0/3. The switch is closed at t = 0.

Determine and plot as functions of time (a) the voltage across RL ; (b) the

voltage across Rg; (c) the current through the battery.



11C H A P T E R

The Uniform
Plane Wave

T
his chapter is concerned with the application of Maxwell’s equations to the

problem of electromagnetic wave propagation. The uniform plane wave rep-

resents the simplest case, and while it is appropriate for an introduction, it is

of great practical importance. Waves encountered in practice can often be assumed

to be of this form. In this study, we will explore the basic principles of electromag-

netic wave propagation, and we will come to understand the physical processes that

determine the speed of propagation and the extent to which attenuation may occur.

We will derive and use the Poynting theorem to find the power carried by a wave.

Finally, we will learn how to describe wave polarization. ■

11.1 WAVE PROPAGATION IN FREE SPACE

We begin with a quick study of Maxwell’s equations, in which we look for clues

of wave phenomena. In Chapter 10, we saw how voltages and currents propagate as

waves in transmission lines, and we know that the existence of voltages and currents

implies the existence of electric and magnetic fields. So we can identify a transmission

line as a structure that confines the fields while enabling them to travel along its length

as waves. It can be argued that it is the fields that generate the voltage and current

in a transmission line wave, and—if there is no structure on which the voltage and

current can exist—the fields will exist nevertheless, and will propagate. In free space,

the fields are not bounded by any confining structure, and so they may assume any
magnitude and direction, as initially determined by the device (such as an antenna)

that generates them.

When considering electromagnetic waves in free space, we note that the medium

is sourceless (ρν = J = 0). Under these conditions, Maxwell’s equations may be

367
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written in terms of E and H only as

∇ ×H = ǫ0

∂E
∂t

(1)

∇ × E = −µ0

∂H
∂t

(2)

∇ ·E = 0 (3)

∇ ·H = 0 (4)

Now let us see whether wave motion can be inferred from these four equations

without actually solving them. Equation (1) states that if electric field E is changing

with time at some point, then magnetic fieldH has curl at that point; thereforeH varies

spatially in a direction normal to its orientation direction. Also, if E is changing with

time, then H will in general also change with time, although not necessarily in the

same way. Next, we see from Eq. (2) that a time-varying H generates E, which,

having curl, varies spatially in the direction normal to its orientation. We now have

once more a changing electric field, our original hypothesis, but this field is present

a small distance away from the point of the original disturbance. We might guess

(correctly) that the velocity with which the effect moves away from the original point

is the velocity of light, but this must be checked by a more detailed examination of

Maxwell’s equations.

We postulate the existence of a uniform plane wave, in which both fields, E and

H, lie in the transverse plane—that is, the plane whose normal is the direction of

propagation. Furthermore, and by definition, both fields are of constant magnitude in

the transverse plane. For this reason, such a wave is sometimes called a transverse
electromagnetic (TEM) wave. The required spatial variation of both fields in the

direction normal to their orientations will therefore occur only in the direction of

travel—or normal to the transverse plane. Assume, for example, that E = Exax , or

that the electric field is polarized in the x direction. If we further assume that wave

travel is in the z direction, we allow spatial variation of E only with z. Using Eq. (2),

we note that with these restrictions, the curl of E reduces to a single term:

∇ × E =
∂ Ex

∂z
ay = −µ0

∂H
∂t

= −µ0

∂ Hy

∂t
ay (5)

The direction of the curl of E in (5) determines the direction of H, which we observe

to be along the y direction. Therefore, in a uniform plane wave, the directions ofE and

H and the direction of travel are mutually orthogonal. Using the y-directed magnetic

field, and the fact that it varies only in z, simplifies Eq. (1) to read

∇ ×H = −
∂ Hy

∂z
ax = ǫ0

∂E
∂t

= ǫ0

∂ Ex

∂t
ax (6)
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Equations (5) and (6) can be more succinctly written:

∂ Ex

∂z
= −µ0

∂ Hy

∂t
(7)

∂ Hy

∂z
= −ǫ0

∂ Ex

∂t
(8)

These equations compare directly with the telegraphist’s equations for the lossless

transmission line [Eqs. (20) and (21) in Chapter 10]. Further manipulations of (7)

and (8) proceed in the same manner as was done with the telegraphist’s equations.

Specifically, we differentiate (7) with respect to z, obtaining:

∂2 Ex

∂z2
= −µ0

∂2 Hy

∂t∂z
(9)

Then, (8) is differentiated with respect to t :
∂2 Hy

∂z∂t
= −ǫ0

∂2 Ex

∂t2
(10)

Substituting (10) into (9) results in

∂2 Ex

∂z2
= µ0ǫ0

∂2 Ex

∂t2
(11)

This equation, in direct analogy to Eq. (13) in Chapter 10, we identify as the wave

equation for our x-polarized TEM electric field in free space. From Eq. (11), we

further identify the propagation velocity:

ν =
1

√
µ0ǫ0

= 3 × 108 m/s = c (12)

where c denotes the velocity of light in free space. A similar procedure, involving

differentiating (7) with t and (8) with z, yields the wave equation for the magnetic

field; it is identical in form to (11):

∂2 Hy

∂z2
= µ0ǫ0

∂2 Hy

∂t2
(13)

As was discussed in Chapter 10, the solution to equations of the form of (11) and

(13) will be forward- and backward-propagating waves having the general form [in

this case for Eq. (11)]:

Ex (z, t) = f1(t − z/ν) + f2(t + z/ν) (14)

where again f1 amd f2 can be any function whose argument is of the form t ± z/ν.

From here, we immediately specialize to sinusoidal functions of a specified fre-

quency and write the solution to (11) in the form of forward- and backward-propagating
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cosines. Because the waves are sinusoidal, we denote their velocity as the phase ve-
locity, νp. The waves are written as:

Ex (z, t) = Ex (z, t) + E
′
x (z, t)

= |Ex0| cos [ω(t − z/νp) + φ1] + |E ′
x0| cos [ω(t + z/νp) + φ2]

= |Ex0| cos [ωt − k0z + φ1]
︸ ︷︷ ︸

forward z travel

+ |E ′
x0| cos [ωt + k0z + φ2]

︸ ︷︷ ︸

backward z travel

(15)

In writing the second line of (15), we have used the fact that the waves are traveling in

free space, in which case the phase velocity, νp = c. Additionally, the wavenumber
in free space in defined as

k0 ≡
ω

c
rad/m (16)

In a manner consistant with our transmission line studies, we refer to the solutions

expressed in (15) as the real instantaneous forms of the electric field. They are the

mathematical representations of what one would experimentally measure. The terms

ωt and k0z, appearing in (15), have units of angle and are usually expressed in radians.

We know that ω is the radian time frequency, measuring phase shift per unit time;
it has units of rad/s. In a similar way, we see that k0 will be interpreted as a spatial
frequency, which in the present case measures the phase shift per unit distance along

the z direction in rad/m. We note that k0 is the phase constant for lossless propagation

of uniform plane waves in free space. The wavelength in free space is the distance

over which the spatial phase shifts by 2π radians, assuming fixed time, or

k0z = k0λ = 2π → λ =
2π

k0

(free space) (17)

The manner in which the waves propagate is the same as we encountered in

transmission lines. Specifically, suppose we consider some point (such as a wave

crest) on the forward-propagating cosine function of Eq. (15). For a crest to occur,

the argument of the cosine must be an integer multiple of 2π . Considering the mth

crest of the wave, the condition becomes

k0z = 2mπ

So let us now consider the point on the cosine that we have chosen, and see what

happens as time is allowed to increase. Our requirement is that the entire cosine

argument be the same multiple of 2π for all time, in order to keep track of the chosen

point. Our condition becomes

ωt − k0z = ω(t − z/c) = 2mπ (18)

As time increases, the position z must also increase in order to satisfy (18). The wave

crest (and the entire wave) moves in the positive z direction at phase velocity c (in

free space). Using similar reasoning, the wave in Eq. (15) having cosine argument

(ωt + k0z) describes a wave that moves in the negative z direction, since as time
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increases, z must now decrease to keep the argument constant. For simplicity, we will

restrict our attention in this chapter to only the positive z traveling wave.

As was done for transmission line waves, we express the real instantaneous fields

of Eq. (15) in terms of their phasor forms. Using the forward-propagating field in (15),

we write:

Ex (z, t) =
1

2
|Ex0|e jφ1

︸ ︷︷ ︸

Ex0

e− jk0ze jωt + c.c. =
1

2
Exse jωt + c.c. = Re[Exse jωt ] (19)

where c.c. denotes the complex conjugate, and where we identify the phasor electric
fiel as Exs = Ex0e− jk0z . As indicated in (19), Ex0 is the complex amplitude (which

includes the phase, φ1).

EXAMPLE 11.1

Let us express Ey(z, t) = 100 cos(108t − 0.5z + 30◦) V/m as a phasor.

Solution. We first go to exponential notation,

Ey(z, t) = Re
[

100e j(108t−0.5z+30◦)
]

and then drop Re and suppress e j108t , obtaining the phasor

Eys(z) = 100e− j0.5z+ j30◦

Note that a mixed nomenclature is used for the angle in this case; that is, 0.5z is in

radians, while 30◦ is in degrees. Given a scalar component or a vector expressed as a

phasor, we may easily recover the time-domain expression.

EXAMPLE 11.2

Given the complex amplitude of the electric field of a uniform plane wave, E0 =
100ax +20� 30◦ay V/m, construct the phasor and real instantaneous fields if the wave

is known to propagate in the forward z direction in free space and has frequency of

10 MHz.

Solution. We begin by constructing the general phasor expression:

Es(z) =
[

100ax + 20e j30◦
ay

]

e− jk0z

where k0 = ω/c = 2π × 107/3 × 108 = 0.21 rad/m. The real instantaneous form is

then found through the rule expressed in Eq. (19):

E(z, t) = Re
[

100e− j0.21ze j2π×107tax + 20e j30◦
e− j0.21ze j2π×107tay

]

= Re
[

100e j(2π×107t−0.21z)ax + 20e j(2π×107t−0.21z+30◦)ay
]

= 100 cos (2π × 107t − 0.21z)ax + 20 cos (2π × 107t − 0.21z + 30◦) ay
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It is evident that taking the partial derivative of any field quantity with respect

to time is equivalent to multiplying the corresponding phasor by jω. As an example,

we can express Eq. (8) (using sinusoidal fields) as

∂Hy

∂z
= −ǫ0

∂Ex

∂t
(20)

where, in a manner consistent with (19):

Ex (z, t) =
1

2
Exs(z) e jωt + c.c. and Hy(z, t) =

1

2
Hys(z) e jωt + c.c. (21)

On substituting the fields in (21) into (20), the latter equation simplifies to

d Hys(z)

dz
= − jωǫ0 Exs(z) (22)

In obtaining this equation, we note first that the complex conjugate terms in (21)

produce their own separate equation, redundant with (22); second, the e jωt factors,

common to both sides, have divided out; third, the partial derivative with z becomes

the total derivative, since the phasor, Hys , depends only on z.

We next apply this result to Maxwell’s equations, to obtain them in phasor form.

Substituting the field as expressed in (21) into Eqs. (1) through (4) results in

∇ ×Hs = jωǫ0Es (23)

∇ × Es = − jωµ0Hs (24)

∇ ·Es = 0 (25)

∇ ·Hs = 0 (26)

It should be noted that (25) and (26) are no longer independent relationships, for they

can be obtained by taking the divergence of (23) and (24), respectively.

Eqs. (23) through (26) may be used to obtain the sinusoidal steady-state vector

form of the wave equation in free space. We begin by taking the curl of both sides

of (24):

∇ × ∇ × Es = − jωµ0∇ ×Hs = ∇(∇ ·Es) − ∇2Es (27)

where the last equality is an identity, which defines the vector Laplacian of Es :

∇2Es = ∇(∇ ·Es) − ∇ × ∇ × Es

From (25), we note that ∇ ·Es = 0. Using this, and substituting (23) in (27), we

obtain

∇2Es = −k2
0Es (28)
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where again, k0 = ω/c = ω
√

µ0ǫ0. Equation (28) is known as the vector Helmholtz

equation in free space.1 It is fairly formidable when expanded, even in rectangular

coordinates, for three scalar phasor equations result (one for each vector component),

and each equation has four terms. The x component of (28) becomes, still using the

del-operator notation,

∇2 Exs = −k2
0 Exs (29)

and the expansion of the operator leads to the second-order partial differential equation

∂2 Exs

∂x2
+

∂2 Exs

∂y2
+

∂2 Exs

∂z2
= −k2

0 Exs

Again, assuming a uniform plane wave in which Exs does not vary with x or y, the

two corresponding derivatives are zero, and we obtain

d2 Exs

dz2
= −k2

0 Exs (30)

the solution of which we already know:

Exs(z) = Ex0e− jk0z + E ′
x0e jk0z (31)

Let us now return to Maxwell’s equations, (23) through (26), and determine the

form of the H field. Given Es,Hs is most easily obtained from (24):

∇ × Es = − jωµ0Hs (24)

which is greatly simplified for a single Exs component varying only with z,

d Exs

dz
= − jωµ0 Hys

Using (31) for Exs , we have

Hys = −
1

jωµ0

[

(− jk0)Ex0e− jk0z + ( jk0)E ′
x0e jk0z]

= Ex0

√
ǫ0

µ0

e− jk0z − E ′
x0

√
ǫ0

µ0

e jk0z = Hy0e− jk0z + H ′
y0e jk0z (32)

In real instantaneous form, this becomes

Hy(z, t) = Ex0

√
ǫ0

µ0

cos(ωt − k0z) − E ′
x0

√
ǫ0

µ0

cos(ωt + k0z) (33)

where Ex0 and E ′
x0 are assumed real.

1 Hermann Ludwig Ferdinand von Helmholtz (1821–1894) was a professor at the University of Berlin

working in the fields of physiology, electrodynamics, and optics. Hertz was one of his students.
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In general, we find from (32) that the electric and magnetic field amplitudes of

the forward-propagating wave in free space are related through

Ex0 =
√

µ0

ǫ0

Hy0 = η0 Hy0 (34a)

We also find the backward-propagating wave amplitudes are related through

E ′
x0 = −

√
µ0

ǫ0

H ′
y0 = −η0 H ′

y0 (34b)

where the intrinsic impedance of free space is defined as

η0 =
√

µ0

ǫ0

= 377
.= 120π 
 (35)

The dimension of η0 in ohms is immediately evident from its definition as the ratio of

E (in units of V/m) to H (in units of A/m). It is in direct analogy to the characteristic

impedance, Z0, of a transmission line, where we defined the latter as the ratio of

voltage to current in a traveling wave. We note that the difference between (34a) and

(34b) is a minus sign. This is consistent with the transmission line analogy that led to

Eqs. (25a) and (25b) in Chapter 10. Those equations accounted for the definitions of

positive and negative current associated with forward and backward voltage waves. In

a similar way, Eq. (34a) specifies that in a forward-z propagating uniform plane wave

whose electric field vector lies in the positive x direction at a given point in time and

space, the magnetic field vector lies in the positive y direction at the same space and

time coordinates. In the case of a backward-z propagating wave having a positive

x-directed electric field, the magnetic field vector lies in the negative y direction. The

physical significance of this has to do with the definition of power flow in the wave,

as specified through the Poynting vector, S = E×H (in watts/m2). The cross product

of E with H must give the correct wave propagation direction, and so the need for

the minus sign in (34b) is apparent. Issues relating to power transmission will be

addressed in Section 11.3.

Some feeling for the way in which the fields vary in space may be obtained from

Figures 11.1a and 11.1b. The electric field intensity in Figure 11.1a is shown at t = 0,

and the instantaneous value of the field is depicted along three lines, the z axis and

arbitrary lines parallel to the z axis in the x = 0 and y = 0 planes. Since the field

is uniform in planes perpendicular to the z axis, the variation along all three of the

lines is the same. One complete cycle of the variation occurs in a wavelength, λ. The

values of Hy at the same time and positions are shown in Figure 11.1b.

A uniform plane wave cannot exist physically, for it extends to infinity in two

dimensions at least and represents an infinite amount of energy. The distant field of

a transmitting antenna, however, is essentially a uniform plane wave in some limited

region; for example, a radar signal impinging on a distant target is closely a uniform

plane wave.
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Figure 11.1 (a) Arrows represent the instantaneous values of Ex0 cos[ω(t − z/c)] at

t = 0 along the z axis, along an arbitrary line in the x = 0 plane parallel to the z axis, and

along an arbitrary line in the y = 0 plane parallel to the z axis. (b) Corresponding values

of Hy are indicated. Note that Ex and Hy are in phase at any point in time.

Although we have considered only a wave varying sinusoidally in time and

space, a suitable combination of solutions to the wave equation may be made to

achieve a wave of any desired form, but which satisfies (14). The summation of

an infinite number of harmonics through the use of a Fourier series can produce a

periodic wave of square or triangular shape in both space and time. Nonperiodic

waves may be obtained from our basic solution by Fourier integral methods. These

topics are among those considered in the more advanced books on electromagnetic

theory.

D11.1. The electric field amplitude of a uniform plane wave propagating in

the az direction is 250 V/m. If E = Exax and ω = 1.00 Mrad/s, find: (a) the

frequency; (b) the wavelength; (c) the period; (d) the amplitude of H.

Ans. 159 kHz; 1.88 km; 6.28 µs; 0.663 A/m

D11.2. Let Hs = (2 � −40◦ax − 3� 20◦ay)e− j0.07z A/m for a uniform plane

wave traveling in free space. Find: (a) ω; (b) Hx at P(1, 2, 3) at t = 31 ns; (c)

|H| at t = 0 at the origin.

Ans. 21.0 Mrad/s; 1.934 A/m; 3.22 A/m

11.2 WAVE PROPAGATION IN DIELECTRICS

We now extend our analytical treatment of the uniform plane wave to propagation

in a dielectric of permittivity ǫ and permeability µ. The medium is assumed to be

homogeneous (having constant µ and ǫ with position) and isotropic (in which µ and
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ǫ are invariant with field orientation). The Helmholtz equation is

∇2Es = −k2Es (36)

where the wavenumber is a function of the material properties, as described byµ and ǫ:

k = ω
√

µǫ = k0

√
µrǫr (37)

For Exs we have

d2 Exs

dz2
= −k2 Exs (38)

An important feature of wave propagation in a dielectric is that k can be complex-

valued, and as such it is referred to as the complex propagation constant. A general

solution of (38), in fact, allows the possibility of a complex k, and it is customary to

write it in terms of its real and imaginary parts in the following way:

jk = α + jβ (39)

A solution to (38) will be:

Exs = Ex0e− jkz = Ex0e−αze− jβz (40)

Multiplying (40) by e jωt and taking the real part yields a form of the field that can

be more easily visualized:

Ex = Ex0e−αz cos(ωt − βz) (41)

We recognize this as a uniform plane wave that propagates in the forward z direction

with phase constant β, but which (for positive α) loses amplitude with increasing z
according to the factor e−αz . Thus the general effect of a complex-valued k is to yield a

traveling wave that changes its amplitude with distance. If α is positive, it is called the

attenuation coefficien . If α is negative, the wave grows in amplitude with distance, and

α is called the gain coefficien . The latter effect would occur, for example, in laser am-

plifiers. In the present and future discussions in this book, we will consider only passive

media, in which one or more loss mechanisms are present, thus producing a positive α.

The attenuation coefficient is measured in nepers per meter (Np/m) so that the

exponent of e can be measured in the dimensionless units of nepers. Thus, if α =
0.01 Np/m, the crest amplitude of the wave at z = 50 m will be e−0.5/e−0 = 0.607

of its value at z = 0. In traveling a distance 1/α in the +z direction, the amplitude of

the wave is reduced by the familiar factor of e−1, or 0.368.

The ways in which physical processes in a material can affect the wave electric

field are described through a complex permittivity of the form

ǫ = ǫ′ − jǫ′′ = ǫ0(ǫ′
r − jǫ′′

r ) (42)
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Two important mechanisms that give rise to a complex permittivity (and thus result

in wave losses) are bound electron or ion oscillations and dipole relaxation, both of

which are discussed in Appendix E. An additional mechanism is the conduction of

free electrons or holes, which we will explore at length in this chapter.

Losses arising from the response of the medium to the magnetic field can occur

as well, and these are modeled through a complex permeability, µ = µ′ − jµ′′ =
µ0(µ′

r − jµ′′
r ). Examples of such media include ferrimagnetic materials, or ferrites.

The magnetic response is usually very weak compared to the dielectric response in

most materials of interest for wave propagation; in such materials µ ≈ µ0. Con-

sequently, our discussion of loss mechanisms will be confined to those described

through the complex permittivity, and we will assume that µ is entirely real in our

treatment.

We can substitute (42) into (37), which results in

k = ω
√

µ(ǫ′ − jǫ′′) = ω
√

µǫ′

√

1 − j
ǫ′′

ǫ′ (43)

Note the presence of the second radical factor in (43), which becomes unity (and

real) as ǫ′′ vanishes. With nonzero ǫ′′, k is complex, and so losses occur which are

quantified through the attenuation coefficient, α, in (39). The phase constant, β (and

consequently the wavelength and phase velocity), will also be affected by ǫ′′. α and

β are found by taking the real and imaginary parts of jk from (43). We obtain:

α = Re{ jk} = ω

√

µǫ′

2





√

1 +
(

ǫ′′

ǫ′

)2

− 1





1/2

(44)

β = Im{ jk} = ω

√

µǫ′

2





√

1 +
(

ǫ′′

ǫ′

)2

+ 1





1/2

(45)

We see that a nonzero α (and hence loss) results if the imaginary part of the

permittivity, ǫ′′, is present. We also observe in (44) and (45) the presence of the ratio

ǫ′′/ǫ′, which is called the loss tangent. The meaning of the term will be demonstrated

when we investigate the specific case of conductive media. The practical importance

of the ratio lies in its magnitude compared to unity, which enables simplifications to

be made in (44) and (45).

Whether or not losses occur, we see from (41) that the wave phase velocity is

given by

νp =
ω

β
(46)

The wavelength is the distance required to effect a phase change of 2π radians

βλ = 2π
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which leads to the fundamental definition of wavelength,

λ =
2π

β
(47)

Because we have a uniform plane wave, the magnetic field is found through

Hys =
Ex0

η
e−αze− jβz

where the intrinsic impedance is now a complex quantity,

η =
√

µ

ǫ′ − jǫ′′ =
√

µ

ǫ′
1

√
1 − j(ǫ′′/ǫ′)

(48)

The electric and magnetic fields are no longer in phase.

A special case is that of a lossless medium, or perfect dielectric, in which ǫ′′ = 0,

and so ǫ = ǫ′. From (44), this leads to α = 0, and from (45),

β = ω
√

µǫ′ (lossless medium) (49)

With α = 0, the real field assumes the form

Ex = Ex0 cos(ωt − βz) (50)

We may interpret this as a wave traveling in the +z direction at a phase velocity νp,

where

νp =
ω

β
=

1
√

µǫ′ =
c

√

µrǫ′
r

The wavelength is

λ =
2π

β
=

2π

ω
√

µǫ′ =
1

f
√

µǫ′ =
c

f
√

µrǫ′
r

=
λ0

√

µrǫ′
r

(lossless medium) (51)

where λ0 is the free space wavelength. Note that µrǫ
′
r > 1, and therefore the wave-

length is shorter and the velocity is lower in all real media than they are in free

space.

Associated with Ex is the magnetic field intensity

Hy =
Ex0

η
cos(ωt − βz)

where the intrinsic impedance is

η =
√

µ

ǫ
(52)
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The two fields are once again perpendicular to each other, perpendicular to the

direction of propagation, and in phase with each other everywhere. Note that when E
is crossed into H, the resultant vector is in the direction of propagation. We shall see

the reason for this when we discuss the Poynting vector.

EXAMPLE 11.3

Let us apply these results to a 1-MHz plane wave propagating in fresh water. At

this frequency, losses in water are negligible, which means that we can assume that

ǫ′′ .= 0. In water, µr = 1 and at 1 MHz, ǫ′
r = 81.

Solution. We begin by calculating the phase constant. Using (45) with ǫ′′ = 0, we

have

β = ω
√

µǫ′ = ω
√

µ0ǫ0

√

ǫ′
r =

ω
√

ǫ′
r

c
=

2π × 106
√

81

3.0 × 108
= 0.19 rad/m

Using this result, we can determine the wavelength and phase velocity:

λ =
2π

β
=

2π

.19
= 33 m

νp =
ω

β
=

2π × 106

.19
= 3.3 × 107 m/s

The wavelength in air would have been 300 m. Continuing our calculations, we find

the intrinsic impedance using (48) with ǫ′′ = 0:

η =
√

µ

ǫ′ =
η0

√

ǫ′
r

=
377

9
= 42 


If we let the electric field intensity have a maximum amplitude of 0.1 V/m, then

Ex = 0.1 cos(2π106t − .19z) V/m

Hy =
Ex

η
= (2.4 × 10−3) cos(2π106t − .19z) A/m

D11.3. A 9.375-GHz uniform plane wave is propagating in polyethylene

(see Appendix C). If the amplitude of the electric field intensity is 500 V/m

and the material is assumed to be lossless, find: (a) the phase constant; (b) the

wavelength in the polyethylene; (c) the velocity of propagation; (d) the intrinsic

impedance; (e) the amplitude of the magnetic field intensity.

Ans. 295 rad/m; 2.13 cm; 1.99 × 108 m/s; 251 
; 1.99 A/m
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EXAMPLE 11.4

We again consider plane wave propagation in water, but at the much higher micro-

wave frequency of 2.5 GHz. At frequencies in this range and higher, dipole relaxation

and resonance phenomena in the water molecules become important.2 Real and imagi-

nary parts of the permittivity are present, and both vary with frequency. At frequencies

below that of visible light, the two mechanisms together produce a value of ǫ′′ that

increases with increasing frequency, reaching a maximum in the vicinity of 1013 Hz.

ǫ′ decreases with increasing frequency, reaching a minimum also in the vicinity of

1013 Hz. Reference 3 provides specific details. At 2.5 GHz, dipole relaxation effects

dominate. The permittivity values are ǫ′
r = 78 and ǫ′′

r = 7. From (44), we have

α =
(2π × 2.5 × 109)

√
78

(3.0 × 108)
√

2





√

1 +
(

7

78

)2

− 1





1/2

= 21 Np/m

This first calculation demonstrates the operating principle of the microwave oven.

Almost all foods contain water, and so they can be cooked when incident microwave

radiation is absorbed and converted into heat. Note that the field will attenuate to a

value of e−1 times its initial value at a distance of 1/α = 4.8 cm. This distance is called

the penetration depth of the material, and of course it is frequency-dependent. The

4.8 cm depth is reasonable for cooking food, since it would lead to a temperature rise

that is fairly uniform throughout the depth of the material. At much higher frequencies,

where ǫ′′ is larger, the penetration depth decreases, and too much power is absorbed

at the surface; at lower frequencies, the penetration depth increases, and not enough

overall absorption occurs. Commercial microwave ovens operate at frequencies in the

vicinity of 2.5 GHz.

Using (45), in a calculation very similar to that for α, we find β = 464 rad/m.

The wavelength is λ = 2π/β = 1.4 cm, whereas in free space this would have been

λ0 = c/ f = 12 cm.

Using (48), the intrinsic impedance is found to be

η =
377
√

78

1
√

1 − j(7/78)
= 43 + j1.9 = 43� 2.6◦ 


and Ex leads Hy in time by 2.6◦ at every point.

We next consider the case of conductive materials, in which currents are formed

by the motion of free electrons or holes under the influence of an electric field.

The governing relation is J = σE, where σ is the material conductivity. With finite

conductivity, the wave loses power through resistive heating of the material. We look

for an interpretation of the complex permittivity as it relates to the conductivity.

2 These mechanisms and how they produce a complex permittivity are described in Appendix D.

Additionally, the reader is referred to pp. 73–84 in Reference 1 and pp. 678–82 in Reference 2 for

general treatments of relaxation and resonance effects on wave propagation. Discussions and data that

are specific to water are presented in Reference 3, pp. 314–16.
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Consider the Maxwell curl equation (23) which, using (42), becomes:

∇ ×Hs = jω(ǫ′ − jǫ′′)Es = ωǫ′′Es + jωǫ′Es (53)

This equation can be expressed in a more familiar way, in which conduction current

is included:

∇ ×Hs = Js + jωǫEs (54)

We next use Js = σEs , and interpret ǫ in (54) as ǫ′. The latter equation becomes:

∇ ×Hs = (σ + jωǫ′)Es = Jσ s + Jds (55)

which we have expressed in terms of conduction current density, Jσ s = σEs , and

displacement current density, Jds = jωǫ′Es . Comparing Eqs. (53) and (55), we find

that in a conductive medium:

ǫ′′ =
σ

ω
(56)

Let us now turn our attention to the case of a dielectric material in which the loss

is very small. The criterion by which we should judge whether or not the loss is small

is the magnitude of the loss tangent, ǫ′′/ǫ′. This parameter will have a direct influence

on the attenuation coefficient, α, as seen from Eq. (44). In the case of conducting

media, to which (56) applies, the loss tangent becomes σ/ωǫ′. By inspecting (55),

we see that the ratio of conduction current density to displacement current density

magnitudes is

Jσ s

Jds
=

ǫ′′

jǫ′ =
σ

jωǫ′ (57)

That is, these two vectors point in the same direction in space, but they are 90◦ out of

phase in time. Displacement current density leads conduction current density by 90◦,

just as the current through a capacitor leads the current through a resistor in parallel

with it by 90◦ in an ordinary electric circuit. This phase relationship is shown in

Figure 11.2. The angle θ (not to be confused with the polar angle in spherical

coordinates) may therefore be identified as the angle by which the displacement

current density leads the total current density, and

tan θ =
ǫ′′

ǫ′ =
σ

ωǫ′ (58)

The reasoning behind the term loss tangent is thus evident. Problem 11.16 at the end

of the chapter indicates that the Q of a capacitor (its quality factor, not its charge)

that incorporates a lossy dielectric is the reciprocal of the loss tangent.

If the loss tangent is small, then we may obtain useful approximations for the

attenuation and phase constants, and the intrinsic impedance. The criterion for a small

loss tangent is ǫ′′/ǫ′ ≪ 1, which we say identifies the medium as a good dielectric.
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J ′E

J

J

E

E

′
′

Figure 11.2 The time-phase relationship

between Jds, Jσs, Js, and Es. The tangent of θ

is equal to σ/ωǫ′, and 90◦ − θ is the common

power-factor angle, or the angle by which Js

leads Es.

Considering a conductive material, for which ǫ′′ = σ/ω, (43) becomes

jk = jω
√

µǫ′
√

1 − j
σ

ωǫ′ (59)

We may expand the second radical using the binomial theorem

(1 + x)n = 1 + nx +
n(n − 1)

2!
x2 +

n(n − 1)(n − 2)

3!
x3 + · · ·

where |x | ≪ 1. We identify x as − jσ/ωǫ′ and n as 1/2, and thus

jk = jω
√

µǫ′
[

1 − j
σ

2ωǫ′ +
1

8

( σ

ωǫ′

)2

+ · · ·
]

= α + jβ

Now, for a good dielectric,

α = Re( jk)
.= jω

√

µǫ′
(

− j
σ

2ωǫ′

)

=
σ

2

√

µ

ǫ′ (60a)

and

β = Im( jk)
.= ω

√

µǫ′
[

1 +
1

8

( σ

ωǫ′

)2
]

(60b)

Equations (60a) and (60b) can be compared directly with the transmission line α and

β under low-loss conditions, as expressed in Eqs. (54a) and (55b) in Chapter 10.

In this comparison, we associate σ with G, µ with L , and ǫ with C . Note that in

plane wave propagation in media with no boundaries, there can be no quantity that is

analogous to the transmission line conductor resistance parameter, R. In many cases,
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the second term in (60b) is small enough, so that

β
.= ω

√

µǫ′ (61)

Applying the binomial expansion to (48), we obtain, for a good dielectric

η
.=

√

µ

ǫ′

[

1 −
3

8

( σ

ωǫ′

)2

+ j
σ

2ωǫ′

]

(62a)

or

η
.=

√

µ

ǫ′

(

1 + j
σ

2ωǫ′

)

(62b)

The conditions under which these approximations can be used depend on the

desired accuracy, measured by how much the results deviate from those given by

the exact formulas, (44) and (45). Deviations of no more than a few percent occur if

σ/ωǫ′ < 0.1.

EXAMPLE 11.5

As a comparison, we repeat the computations of Example 11.4, using the approxima-

tion formulas (60a), (61), and (62b).

Solution. First, the loss tangent in this case is ǫ′′/ǫ′ = 7/78 = 0.09. Using (60),

with ǫ′′ = σ/ω, we have

α
.=

ωǫ′′

2

√

µ

ǫ′ =
1

2
(7 × 8.85 × 1012)(2π × 2.5 × 109)

377
√

78
= 21 cm−1

We then have, using (61b),

β
.= (2π × 2.5 × 109)

√
78/(3 × 108) = 464 rad/m

Finally, with (62b),

η
.=

377
√

78

(

1 + j
7

2 × 78

)

= 43 + j1.9

These results are identical (within the accuracy limitations as determined by the given

numbers) to those of Example 11.4. Small deviations will be found, as the reader can

verify by repeating the calculations of both examples and expressing the results to four

or five significant figures. As we know, this latter practice would not be meaningful

because the given parameters were not specified with such accuracy. Such is often the

case, since measured values are not always known with high precision. Depending

on how precise these values are, one can sometimes use a more relaxed judgment on

when the approximation formulas can be used by allowing loss tangent values that

can be larger than 0.1 (but still less than 1).
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D11.4. Given a nonmagnetic material having ǫ′
r = 3.2 and σ = 1.5 × 10−4

S/m, find numerical values at 3 MHz for the (a) loss tangent; (b) attenuation

constant; (c) phase constant; (d) intrinsic impedance.

Ans. 0.28; 0.016 Np/m; 0.11 rad/m; 207 � 7.8◦ 


D11.5. Consider a material for which µr = 1, ǫ′
r = 2.5, and the loss tangent

is 0.12. If these three values are constant with frequency in the range 0.5 MHz ≤
f ≤ 100 MHz, calculate: (a) σ at 1 and 75 MHz; (b) λ at 1 and 75 MHz; (c) νp
at 1 and 75 MHz.

Ans. 1.67 × 10−5 and 1.25 × 10−3 S/m; 190 and 2.53 m; 1.90 × 108 m/s twice

11.3 POYNTING’S THEOREM
AND WAVE POWER

In order to find the power flow associated with an electromagnetic wave, it is necessary

to develop a power theorem for the electromagnetic field known as the Poynting the-

orem. It was originally postulated in 1884 by an English physicist, John H. Poynting.

The development begins with one of Maxwell’s curl equations, in which we

assume that the medium may be conductive:

∇ ×H = J+
∂D
∂t

(63)

Next, we take the scalar product of both sides of (63) with E,

E · ∇ ×H = E · J+ E ·

∂D
∂t

(64)

We then introduce the following vector identity, which may be proved by expansion

in rectangular coordinates:

∇ · (E×H) = −E · ∇ ×H+H · ∇ × E (65)

Using (65) in the left side of (64) results in

H · ∇ × E− ∇ · (E×H) = J ·E+ E ·

∂D
∂t

(66)

where the curl of the electric field is given by the other Maxwell curl equation:

∇ × E = −
∂B
∂t

Therefore

−H ·

∂B
∂t

− ∇ · (E×H) = J ·E+ E ·

∂D
∂t

or

−∇ · (E×H) = J ·E+ ǫE ·

∂E
∂t

+ µH ·

∂H
∂t

(67)
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The two time derivatives in (67) can be rearranged as follows:

ǫE ·

∂E
∂t

=
∂

∂t

(
1

2
D ·E

)

(68a)

and

µH ·

∂H
∂t

=
∂

∂t

(
1

2
B ·H

)

(68b)

With these, Eq. (67) becomes

−∇ · (E×H) = J ·E+
∂

∂t

(
1

2
D ·E

)

+
∂

∂t

(
1

2
B ·H

)

(69)

Finally, we integrate (69) throughout a volume:

−
∫

vol

∇ · (E×H) dv =
∫

vol

J ·E dv +
∫

vol

∂

∂t

(
1

2
D ·E

)

dv +
∫

vol

∂

∂t

(
1

2
B ·H

)

dv

The divergence theorem is then applied to the left-hand side, thus converting the

volume integral there into an integral over the surface that encloses the volume. On

the right-hand side, the operations of spatial integration and time differentiation are

interchanged. The final result is

−
∮

area

(E×H) · dS =
∫

vol

J ·E dν +
d
dt

∫

vol

1

2
D ·E dν +

d
dt

∫

vol

1

2
B ·H dν (70)

Equation (70) is known as Poynting’s theorem. On the right-hand side, the first

integral is the total (but instantaneous) ohmic power dissipated within the volume. The

second integral is the total energy stored in the electric field, and the third integral is

the stored energy in the magnetic field.3 Since time derivatives are taken of the second

and third integrals, those results give the time rates of increase of energy stored within

the volume, or the instantaneous power going to increase the stored energy. The sum

of the expressions on the right must therefore be the total power flowing into this

volume, and so the total power flowing out of the volume is

∮

area

(E×H) · dS W (71)

where the integral is over the closed surface surrounding the volume. The cross product

E×H is known as the Poynting vector, S,

S = E×H W/m2 (72)

which is interpreted as an instantaneous power density, measured in watts per square

meter (W/m2). The direction of the vectorS indicates the direction of the instantaneous

3 This is the expression for magnetic field energy that we have been anticipating since Chapter 8.
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power flow at a point, and many of us think of the Poynting vector as a “pointing”

vector. This homonym, while accidental, is correct.4

Because S is given by the cross product of E and H, the direction of power flow

at any point is normal to both the E and H vectors. This certainly agrees with our

experience with the uniform plane wave, for propagation in the +z direction was

associated with an Ex and Hy component,

Exax × Hyay = Szaz

In a perfect dielectric, the E and H field amplitudes are given by

Ex = Ex0 cos(ωt − βz)

Hy =
Ex0

η
cos(ωt − βz)

where η is real. The power density amplitude is therefore

Sz =
E2

x0

η
cos2(ωt − βz) (73)

In the case of a lossy dielectric, Ex and Hy are not in time phase. We have

Ex = Ex0e−αz cos(ωt − βz)

If we let

η = |η| � θη

then we may write the magnetic field intensity as

Hy =
Ex0

|η|
e−αz cos(ωt − βz − θη)

Thus,

Sz = Ex Hy =
E2

x0

|η|
e−2αz cos(ωt − βz) cos(ωt − βz − θη) (74)

Because we are dealing with a sinusoidal signal, the time-average power density,

〈Sz〉, is the quantity that will ultimately be measured. To find this, we integrate (74)

over one cycle and divide by the period T = 1/ f . Additionally, the identity cos

A cos B = 1/2 cos(A + B) + 1/2 cos(A − B) is applied to the integrand, and we

obtain:

〈Sz〉 =
1

T

∫ T

0

1

2

E2
x0

|η|
e−2αz[cos(2ωt − 2βz − 2θη) + cos θη] dt (75)

4 Note that the vector symbol S is used for the Poynting vector, and is not to be confused with the

differential area vector, dS. The latter, as we know, is the product of the outward normal to the surface

and the differential area.
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The second-harmonic component of the integrand in (75) integrates to zero, leaving

only the contribution from the dc component. The result is

〈Sz〉 =
1

2

E2
x0

|η|
e−2αz cos θη (76)

Note that the power density attenuates as e−2αz , whereas Ex and Hy fall off as e−αz .

We may finally observe that the preceding expression can be obtained very easily

by using the phasor forms of the electric and magnetic fields. In vector form, this is

〈S〉 =
1

2
Re(Es ×H∗

s ) W/m2 (77)

In the present case

Es = Ex0e− jβzax

and

H∗
s =

Ex0

η∗
e+ jβzay =

Ex0

|η|
e jθe+ jβzay

where Ex0 has been assumed real. Eq. (77) applies to any sinusoidal electromagnetic

wave and gives both the magnitude and direction of the time-average power density.

D11.6. At frequencies of 1, 100, and 3000 MHz, the dielectric constant of

ice made from pure water has values of 4.15, 3.45, and 3.20, respectively, while

the loss tangent is 0.12, 0.035, and 0.0009, also respectively. If a uniform plane

wave with an amplitude of 100 V/m at z = 0 is propagating through such ice,

find the time-average power density at z = 0 and z = 10 m for each frequency.

Ans. 27.1 and 25.7 W/m2; 24.7 and 6.31 W/m2; 23.7 and 8.63 W/m2

11.4 PROPAGATION IN GOOD
CONDUCTORS: SKIN EFFECT

As an additional study of propagation with loss, we will investigate the behavior of a

good conductor when a uniform plane wave is established in it. Such a material sat-

isfies the general high-loss criterion, in which the loss tangent, ǫ′′/ǫ′ ≫ 1. Applying

this to a good conductor leads to the more specific criterion, σ/(ωǫ′) ≫ 1. As before,

we have an interest in losses that occur on wave transmission into a good conductor,

and we will find new approximations for the phase constant, attenuation coefficient,

and intrinsic impedance. New to us, however, is a modification of the basic problem,

appropriate for good conductors. This concerns waves associated with electromag-

netic fields existing in an external dielectric that adjoins the conductor surface; in

this case, the waves propagate along the surface. That portion of the overall field that

exists within the conductor will suffer dissipative loss arising from the conduction

currents it generates. The overall field therefore attenuates with increasing distance
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of travel along the surface. This is the mechanism for the resistive transmission line

loss that we studied in Chapter 10, and which is embodied in the line resistance

parameter, R.

As implied, a good conductor has a high conductivity and large conduction

currents. The energy represented by the wave traveling through the material therefore

decreases as the wave propagates because ohmic losses are continuously present.

When we discussed the loss tangent, we saw that the ratio of conduction current

density to the displacement current density in a conducting material is given by

σ/ωǫ′. Choosing a poor metallic conductor and a very high frequency as a conservative

example, this ratio5 for nichrome (σ
.= 106) at 100 MHz is about 2 × 108. We therefore

have a situation where σ/ωǫ′ ≫ 1, and we should be able to make several very good

approximations to find α, β, and η for a good conductor.

The general expression for the propagation constant is, from (59),

jk = jω
√

µǫ′
√

1 − j
σ

ωǫ′

which we immediately simplify to obtain

jk = jω
√

µǫ′
√

− j
σ

ωǫ′

or

jk = j
√

− jωµσ

But

− j = 1 � −90◦

and

√
1 � −90◦ = 1 � −45◦ =

1
√

2
(1 − j)

Therefore

jk = j(1 − j)

√

ωµσ

2
= (1 + j)

√

π f µσ = α + jβ (78)

Hence

α = β =
√

π f µσ (79)

Regardless of the parameters µ and σ of the conductor or of the frequency of the

applied field, α and β are equal. If we again assume only an Ex component traveling

in the +z direction, then

Ex = Ex0e−z
√

π f µσ cos
(

ωt − z
√

π f µσ
)

(80)

5 It is customary to take ǫ′ = ǫ0 for metallic conductors.
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We may tie this field in the conductor to an external field at the conductor surface.

We let the region z > 0 be the good conductor and the region z < 0 be a perfect

dielectric. At the boundary surface z = 0, (80) becomes

Ex = Ex0 cos ωt (z = 0)

This we shall consider as the source field that establishes the fields within the con-

ductor. Since displacement current is negligible,

J = σE

Thus, the conduction current density at any point within the conductor is directly

related to E:

Jx = σ Ex = σ Ex0e−z
√

π fµσ cos
(

ωt − z
√

π f µσ
)

(81)

Equations (80) and (81) contain a wealth of information. Considering first the

negative exponential term, we find an exponential decrease in the conduction current

density and electric field intensity with penetration into the conductor (away from the

source). The exponential factor is unity at z = 0 and decreases to e−1 = 0.368 when

z =
1

√
π fµσ

This distance is denoted by δ and is termed the depth of penetration, or the skin depth,

δ =
1

√
π f µσ

=
1

α
=

1

β
(82)

It is an important parameter in describing conductor behavior in electromagnetic

fields. To get some idea of the magnitude of the skin depth, let us consider copper,

σ = 5.8 × 107 S/m, at several different frequencies. We have

δCu =
0.066
√

f
At a power frequency of 60 Hz, δCu = 8.53 mm. Remembering that the power density

carries an exponential term e−2αz , we see that the power density is multiplied by a

factor of 0.3682 = 0.135 for every 8.53 mm of distance into the copper.

At a microwave frequency of 10,000 MHz, δ is 6.61 × 10−4 mm. Stated more

generally, all fields in a good conductor such as copper are essentially zero at distances

greater than a few skin depths from the surface. Any current density or electric field

intensity established at the surface of a good conductor decays rapidly as we progress

into the conductor. Electromagnetic energy is not transmitted in the interior of a

conductor; it travels in the region surrounding the conductor, while the conductor

merely guides the waves. We will consider guided propagation in more detail in

Chapter 13.

Suppose we have a copper bus bar in the substation of an electric utility company

which we wish to have carry large currents, and we therefore select dimensions of 2

by 4 inches. Then much of the copper is wasted, for the fields are greatly reduced in
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one skin depth, about 8.5 mm.6 A hollow conductor with a wall thickness of about

12 mm would be a much better design. Although we are applying the results of an

analysis for an infinite planar conductor to one of finite dimensions, the fields are

attenuated in the finite-size conductor in a similar (but not identical) fashion.

The extremely short skin depth at microwave frequencies shows that only the sur-

face coating of the guiding conductor is important. A piece of glass with an evaporated

silver surface 3 µm thick is an excellent conductor at these frequencies.

Next, let us determine expressions for the velocity and wavelength within a good

conductor. From (82), we already have

α = β =
1

δ
=

√

π f µσ

Then, as

β =
2π

λ

we find the wavelength to be

λ = 2πδ (83)

Also, recalling that

νp =
ω

β

we have

νp = ωδ (84)

For copper at 60 Hz, λ = 5.36 cm and νp = 3.22 m/s, or about 7.2 mi/h! A lot of us

can run faster than that. In free space, of course, a 60 Hz wave has a wavelength of

3100 mi and travels at the velocity of light.

EXAMPLE 11.6

Let us again consider wave propagation in water, but this time we will consider

seawater. The primary difference between seawater and fresh water is of course the

salt content. Sodium chloride dissociates in water to form Na+ and Cl− ions, which,

being charged, will move when forced by an electric field. Seawater is thus conductive,

and so it will attenuate electromagnetic waves by this mechanism. At frequencies

in the vicinity of 107 Hz and below, the bound charge effects in water discussed

earlier are negligible, and losses in seawater arise principally from the salt-associated

conductivity. We consider an incident wave of frequency 1 MHz. We wish to find the

skin depth, wavelength, and phase velocity. In seawater, σ = 4 S/m, and ǫ′
r = 81.

6 This utility company operates at 60 Hz.
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Solution. We first evaluate the loss tangent, using the given data:

σ

ωǫ′ =
4

(2π × 106)(81)(8.85 × 10−12)
= 8.9 × 102 ≫ 1

Seawater is therefore a good conductor at 1 MHz (and at frequencies lower than this).

The skin depth is

δ =
1

√
π f µσ

=
1

√

(π × 106)(4π × 10−7)(4)
= 0.25 m = 25 cm

Now

λ = 2πδ = 1.6 m

and

νp = ωδ = (2π × 106)(0.25) = 1.6 × 106 m/sec

In free space, these values would have been λ = 300 m and of course ν = c.

With a 25-cm skin depth, it is obvious that radio frequency communication in

seawater is quite impractical. Notice, however, that δ varies as 1/
√

f , so that things

will improve at lower frequencies. For example, if we use a frequency of 10 Hz (in

the ELF, or extremely low frequency range), the skin depth is increased over that at

1 MHz by a factor of
√

106/10, so that

δ(10 Hz)
.= 80 m

The corresponding wavelength is λ = 2πδ
.= 500 m. Frequencies in the ELF range

were used for many years in submarine communications. Signals were transmitted

from gigantic ground-based antennas (required because the free-space wavelength

associated with 10 Hz is 3 × 107 m). The signals were then received by submarines,

from which a suspended wire antenna of length shorter than 500 m is sufficient. The

drawback is that signal data rates at ELF are slow enough that a single word can

take several minutes to transmit. Typically, ELF signals would be used to tell the

submarine to initiate emergency procedures, or to come near the surface in order to

receive a more detailed message via satellite.

We next turn our attention to finding the magnetic field, Hy , associated with Ex .

To do so, we need an expression for the intrinsic impedance of a good conductor. We

begin with Eq. (48), Section 11.2, with ǫ′′ = σ/ω,

η =

√

jωµ

σ + jωǫ′

Since σ ≫ ωǫ′, we have

η =
√

jωµ

σ
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which may be written as

η =
√

2 � 45◦

σδ
=

(1 + j)

σδ
(85)

Thus, if we write (80) in terms of the skin depth,

Ex = Ex0e−z/δ cos
(

ωt −
z
δ

)

(86)

then

Hy =
σδEx0√

2
e−z/δ cos

(

ωt −
z
δ

−
π

4

)

(87)

and we see that the maximum amplitude of the magnetic field intensity occurs one-

eighth of a cycle later than the maximum amplitude of the electric field intensity at

every point.

From (86) and (87) we may obtain the time-average Poynting vector by applying

(77),

〈Sz〉 =
1

2

σδE2
x0√

2
e−2z/δ cos

(π

4

)

or

〈Sz〉 =
1

4
σδE2

x0e−2z/δ

We again note that in a distance of one skin depth the power density is only e−2 =

0.135 of its value at the surface.

The total average power loss in a width 0 < y < b and length 0 < x < L in

the direction of the current, as shown in Figure 11.3, is obtained by finding the power

Figure 11.3 The current density Jx =

Jx0e−z/δe− j z/δ decreases in magnitude as the wave

propagates into the conductor. The average power

loss in the region 0 < x < L , 0 < y < b, z > 0,

is δbL J
2
x0/4σ watts.
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crossing the conductor surface within this area,

PL =
∫

area

〈Sz〉da =

∫ b

0

∫ L

0

1

4
σδE2

x0e−2z/δ
∣

∣

∣

z=0
dx dy =

1

4
σδbL E2

x0

In terms of the current density Jx0 at the surface,

Jx0 = σ Ex0

we have

PL =
1

4σ
δbL J 2

x0 (88)

Now let us see what power loss would result if the total current in a width b were

distributed uniformly in one skin depth. To find the total current, we integrate the

current density over the infinite depth of the conductor,

I =

∫ ∞

0

∫ b

0

Jx dy dz

where

Jx = Jx0e−z/δ cos
(

ωt −
z
δ

)

or in complex exponential notation to simplify the integration,

Jxs = Jx0e−z/δe− j z/δ

= Jx0e−(1+ j)z/δ

Therefore,

Is =

∫ ∞

0

∫ b

0

Jx0e−(1+ j)z/δdy dz

= Jx0be−(1+ j)z/δ −δ

1 + j

∣

∣

∣

∣

∞

0

=
Jx0bδ

1 + j
and

I =
Jx0bδ
√

2
cos

(

ωt −
π

4

)

If this current is distributed with a uniform density J ′ throughout the cross section

0 < y < b, 0 < z < δ, then

J ′ =
Jx0√

2
cos

(

ωt −
π

4

)

The ohmic power loss per unit volume is J ·E, and thus the total instantaneous power

dissipated in the volume under consideration is

PLi (t) =
1

σ
(J ′)2bLδ =

J 2
x0

2σ
bLδ cos2

(

ωt −
π

4

)
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The time-average power loss is easily obtained, since the average value of the cosine-

squared factor is one-half,

PL =
1

4σ
J 2

x0bLδ (89)

Comparing (88) and (89), we see that they are identical. Thus the average power

loss in a conductor with skin effect present may be calculated by assuming that the

total current is distributed uniformly in one skin depth. In terms of resistance, we may

say that the resistance of a width b and length L of an infinitely thick slab with skin

effect is the same as the resistance of a rectangular slab of width b, length L , and

thickness δ without skin effect, or with uniform current distribution.

We may apply this to a conductor of circular cross section with little error,

provided that the radius a is much greater than the skin depth. The resistance at

a high frequency where there is a well-developed skin effect is therefore found by

considering a slab of width equal to the circumference 2πa and thickness δ. Hence

R =
L

σ S
=

L
2πaσδ

(90)

A round copper wire of 1 mm radius and 1 km length has a resistance at direct

current of

Rdc =
103

π10−6(5.8 × 107)
= 5.48 


At 1 MHz, the skin depth is 0.066 mm. Thus δ ≪ a, and the resistance at 1 MHz is

found by (90),

R =
103

2π10−3(5.8 × 107)(0.066 × 10−3)
= 41.5 


D11.7. A steel pipe is constructed of a material for which µr = 180 and

σ = 4 × 106 S/m. The two radii are 5 and 7 mm, and the length is 75 m. If

the total current I (t) carried by the pipe is 8 cos ωt A, where ω = 1200π rad/s,

find: (a) the skin depth; (b) the effective resistance; (c) the dc resistance; (d)

the time-average power loss.

Ans. 0.766 mm; 0.557 
; 0.249 
; 17.82 W

11.5 WAVE POLARIZATION

In the previous sections, we have treated uniform plane waves in which the electric

and magnetic field vectors were assumed to lie in fixed directions. Specifically, with

the wave propagating along the z axis,Ewas taken to lie along x , which then required

H to lie along y. This orthogonal relationship between E, H, and S is always true for

a uniform plane wave. The directions of E and H within the plane perpendicular to az
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may change, however, as functions of time and position, depending on how the wave

was generated or on what type of medium it is propagating through. Thus a complete

description of an electromagnetic wave would not only include parameters such as

its wavelength, phase velocity, and power, but also a statement of the instantaneous

orientation of its field vectors. We define the wave polarization as the time-dependent

electric field vector orientation at a fixed point in space. A more complete character-

ization of a wave’s polarization would in fact include specifying the field orientation

at all points because some waves demonstrate spatial variations in their polarization.

Specifying only the electric field direction is sufficient, since magnetic field is readily

found from E using Maxwell’s equations.

In the waves we have previously studied, E was in a fixed straight orientation for

all times and positions. Such a wave is said to be linearly polarized. We have taken E
to lie along the x axis, but the field could be oriented in any fixed direction in the xy
plane and be linearly polarized. For positive z propagation, the wave would in general

have its electric field phasor expressed as

Es = (Ex0ax + Ey0ay)e−αze− jβz (91)

where Ex0 and Ey0 are constant amplitudes along x and y. The magnetic field is readily

found by determining its x and y components directly from those of Es . Specifically,

Hs for the wave of Eq. (91) is

Hs = [Hx0ax + Hy0ay] e−αze − jβz =
[

−
Ey0

η
ax +

Ex0

η
ay

]

e−αze− jβz (92)

The two fields are sketched in Figure 11.4. The figure demonstrates the reason

for the minus sign in the term involving Ey0 in Eq. (92). The direction of power flow,

given by E × H, is in the positive z direction in this case. A component of E in the

Figure 11.4 Electric and magnetic

field configuration for a general linearly

polarized plane wave propagating in

the forward z direction (out of the

page). Field components correspond

to those in Eqs. (91) and (92).
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positive y direction would require a component ofH in the negative x direction—thus

the minus sign. Using (91) and (92), the power density in the wave is found using (77):

〈Sz〉 =
1

2
Re{Es ×H∗

s } =
1

2
Re{Ex0 H∗

y0(ax × ay) + Ey0 H∗
x0(ay × ax )}e−2αz

=
1

2
Re

{

Ex0 E∗
x0

η∗
+

Ey0 E∗
y0

η∗

}

e−2αzaz

=
1

2
Re

{

1

η∗

}

(|Ex0|
2 + |Ey0|

2)e−2αzaz W/m2

This result demonstrates the idea that our linearly polarized plane wave can be con-

sidered as two distinct plane waves having x and y polarizations, whose electric fields

are combining in phase to produce the total E. The same is true for the magnetic field

components. This is a critical point in understanding wave polarization, in that any
polarization state can be described in terms of mutually perpendicular components
of the electric fiel and their relative phasing.

We next consider the effect of a phase difference, φ, between Ex0 and Ey0, where

φ < π/2. For simplicity, we will consider propagation in a lossless medium. The

total field in phasor form is

Es = (Ex0ax + Ey0e jφay)e− jβz (93)

Again, to aid in visualization, we convert this wave to real instantaneous form by

multiplying by e jωt and taking the real part:

E(z, t) = Ex0 cos(ωt − βz)ax + Ey0 cos(ωt − βz + φ)ay (94)

where we have assumed that Ex0 and Ey0 are real. Suppose we set t = 0, in which

case (94) becomes [using cos(−x) = cos(x)]

E(z, 0) = Ex0 cos(βz)ax + Ey0 cos(βz − φ)ay (95)

The component magnitudes of E(z, 0) are plotted as functions of z in Figure 11.5.

Since time is fixed at zero, the wave is frozen in position. An observer can move

along the z axis, measuring the component magnitudes and thus the orientation of the

total electric field at each point. Let’s consider a crest of Ex , indicated as point a in

Figure 11.5. If φ were zero, Ey would have a crest at the same location. Since φ is

not zero (and positive), the crest of Ey that would otherwise occur at point a is now

displaced to point b farther down z. The two points are separated by distance φ/β.

Ey thus lags behind Ex when we consider the spatial dimension.

Now suppose the observer stops at some location on the z axis, and time is

allowed to move forward. Both fields now move in the positive z direction, as (94)

indicates. But point b reaches the observer first, followed by point a. So we see that

Ey leads Ex when we consider the time dimension. In either case (fixed t and varying

z, or vice versa) the observer notes that the net field rotates about the z axis while

its magnitude changes. Considering a starting point in z and t , at which the field has

a given orientation and magnitude, the wave will return to the same orientation and
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Figure 11.5 Plots of the electric field component magnitudes in Eq. (95) as

functions of z. Note that the y component lags behind the x component in z.

As time increases from zero, both waves travel to the right, as per Eq. (94).

Thus, to an observer at a fixed location, the y component leads in time.

magnitude at a distance of one wavelength in z (for fixed t) or at a time t = 2π/ω

later (at a fixed z).

For illustration purposes, if we take the length of the field vector as a measure

of its magnitude, we find that at a fixed position, the tip of the vector traces out the

shape of an ellipse over time t = 2π/ω. The wave is said to be elliptically polarized.

Elliptical polarization is in fact the most general polarization state of a wave, since

it encompasses any magnitude and phase difference between Ex and Ey . Linear

polarization is a special case of elliptical polarization in which the phase difference

is zero.

Another special case of elliptical polarization occurs when Ex0 = Ey0 = E0 and

when φ = ±π/2. The wave in this case exhibits circular polarization. To see this,

we incorporate these restrictions into Eq. (94) to obtain

E(z, t) = E0[cos(ωt − βz)ax + cos(ωt − βz ± π/2)ay]

= E0[cos(ωt − βz)ax ∓ sin(ωt − βz)ay] (96)

If we consider a fixed position along z (such as z = 0) and allow time to vary, (96),

with φ = +π/2, becomes

E(0, t) = E0[cos(ωt)ax − sin(ωt)ay] (97)

If we choose −π/2 in (96), we obtain

E(0, t) = E0[cos(ωt)ax + sin(ωt)ay] (98)

The field vector of Eq. (98) rotates in the counterclockwise direction in the xy plane,

while maintaining constant amplitude E0, and so the tip of the vector traces out a

circle. Figure 11.6 shows this behavior.
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Figure 11.6 Electric field in the xy plane

of a right circularly polarized plane wave,

as described by Eq. (98). As the wave

propagates in the forward z direction, the

field vector rotates counterclockwise in the

xy plane.

Choosing +π/2 leads to (97), whose field vector rotates in the clockwise direction.

The handedness of the circular polarization is associated with the rotation and propa-

gation directions in the following manner: The wave exhibits left circular polarization
(l.c.p.) if, when orienting the left hand with the thumb in the direction of propagation,

the fingers curl in the rotation direction of the field with time. The wave exhibits right
circular polarization (r.c.p.) if, with the right-hand thumb in the propagation direc-

tion, the fingers curl in the field rotation direction.7 Thus, with forward z propagation,

(97) describes a left circularly polarized wave, and (98) describes a right circularly

polarized wave. The same convention is applied to elliptical polarization, in which

the descriptions left elliptical polarization and right elliptical polarization are used.

Using (96), the instantaneous angle of the field from the x direction can be found

for any position along z through

θ (z, t) = tan−1

(
Ey

Ex

)

= tan−1

(
∓sin(ωt − βz)

cos(ωt − βz)

)

= ∓(ωt − βz) (99)

where again the minus sign (yielding l.c.p. for positive z travel) applies for the choice

of φ = +π/2 in (96); the plus sign (yielding r.c.p. for positive z travel) is used if

7 This convention is reversed by some workers (most notably in optics) who emphasize the importance

of the spatial field configuration. Note that r.c.p. by our definition is formed by propagating a spatial

field that is in the shape of a left-handed screw, and for that reason it is sometimes called left circular

polarization (see Figure 11.7). Left circular polarization as we define it results from propagating a

spatial field in the shape of a right-handed screw, and it is called right circular polarization by the

spatial enthusiasts. Caution is obviously necessary in interpreting what is meant when polarization

handedness is stated in an unfamiliar text.
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Figure 11.7 Representation of a right circularly polarized wave. The electric

field vector (in white) will rotate toward the y axis as the entire wave moves

through the xy plane in the direction of k. This counterclockwise rotation (when

looking toward the wave source) satisfies the temporal right-handed rotation

convention as described in the text. The wave, however, appears as a

left-handed screw, and for this reason it is called left circular polarization in the

other convention.

φ = −π/2. If we choose z = 0, the angle becomes simply ωt , which reaches 2π

(one complete rotation) at time t = 2π/ω. If we choose t = 0 and allow z to vary, we

form a corkscrew-like field pattern. One way to visualize this is to consider a spiral

staircase–shaped pattern, in which the field lines (stairsteps) are perpendicular to the z
(or staircase) axis. The relationship between this spatial field pattern and the resulting

time behavior at fixed z as the wave propagates is shown in an artist’s conception in

Figure 11.7.

The handedness of the polarization is changed by reversing the pitch of the

corkscrew pattern. The spiral staircase model is only a visualization aid. It must be

remembered that the wave is still a uniform plane wave whose fields at any position

along z are infinite in extent over the transverse plane.

There are many uses of circularly polarized waves. Perhaps the most obvious

advantage is that reception of a wave having circular polarization does not depend

on the antenna orientation in the plane normal to the propagation direction. Dipole

antennas, for example, are required to be oriented along the electric field direction

of the signal they receive. If circularly polarized signals are transmitted, the receiver

orientation requirements are relaxed considerably. In optics, circularly polarized light
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can be passed through a polarizer of any orientation, thus yielding linearly polarized

light in any direction (although one loses half the original power this way). Other

uses involve treating linearly polarized light as a superposition of circularly polarized

waves, to be described next.

Circularly polarized light can be generated using an anisotropic medium—a

material whose permittivity is a function of electric field direction. Many crystals

have this property. A crystal orientation can be found such that along one direction

(say, the x axis), the permittivity is lowest, while along the orthogonal direction

(y axis), the permittivity is highest. The strategy is to input a linearly polarized wave

with its field vector at 45 degrees to the x and y axes of the crystal. It will thus have

equal-amplitude x and y components in the crystal, and these will now propagate in

the z direction at different speeds. A phase difference (or retardation) accumulates

between the components as they propagate, which can reach π/2 if the crystal is long

enough. The wave at the output thus becomes circularly polarized. Such a crystal, cut

to the right length and used in this manner, is called a quarter-wave plate, since it

introduces a relative phase shift of π/2 between Ex and Ey , which is equivalent to λ/4.

It is useful to express circularly polarized waves in phasor form. To do this, we

note that (96) can be expressed as

E(z, t) = Re
{

E0e jωt e− jβz[ax + e± jπ/2ay
]}

Using the fact that e± jπ/2 = ± j , we identify the phasor form as:

Es = E0(ax ± jay)e− jβz (100)

where the plus sign is used for left circular polarization and the minus sign for right

circular polarization. If the wave propagates in the negative z direction, we have

Es = E0(ax ± jay)e+ jβz (101)

where in this case the positive sign applies to right circular polarization and the minus

sign to left circular polarization. The student is encouraged to verify this.

EXAMPLE 11.7

Let us consider the result of superimposing left and right circularly polarized fields

of the same amplitude, frequency, and propagation direction, but where a phase shift

of δ radians exists between the two.

Solution. Taking the waves to propagate in the +z direction, and introducing a

relative phase, δ, the total phasor field is found, using (100):

EsT = Es R + EsL = E0[ax − jay]e− jβz + E0[ax + jay]e− jβze jδ

Grouping components together, this becomes

EsT = E0[(1 + e jδ)ax − j(1 − e jδ)ay]e− jβz

Factoring out an overall phase term, e jδ/2, we obtain

EsT = E0e jδ/2
[

(e− jδ/2 + e jδ/2)ax − j(e− jδ/2 − e jδ/2)ay
]

e− jβz
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From Euler’s identity, we find that e jδ/2 + e− jδ/2 = 2 cos δ/2, and e jδ/2 − e− jδ/2 =
2 j sin δ/2. Using these relations, we obtain

EsT = 2E0[cos(δ/2)ax + sin(δ/2)ay]e− j(βz−δ/2) (102)

We recognize (102) as the electric field of a linearly polarized wave, whose field

vector is oriented at angle δ/2 from the x axis.

Example 11.7 shows that any linearly polarized wave can be expressed as the

sum of two circularly polarized waves of opposite handedness, where the linear po-

larization direction is determined by the relative phase difference between the two

waves. Such a representation is convenient (and necessary) when considering, for

example, the propagation of linearly polarized light through media which contain

organic molecules. These often exhibit spiral structures having left- or right-handed

pitch, and they will thus interact differently with left- or right-hand circular polar-

ization. As a result, the left circular component can propagate at a different speed

than the right circular component, and so the two waves will accumulate a phase

difference as they propagate. As a result, the direction of the linearly polarized field

vector at the output of the material will differ from the direction that it had at the

input. The extent of this rotation can be used as a measurement tool to aid in material

studies.

Polarization issues will become extremely important when we consider wave

reflection in Chapter 12.
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CHAPTER 11 PROBLEMS

11.1 Show that Exs = Ae j(k0z+φ) is a solution of the vector Helmholtz equation,

Eq. (30), for k0 = ω
√

µ0ǫ0 and any φ and A.

11.2 A 10 GHz uniform plane wave propagates in a lossless medium for which

ǫr = 8 and µr = 2. Find (a) νp; (b) β; (c) λ; (d) Es ; (e) Hs ; ( f ) 〈S〉.

11.3 An H field in free space is given as H(x, t) = 10 cos(108t − βx)ay A/m.

Find (a) β; (b) λ; (c) E(x, t) at P(0.1, 0.2, 0.3) at t = 1 ns.

11.4 Small antennas have low efficiencies (as will be seen in Chapter 14), and the

efficiency increases with size up to the point at which a critical dimension of
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the antenna is an appreciable fraction of a wavelength, say λ/8. (a) An

antenna that is 12 cm long is operated in air at 1 MHz. What fraction of a

wavelength long is it? (b) The same antenna is embedded in a ferrite

material for which ǫr = 20 and µr = 2, 000. What fraction of a wavelength

is it now?

11.5 A 150 MHz uniform plane wave in free space is described by Hs =
(4 + j10)(2ax + jay)e− jβz A/m. (a) Find numerical values for ω, λ, and β.

(b) Find H(z, t) at t = 1.5 ns, z = 20 cm. (c) What is |E |max?

11.6 A uniform plane wave has electric field

Es = (Ey0 ay − Ez0 az) e−αx e− jβx V/m. The intrinsic impedance of the

medium is given as η = |η| e jφ , where φ is a constant phase. (a) Describe

the wave polarization and state the direction of propagation. (b) Find Hs . (c)

Find E(x, t) and H(x, t). (d) Find < S > in W/m2. (e) Find the

time-average power in watts that is intercepted by an antenna of rectangular

cross-section, having width w and height h, suspended parallel to the yz
plane, and at a distance d from the wave source.

11.7 The phasor magnetic field intensity for a 400 MHz uniform plane wave

propagating in a certain lossless material is (2ay − j5az)e− j25x A/m.

Knowing that the maximum amplitude of E is 1500 V/m, find β, η, λ, νp,

ǫr , µr , and H(x, y, z, t).

11.8 An electric field in free space is given in spherical coordinates as

Es(r ) = E0(r )e− jkr aθ V/m. (a) Find Hs(r ) assuming uniform plane wave

behavior. (b) Find < S >. (c) Express the average outward power in watts

through a closed spherical shell of radius r , centered at the origin. (d)

Establish the required functional form of E0(r ) that will enable the power

flow in part c to be independent of radius. With this condition met, the given

field becomes that of an isotropic radiator in a lossless medium (radiating

equal power density in all directions).

11.9 A certain lossless material has µr = 4 and ǫr = 9. A 10-MHz uniform plane

wave is propagating in the ay direction with Ex0 = 400 V/m and Ey0 =
Ez0 = 0 at P(0.6, 0.6, 0.6) at t = 60 ns. Find (a) β, λ, νp, and η; (b) E(y, t);
(c) H(y, t).

11.10 In a medium characterized by intrinsic impedance η = |η|e jφ , a linearly

polarized plane wave propagates, with magnetic field given as Hs =
(H0yay + H0zaz)e−αx e− jβx . Find (a) Es ; (b) E(x, t); (c) H(x, t); (d) 〈S〉.

11.11 A 2 GHz uniform plane wave has an amplitude Ey0 = 1.4 kV/m at (0, 0, 0,

t = 0) and is propagating in the az direction in a medium where ǫ′′ = 1.6 ×
10−11 F/m, ǫ′ = 3.0 × 10−11 F/m, and µ = 2.5 µH/m. Find (a) Ey at

P(0, 0, 1.8 cm) at 0.2 ns; (b) Hx at P at 0.2 ns.

11.12 Describe how the attenuation coefficient of a liquid medium, assumed to be

a good conductor, could be determined through measurement of wavelength
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in the liquid at a known frequency. What restrictions apply? Could this

method be used to find the conductivity as well?

11.13 Let jk = 0.2 + j1.5 m−1 and η = 450 + j60 
 for a uniform plane

propagating in the az direction. If ω = 300 Mrad/s, find µ, ǫ′, and ǫ′′ for the

medium.

11.14 A certain nonmagnetic material has the material constants ǫ′
r = 2 and

ǫ′′/ǫ′ = 4 × 10−4 at ω = 1.5 Grad/s. Find the distance a uniform plane

wave can propagate through the material before (a) it is attenuated by 1 Np;

(b) the power level is reduced by one-half; (c) the phase shifts 360◦.

11.15 A 10 GHz radar signal may be represented as a uniform plane wave in a

sufficiently small region. Calculate the wavelength in centimeters and the

attenuation in nepers per meter if the wave is propagating in a nonmagnetic

material for which (a) ǫ′
r = 1 and ǫ′′

r = 0; (b) ǫ′
r = 1.04 and ǫ′′

r = 9.00 ×
10−4; (c) ǫ′

r = 2.5 and ǫ′′
r = 7.2.

11.16 Consider the power dissipation term,
∫

E · Jdv , in Poynting’s theorem (Eq.

(70)). This gives the power lost to heat within a volume into which

electromagnetic waves enter. The term pd = E · J is thus the power

dissipation per unit volume in W/m3. Following the same reasoning that

resulted in Eq. (77), the time-average power dissipation per volume will be

< pd >= (1/2)Re
{

Es · J∗
s
}

. (a) Show that in a conducting medium,

through which a uniform plane wave of amplitude E0 propagates in the

forward z direction, < pd >= (σ/2)|E0|2e−2αz . (b) Confirm this result for

the special case of a good conductor by using the left hand side of Eq. (70),

and consider a very small volume.

11.17 Let η = 250 + j30 
 and jk = 0.2 + j2m−1 for a uniform plane wave

propagating in the az direction in a dielectric having some finite

conductivity. If |Es | = 400 V/m at z = 0, find (a) 〈S〉 at z = 0 and z = 60

cm; (b) the average ohmic power dissipation in watts per cubic meter at

z = 60 cm.

11.18 Given a 100-MHz uniform plane wave in a medium known to be a good

dielectric, the phasor electric field is Es = 4e−0.5ze− j20zax V/m. Determine

(a) ǫ′; (b) ǫ′′; (c) η; (d) Hs ; (e) 〈S〉; ( f ) the power in watts that is incident

on a rectangular surface measuring 20 m × 30 m at z = 10 m.

11.19 Perfectly conducting cylinders with radii of 8 mm and 20 mm are coaxial.

The region between the cylinders is filled with a perfect dielectric for which

ǫ = 10−9/4π F/m and µr = 1. If E in this region is (500/ρ) cos(ωt − 4z)aρ

V/m, find (a) ω, with the help of Maxwell’s equations in cylindrical

coordinates; (b) H(ρ, z, t); (c) 〈S(ρ, z, t)〉; (d) the average power passing

through every cross section 8 < ρ < 20 mm, 0 < φ < 2π .

11.20 Voltage breakdown in air at standard temperature and pressure occurs at an

electric field strength of approximately 3 × 106 V/m. This becomes an issue
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in some high-power optical experiments, in which tight focusing of light

may be necessary. Estimate the lightwave power in watts that can be

focused into a cylindrical beam of 10µm radius before breakdown occurs.

Assume uniform plane wave behavior (although this assumption will

produce an answer that is higher than the actual number by as much as a

factor of 2, depending on the actual beam shape).

11.21 The cylindrical shell, 1 cm< ρ < 1.2 cm, is composed of a conducting

material for which σ = 106 S/m. The external and internal regions are

nonconducting. Let Hφ = 2000 A/m at ρ = 1.2 cm. Find (a) H
everywhere; (b) E everywhere; (c) 〈S〉 everywhere.

11.22 The inner and outer dimensions of a coaxial copper transmission line are

2 and 7 mm, respectively. Both conductors have thicknesses much greater

than δ. The dielectric is lossless and the operating frequency is 400 MHz.

Calculate the resistance per meter length of the (a) inner conductor;

(b) outer conductor; (c) transmission line.

11.23 A hollow tubular conductor is constructed from a type of brass having a

conductivity of 1.2 × 107 S/m. The inner and outer radii are 9 and 10 mm,

respectively. Calculate the resistance per meter length at a frequency of

(a) dc; (b) 20 MHz; (c) 2 GHz.

11.24 (a) Most microwave ovens operate at 2.45 GHz. Assume that σ = 1.2 ×

106 S/m and µr = 500 for the stainless steel interior, and find the depth of

penetration. (b) Let Es = 50� 0◦ V/m at the surface of the conductor, and

plot a curve of the amplitude of Es versus the angle of Es as the field

propagates into the stainless steel.

11.25 A good conductor is planar in form, and it carries a uniform plane wave that

has a wavelength of 0.3 mm and a velocity of 3 × 105 m/s. Assuming the

conductor is nonmagnetic, determine the frequency and the conductivity.

11.26 The dimensions of a certain coaxial transmission line are a = 0.8 mm and

b = 4 mm. The outer conductor thickness is 0.6 mm, and all conductors

have σ = 1.6 × 107 S/m. (a) Find R, the resistance per unit length at an

operating frequency of 2.4 GHz. (b) Use information from Sections 6.3 and

8.10 to find C and L , the capacitance and inductance per unit length,

respectively. The coax is air-filled. (c) Find α and β if

α + jβ =
√

jωC(R + jωL).

11.27 The planar surface z = 0 is a brass-Teflon interface. Use data available in

Appendix C to evaluate the following ratios for a uniform plane wave

having ω = 4 × 1010 rad/s: (a) αTef/αbrass; (b) λTef/λbrass; (c) vTef/νbrass.

11.28 A uniform plane wave in free space has electric field vector given by Es =
10e− jβxaz + 15e− jβxay V/m. (a) Describe the wave polarization.

(b) Find Hs . (c) Determine the average power density in the wave

in W/m2.
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11.29 Consider a left circularly polarized wave in free space that propagates in the

forward z direction. The electric field is given by the appropriate form of

Eq. (100). Determine (a) the magnetic field phasor, Hs ; (b) an expression

for the average power density in the wave in W/m2 by direct application of

Eq. (77).

11.30 In an anisotropic medium, permittivity varies with electric field direction,

and is a property seen in most crystals. Consider a uniform plane wave

propagating in the z direction in such a medium, and which enters the

material with equal field components along the x and y axes. The field

phasor will take the form:

Es(z) = E0(ax + ay e j�βz) e− jβz

where �β = βx − βy is the difference in phase constants for waves that are

linearly polarized in the x and y directions. Find distances into the material

(in terms of �β) at which the field is (a) linearly polarized and (b)

circularly polarized. (c) Assume intrinsic impedance η that is approximately

constant with field orientation and find Hs and < S >.

11.31 A linearly polarized uniform plane wave, propagating in the forward z
direction, is input to a lossless anisotropic material, in which the dielectric

constant encountered by waves polarized along y(ǫr y) differs from that seen

by waves polarized along x(ǫr x ). Suppose ǫr x = 2.15, ǫr y = 2.10, and the

wave electric field at input is polarized at 45◦ to the positive x and y axes.

(a) Determine, in terms of the free space wavelength, λ, the shortest length

of the material, such that the wave, as it emerges from the output, is

circularly polarized. (b) Will the output wave be right or left circularly

polarized? Problem 11.30 is good background.

11.32 Suppose that the length of the medium of Problem 11.31 is made to be twice
that determined in the problem. Describe the polarization of the output

wave in this case.

11.33 Given a wave for which Es = 15e− jβzax + 18e− jβze jφay V/m in a medium

characterized by complex intrinsic impedance, η (a) find Hs ; (b) determine

the average power density in W/m2.

11.34 Given a general elliptically polarized wave as per Eq. (93):

Es = [Ex0ax + Ey0e jφay]e− jβz

(a) Show, using methods similar to those of Example 11.7, that a linearly

polarized wave results when superimposing the given field and a phase-

shifted field of the form:

Es = [Ex0ax + Ey0e− jφay]e− jβze jδ

where δ is a constant. (b) Find δ in terms of φ such that the resultant wave is

linearly polarized along x .
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Plane Wave Reflection
and Dispersion

I
n Chapter 11, we learned how to mathematically represent uniform plane waves

as functions of frequency, medium properties, and electric field orientation. We

also learned how to calculate the wave velocity, attenuation, and power. In this

chapter we consider wave reflection and transmission at planar boundaries between

different media. Our study will allow any orientation between the wave and boundary

and will also include the important cases of multiple boundaries. We will also study

the practical case of waves that carry power over a finite band of frequencies, as

would occur, for example, in a modulated carrier. We will consider such waves in

dispersive media, in which some parameter that affects propagation (permittivity for

example) varies with frequency. The effect of a dispersive medium on a signal is of

great importance because the signal envelope will change its shape as it propagates.

As a result, detection and faithful representation of the original signal at the receiving

end become problematic. Consequently, dispersion and attenuation must both be

evaluated when establishing maximum allowable transmission distances. ■

12.1 REFLECTION OF UNIFORM PLANE
WAVES AT NORMAL INCIDENCE

We first consider the phenomenon of reflection which occurs when a uniform plane

wave is incident on the boundary between regions composed of two different materials.

The treatment is specialized to the case of normal incidence—in which the wave

propagation direction is perpendicular to the boundary. In later sections, we remove

this restriction. Expressions will be found for the wave that is reflected from the inter-

face and for that which is transmitted from one region into the other. These results are

directly related to impedance-matching problems in ordinary transmission lines, as

we have already encountered in Chapter 10. They are also applicable to waveguides,

which we will study in Chapter 13.

406
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Figure 12.1 A plane wave incident

on a boundary establishes reflected and

transmitted waves having the indicated

propagation directions. All fields are

parallel to the boundary, with electric

fields along x and magnetic fields

along y.

We again assume that we have only a single vector component of the electric field

intensity. Referring to Figure 12.1, we define region 1 (ǫ1, µ1) as the half-space for

which z < 0; region 2 (ǫ2, µ2) is the half-space for which z > 0. Initially we establish

a wave in region 1, traveling in the +z direction, and linearly polarized along x .

E
+
x1(z, t) = E+

x10e−α1z cos(ωt − β1z)

In phasor form, this is

E+
xs1(z) = E+

x10e− jkz (1)

where we take E+
x10 as real. The subscript 1 identifies the region, and the superscript +

indicates a positively traveling wave. Associated with E+
xs1(z) is a magnetic field in

the y direction,

H+
ys1(z) =

1

η1

E+
x10 e− jk1z (2)

where k1 and η1 are complex unless ǫ′′
1 (or σ1) is zero. This uniform plane wave in

region l that is traveling toward the boundary surface at z = 0 is called the incident
wave. Since the direction of propagation of the incident wave is perpendicular to the

boundary plane, we describe it as normal incidence.

We now recognize that energy may be transmitted across the boundary surface at

z = 0 into region 2 by providing a wave moving in the +z direction in that medium.

The phasor electric and magnetic fields for this wave are

E+
xs2(z) = E+

x20 e− jk2z (3)

H+
ys2(z) =

1

η2

E+
x20 e− jk2z (4)
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This wave, which moves away from the boundary surface into region 2, is called the

transmitted wave. Note the use of the different propagation constant k2 and intrinsic

impedance η2.

Now we must satisfy the boundary conditions at z = 0 with these assumed fields.

With E polarized along x , the field is tangent to the interface, and therefore the E
fields in regions l and 2 must be equal at z = 0. Setting z = 0 in (1) and (3) would

require that E+
x10 = E+

x20. H, being y-directed, is also a tangential field, and must be

continuous across the boundary (no current sheets are present in real media). When

we let z = 0 in (2) and (4), we find that we must have E+
x10/η1 = E+

x20/η2. Since

E+
x10 = E+

x20, then η1 = η2. But this is a very special condition that does not fit the

facts in general, and we are therefore unable to satisfy the boundary conditions with

only an incident and a transmitted wave. We require a wave traveling away from the

boundary in region 1, as shown in Figure 12.1; this is the reflecte wave,

E−
xs1(z) = E−

x10 e jk1z (5)

H−
xs1(z) = −

E−
x10

η1

e jk1z (6)

where E−
x10 may be a complex quantity. Because this field is traveling in the −z

direction, E−
xs1 = −η1 H−

ys1 for the Poynting vector shows that E−
1 × H−

1 must be in

the −az direction.

The boundary conditions are now easily satisfied, and in the process the ampli-

tudes of the transmitted and reflected waves may be found in terms of E+
x10. The total

electric field intensity is continuous at z = 0,

Exs1 = Exs2 (z = 0)

or

E+
xs1 + E−

xs1 = E+
xs2 (z = 0)

Therefore

E+
x10 + E−

x10 = E+
x20 (7)

Furthermore,

Hys1 = Hys2 (z = 0)

or

H+
ys1 + H−

ys1 = H+
ys2 (z = 0)

and therefore

E+
x10

η1

−
E−

x10

η1

=
E+

x20

η2

(8)

Solving (8) for E+
x20 and substituting into (7), we find

E+
x10 + E−

x10 =
η2

η1

E+
x10 −

η2

η1

E−
x10
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or

E−
x10 = E+

x10

η2 − η1

η2 + η1

The ratio of the amplitudes of the reflected and incident electric fields defines the

reflectio coefficient designated by Ŵ,

Ŵ =
E−

x10

E+
x10

=
η2 − η1

η2 + η1

= |Ŵ|e jφ (9)

It is evident that as η1 or η2 may be complex, Ŵ will also be complex, and so we

include a reflective phase shift, φ. The interpretation of Eq. (9) is identical to that

used with transmission lines [Eq. (73), Chapter 10].

The relative amplitude of the transmitted electric field intensity is found by

combining (9) and (7) to yield the transmission coefficient τ ,

τ =
E+

x20

E+
x10

=
2η2

η1 + η2

= 1 + Ŵ = |τ |e jφi (10)

whose form and interpretation are consistent with the usage in transmission lines

[Eq. (75), Chapter 10].

Let us see how these results may be applied to several special cases. We first let

region 1 be a perfect dielectric and region 2 be a perfect conductor. Then we apply

Eq. (48), Chapter 11, with ǫ′′
2 = σ2/ω, obtaining

η2 =

√

jωµ2

σ2 + jωǫ′
2

= 0

in which zero is obtained since σ2 → ∞. Therefore, from (10),

E+
x20 = 0

No time-varying fields can exist in the perfect conductor. An alternate way of looking

at this is to note that the skin depth is zero.

Because η2 = 0, Eq. (9) shows that

Ŵ = −1

and

E+
x10 = −E−

x10

The incident and reflected fields are of equal amplitude, and so all the incident

energy is reflected by the perfect conductor. The fact that the two fields are of opposite

sign indicates that at the boundary (or at the moment of reflection), the reflected field

is shifted in phase by 180◦ relative to the incident field. The total E field in region 1 is

Exs1 = E+
xs1 + E−

xs1

= E+
x10 e− jβ1z − E+

x10 e jβ1z
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where we have let jk1 = 0 + jβ1 in the perfect dielectric. These terms may be

combined and simplified,

Exs1 = (e− jβ1z − e jβ1z) E+
x10

= − j2 sin(β1z) E+
x10 (11)

Multiplying (11) by e jωt and taking the real part, we obtain the real instantaneous

form:

Ex1(z, t) = 2E+
x10 sin(β1z) sin(ωt) (12)

We recognize this total field in region 1 as a standing wave, obtained by combining

two waves of equal amplitude traveling in opposite directions. We first encountered

standing waves in transmission lines, but in the form of counterpropagating voltage

waves (see Example 10.1).

Again, we compare the form of (12) to that of the incident wave,

Ex1(z, t) = E+
x10 cos(ωt − β1z) (13)

Here we see the term ωt − β1z or ω(t − z/νp1), which characterizes a wave traveling

in the +z direction at a velocity νp1 = ω/β1. In (12), however, the factors involving

time and distance are separate trigonometric terms. Whenever ωt = mπ, Ex1 is zero

at all positions. On the other hand, spatial nulls in the standing wave pattern occur

for all times wherever β1z = mπ , which in turn occurs when m = (0, ±1, ±2, . . .).

In such cases,

2π

λ1

z = mπ

and the null locations occur at

z = m
λ1

2

Thus Ex1 = 0 at the boundary z = 0 and at every half-wavelength from the boundary

in region 1, z < 0, as illustrated in Figure 12.2.

Because E+
xs1 = η1 H+

ys1 and E−
xs1 = −η1 H−

ys1, the magnetic field is

Hys1 =
E+

x10

η1

(e− jβ1z + e jβ1z)

or

Hy1(z, t) = 2
E+

x10

η1

cos(β1z) cos(ωt) (14)

This is also a standing wave, but it shows a maximum amplitude at the positions

where Ex1 = 0. It is also 90◦ out of time phase with Ex1 everywhere. As a result, the

average power as determined through the Poynting vector [Eq. (77), Chapter 11] is

zero in the forward and backward directions.

Let us now consider perfect dielectrics in both regions 1 and 2; η1 and η2 are

both real positive quantities and α1 = α2 = 0. Equation (9) enables us to calculate
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Figure 12.2 The instantaneous values of the total field Ex1 are shown at

t = π/2. Ex1 = 0 for all time at multiples of one half-wavelength from the

conducting surface.

the reflection coefficient and find E−
x1 in terms of the incident field E+

x1. Knowing E+
x1

and E−
x1, we then find H+

y1 and H−
y1. In region 2, E+

x2 is found from (10), and this then

determines H+
y2.

EXAMPLE 12.1

As a numerical example we select

η1 = 100 


η2 = 300 


E+
x10 = 100 V/m

and calculate values for the incident, reflected, and transmitted waves.

Solution. The reflection coefficient is

Ŵ =
300 − 100

300 + 100
= 0.5

and thus

E−
x10 = 50 V/m
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The magnetic field intensities are

H+
y10 =

100

100
= 1.00 A/m

H−
y10 = −

50

100
= −0.50 A/m

Using Eq. (77) from Chapter 11, we find that the magnitude of the average incident

power density is

〈S1i 〉 =
∣

∣

∣

∣

1

2
Re{Es ×H∗

s }
∣

∣

∣

∣

=
1

2
E+

x10 H+
y10 = 50 W/m2

The average reflected power density is

〈S1r 〉 = −
1

2
E−

x10 H−
y10 = 12.5 W/m2

In region 2, using (10),

E+
x20 = τ E+

x10 = 150 V/m

and

H+
y20 =

150

300
= 0.500 A/m

Therefore, the average power density that is transmitted through the boundary into

region 2 is

〈S2〉 =
1

2
E+

x20 H+
y20 = 37.5 W/m2

We may check and confirm the power conservation requirement:

〈S1i 〉 = 〈S1r 〉 + 〈S2〉

A general rule on the transfer of power through reflection and transmission can

be formulated. We consider the same field vector and interface orientations as before,

but allow for the case of complex impedances. For the incident power density, we have

〈S1i 〉 =
1

2
Re

{

E+
xs1 H+∗

ys1

}

=
1

2
Re

{

E+
x10

1

η∗
1

E+∗
x10

}

=
1

2
Re

{

1

η∗
1

}

∣

∣E+
x10

∣

∣

2

The reflected power density is then

〈S1r 〉 = −
1

2
Re

{

E−
xs1 H−∗

ys1

}

=
1

2
Re

{

ŴE+
x10

1

η∗
1

Ŵ∗E+∗
x10

}

=
1

2
Re

{

1

η∗
1

}

∣

∣E+
x10

∣

∣

2|Ŵ|2

We thus find the general relation between the reflected and incident power:

〈S1r 〉 = |Ŵ|2〈S1i 〉 (15)

In a similar way, we find the transmitted power density:

〈S2〉 =
1

2
Re

{

E+
xs2 H+∗

ys2

}

=
1

2
Re

{

τ E+
x10

1

η∗
2

τ ∗E+∗
x10

}

=
1

2
Re

{

1

η∗
2

}

∣

∣E+
x10

∣

∣

2|τ |2
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and so we see that the incident and transmitted power densities are related through

〈S2〉 =
Re

{

1/η∗
2

}

Re
{

1/η∗
1

} |τ |2〈S1i 〉 =
∣

∣

∣

∣

η1

η2

∣

∣

∣

∣

2 (

η2 + η∗
2

η1 + η∗
1

)

|τ |2〈S1i 〉 (16)

Equation (16) is a relatively complicated way to calculate the transmitted power,

unless the impedances are real. It is easier to take advantage of energy conservation

by noting that whatever power is not reflected must be transmitted. Eq. (15) can be used

to find

〈S2〉 = (1 − |Ŵ|2)〈S1i 〉 (17)

As would be expected (and which must be true), Eq. (17) can also be derived from

Eq. (16).

D12.1. A 1-MHz uniform plane wave is normally incident onto a freshwater

lake (ǫ′
r = 78, ǫ′′

r = 0, µr = 1). Determine the fraction of the incident power

that is (a) reflected and (b) transmitted. (c) Determine the amplitude of the

electric field that is transmitted into the lake.

Ans. 0.63; 0.37; 0.20 V/m

12.2 STANDING WAVE RATIO

In cases where |Ŵ| < 1, some energy is transmitted into the second region and some is

reflected. Region 1 therefore supports a field that is composed of both a traveling wave

and a standing wave. We encountered this situation previously in transmission lines, in

which partial reflection occurs at the load. Measurements of the voltage standing wave

ratio and the locations of voltage minima or maxima enabled the determination of an

unknown load impedance or established the extent to which the load impedance was

matched to that of the line (Section 10.10). Similar measurements can be performed

on the field amplitudes in plane wave reflection.

Using the same fields investigated in the previous section, we combine the in-

cident and reflected electric field intensities. Medium 1 is assumed to be a perfect

dielectric (α1 = 0), but region 2 may be any material. The total electric field phasor

in region 1 will be

Ex1T = E+
x1 + E−

x1 = E+
x10e− jβ1z + ŴE+

x10e jβ1z (18)

where the reflection coefficient is as expressed in (9):

Ŵ =
η2 − η1

η2 + η1

= |Ŵ|e jφ

We allow for the possibility of a complex reflection coefficient by including its phase,

φ. This is necessary because although η1 is real and positive for a lossless medium,
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η2 will in general be complex. Additionally, if region 2 is a perfect conductor, η2 is

zero, and so φ is equal to π ; if η2 is real and less than η1, φ is also equal to π ; and if

η2 is real and greater than η1, φ is zero.

Incorporating the phase of Ŵ into (18), the total field in region 1 becomes

Ex1T =
(

e− jβ1z + |Ŵ|e j(β1z+φ)
)

E+
x10 (19)

The maximum and minimum field amplitudes in (19) are z-dependent and are subject

to measurement. Their ratio, as found for voltage amplitudes in transmission lines

(Section 10.10), is the standing wave ratio, denoted by s. We have a maximum when

each term in the larger parentheses in (19) has the same phase angle; so, for E+
x10

positive and real,

|Ex1T |max = (1 + |Ŵ|)E+
x10 (20)

and this occurs where

−β1z = β1z + φ + 2mπ (m = 0, ±1, ±2, . . .) (21)

Therefore

zmax = −
1

2β1

(φ + 2mπ ) (22)

Note that an electric field maximum is located at the boundary plane (z = 0) if φ = 0;

moreover, φ = 0 when Ŵ is real and positive. This occurs for real η1 and η2 when

η2 > η1. Thus there is a field maximum at the boundary surface when the intrinsic

impedance of region 2 is greater than that of region 1 and both impedances are real.

With φ = 0, maxima also occur at zmax = −mπ/β1 = −mλ1/2.

For the perfect conductor φ = π , and these maxima are found at zmax = −π/

(2β1), −3π/(2β1), or zmax = −λ1/4, −3λ1/4, and so forth.

The minima must occur where the phase angles of the two terms in the larger

parentheses in (19) differ by 180◦, thus

|Ex1T |min = (1 − |Ŵ|)E+
x10 (23)

and this occurs where

−β1z = β1z + φ + π + 2mπ (m = 0, ±1, ±2, . . .) (24)

or

zmin = −
1

2β1

(φ + (2m + 1)π ) (25)

The minima are separated by multiples of one half-wavelength (as are the maxima),

and for the perfect conductor the first minimum occurs when −β1z = 0, or at the

conducting surface. In general, an electric field minimum is found at z = 0 whenever

φ = π ; this occurs if η2 < η1 and both are real. The results are mathematically

identical to those found for the transmission line study in Section 10.10. Figure 10.6

in that chapter provides a visualization.
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Further insights can be obtained by working with Eq. (19) and rewriting it in real

instantaneous form. The steps are identical to those taken in Chapter 10, Eqs. (81)

through (84). We find the total field in region 1 to be

Ex1T (z, t) = (1 − |Ŵ|)E+
x10 cos(ωt − β1z)

︸ ︷︷ ︸

traveling wave

+ 2|Ŵ|E+
x10 cos(β1z + φ/2) cos(ωt + φ/2)

︸ ︷︷ ︸

standing wave

(26)

The field expressed in Eq. (26) is the sum of a traveling wave of amplitude

(1 − |Ŵ|)E+
x10 and a standing wave having amplitude 2|Ŵ|E+

x10. The portion of the in-

cident wave that reflects and back-propagates in region 1 interferes with an equivalent

portion of the incident wave to form a standing wave. The rest of the incident wave

(that does not interfere) is the traveling wave part of (26). The maximum amplitude

observed in region 1 is found where the amplitudes of the two terms in (26) add

directly to give (1 + |Ŵ|)E+
x10. The minimum amplitude is found where the standing

wave achieves a null, leaving only the traveling wave amplitude of (1−|Ŵ|)E+
x10. The

fact that the two terms in (26) combine in this way with the proper phasing can be

confirmed by substituting zmax and zmin, as given by (22) and (25).

EXAMPLE 12.2

To illustrate some of these results, let us consider a 100-V/m, 3-GHz wave that is

propagating in a material having ǫ′
r1 = 4, µr1 = 1, and ǫ′′

r = 0. The wave is normally

incident on another perfect dielectric in region 2, z > 0, where ǫ′
r2 = 9 and µr2 = 1

(Figure 12.3). We seek the locations of the maxima and minima of E.

Figure 12.3 An incident wave, E +
xs1 =

100e− j 40πz V/m, is reflected with a reflection

coefficient Ŵ = −0.2. Dielectric 2 is infinitely thick.
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Solution. We calculate ω = 6π × 109 rad/s, β1 = ω
√

µ1ǫ1 = 40π rad/m, and

β2 = ω
√

µ2ǫ2 = 60π rad/m. Although the wavelength would be 10 cm in air,

we find here that λ1 = 2π/β1 = 5 cm, λ2 = 2π/β2 = 3.33 cm, η1 = 60π 
,

η2 = 40π 
, and Ŵ = (η2 − η1)/(η2 + η1) = −0.2. Because Ŵ is real and negative

(η2 < η1), there will be a minimum of the electric field at the boundary, and it will be

repeated at half-wavelength (2.5 cm) intervals in dielectric l. From (23), we see that

|Ex1T |min = 80 V/m.

Maxima of E are found at distances of 1.25, 3.75, 6.25, . . . cm from z = 0.

These maxima all have amplitudes of 120 V/m, as predicted by (20).

There are no maxima or minima in region 2 because there is no reflected wave

there.

The ratio of the maximum to minimum amplitudes is the standing wave ratio:

s =
|Ex1T |max

|Ex1T |min

=
1 + |Ŵ|
1 − |Ŵ|

(27)

Because |Ŵ| < 1, s is always positive and greater than or equal to unity. For the

preceding example,

s =
1 + |−0.2|
1 − |−0.2|

=
1.2

0.8
= 1.5

If |Ŵ| = 1, the reflected and incident amplitudes are equal, all the incident energy

is reflected, and s is infinite. Planes separated by multiples of λ1/2 can be found on

which Ex1 is zero at all times. Midway between these planes, Ex1 has a maximum

amplitude twice that of the incident wave.

If η2 = η1, then Ŵ = 0, no energy is reflected, and s = 1; the maximum and

minimum amplitudes are equal.

If one-half the incident power is reflected, |Ŵ|2 = 0.5, |Ŵ| = 0.707, and s = 5.83.

D12.2. What value of s results when Ŵ = ±1/2?

Ans. 3

Because the standing wave ratio is a ratio of amplitudes, the relative amplitudes,

as measured by a probe, permit its use to determine s experimentally.

EXAMPLE 12.3

A uniform plane wave in air partially reflects from the surface of a material whose

properties are unknown. Measurements of the electric field in the region in front of the

interface yield a 1.5-m spacing between maxima, with the first maximum occurring

0.75 m from the interface. A standing wave ratio of 5 is measured. Determine the

intrinsic impedance, ηu , of the unknown material.
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Solution. The 1.5 m spacing between maxima is λ/2, which implies that a wave-

length is 3.0 m, or f = 100 MHz. The first maximum at 0.75 m is thus at a distance

of λ/4 from the interface, which means that a field minimum occurs at the boundary.

Thus Ŵ will be real and negative. We use (27) to write

|Ŵ| =
s − 1

s + 1
=

5 − 1

5 + 1
=

2

3

So

Ŵ = −
2

3
=

ηu − η0

ηu + η0

which we solve for ηu to obtain

ηu =
1

5
η0 =

377

5
= 75.4 


12.3 WAVE REFLECTION FROM
MULTIPLE INTERFACES

So far we have treated the reflection of waves at the single boundary that occurs be-

tween semi-infinite media. In this section, we consider wave reflection from materials

that are finite in extent, such that we must consider the effect of the front and back

surfaces. Such a two-interface problem would occur, for example, for light incident

on a flat piece of glass. Additional interfaces are present if the glass is coated with

one or more layers of dielectric material for the purpose (as we will see) of reducing

reflections. Such problems in which more than one interface is involved are frequently

encountered; single-interface problems are in fact more the exception than the rule.

Consider the general situation shown in Figure 12.4, in which a uniform plane

wave propagating in the forward z direction is normally incident from the left onto

the interface between regions 1 and 2; these have intrinsic impedances η1 and η2. A

third region of impedance η3 lies beyond region 2, and so a second interface exists

between regions 2 and 3. We let the second interface location occur at z = 0, and so

all positions to the left will be described by values of z that are negative. The width

of the second region is l, so the first interface will occur at position z = −l.
When the incident wave reaches the first interface, events occur as follows: A

portion of the wave reflects, while the remainder is transmitted, to propagate toward

the second interface. There, a portion is transmitted into region 3, while the rest

reflects and returns to the first interface; there it is again partially reflected. This

reflected wave then combines with additional transmitted energy from region 1, and

the process repeats. We thus have a complicated sequence of multiple reflections

that occur within region 2, with partial transmission at each bounce. To analyze the

situation in this way would involve keeping track of a very large number of reflections;

this would be necessary when studying the transient phase of the process, where the

incident wave first encounters the interfaces.

If the incident wave is left on for all time, however, a steady-state situation is

eventually reached, in which (1) an overall fraction of the incident wave is reflected
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in

Figure 12.4 Basic two-interface problem, in

which the impedances of regions 2 and 3, along with

the finite thickness of region 2, are accounted for in

the input impedance at the front surface, ηin.

from the two-interface configuration and back-propagates in region 1 with a definite

amplitude and phase; (2) an overall fraction of the incident wave is transmitted through

the two interfaces and forward-propagates in the third region; (3) a net backward wave

exists in region 2, consisting of all reflected waves from the second interface; and

(4) a net forward wave exists in region 2, which is the superposition of the transmitted

wave through the first interface and all waves in region 2 that have reflected from

the first interface and are now forward-propagating. The effect of combining many

co-propagating waves in this way is to establish a single wave which has a definite

amplitude and phase, determined through the sums of the amplitudes and phases of all

the component waves. In steady state, we thus have a total of five waves to consider.

These are the incident and net reflected waves in region 1, the net transmitted wave

in region 3, and the two counterpropagating waves in region 2.

The situation is analyzed in the same manner as that used in the analysis of

finite-length transmission lines (Section 10.11). Let us assume that all regions are

composed of lossless media, and consider the two waves in region 2. If we take these

as x-polarized, their electric fields combine to yield

Exs2 = E+
x20 e− jβ2z + E−

x20 e jβ2z (28a)

where β2 = ω
√

ǫr2/c, and where the amplitudes, E+
x20 and E−

x20, are complex. The

y-polarized magnetic field is similarly written, using complex amplitudes:

Hys2 = H+
y20 e− jβ2z + H−

y20 e jβ2z (28b)

We now note that the forward and backward electric field amplitudes in region 2 are

related through the reflection coefficient at the second interface, Ŵ23, where

Ŵ23 =
η3 − η2

η3 + η2

(29)
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We thus have

E−
x20 = Ŵ23 E+

x20 (30)

We then write the magnetic field amplitudes in terms of electric field amplitudes

through

H+
y20 =

1

η2

E+
x20 (31a)

and

H−
y20 = −

1

η2

E−
x20 = −

1

η2

Ŵ23 E+
x20 (31b)

We now define the wave impedance, ηw , as the z-dependent ratio of the total elec-

tric field to the total magnetic field. In region 2, this becomes, using (28a) and (28b),

ηw (z) =
Exs2

Hys2

=
E+

x20e− jβ2z + E−
x20e jβ2z

H+
y20e− jβ2z + H−

y20e jβ2z

Then, using (30), (31a), and (31b), we obtain

ηw (z) = η2

[
e− jβ2z + Ŵ23e jβ2z

e− jβ2z − Ŵ23e jβ2z

]

Now, using (29) and Euler’s identity, we have

ηw (z) = η2 ×
(η3 + η2)(cos β2z − j sin β2z) + (η3 − η2)(cos β2z + j sin β2z)

(η3 + η2)(cos β2z − j sin β2z) − (η3 − η2)(cos β2z + j sin β2z)

This is easily simplified to yield

ηw (z) = η2

η3 cos β2z − jη2 sin β2z
η2 cos β2z − jη3 sin β2z

(32)

We now use the wave impedance in region 2 to solve our reflection problem. Of

interest to us is the net reflected wave amplitude at the first interface. Since tangential

E and H are continuous across the boundary, we have

E+
xs1 + E−

xs1 = Exs2 (z = −l) (33a)

and

H+
ys1 + H−

ys1 = Hys2 (z = −l) (33b)

Then, in analogy to (7) and (8), we may write

E+
x10 + E−

x10 = Exs2(z = −l) (34a)

and

E+
x10

η1

−
E−

x10

η1

=
Exs2(z = −l)

ηw (−l)
(34b)

where E+
x10 and E−

x10 are the amplitudes of the incident and reflected fields. We call

ηw (−l) the input impedance, ηin, to the two-interface combination. We now solve
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(34a) and (34b) together, eliminating Exs2, to obtain

E−
x10

E+
x10

= Ŵ =
ηin − η1

ηin + η1

(35)

To find the input impedance, we evaluate (32) at z = −l, resulting in

ηin = η2

η3 cos β2l + jη2 sin β2l
η2 cos β2l + jη3 sin β2l

(36)

Equations (35) and (36) are general results that enable us to calculate the net reflected

wave amplitude and phase from two parallel interfaces between lossless media.1

Note the dependence on the interface spacing, l, and on the wavelength as measured

in region 2, characterized by β2. Of immediate importance to us is the fraction of the

incident power that reflects from the dual interface and back-propagates in region 1.

As we found earlier, this fraction will be |Ŵ|2. Also of interest is the transmitted

power, which propagates away from the second interface in region 3. It is simply the

remaining power fraction, which is 1 − |Ŵ|2. The power in region 2 stays constant

in steady state; power leaves that region to form the reflected and transmitted waves,

but is immediately replenished by the incident wave. We have already encountered

an analogous situation involving cascaded transmission lines, which culminated in

Eq. (101) in Chapter 10.

An important result of situations involving two interfaces is that it is possible to

achieve total transmission in certain cases. From (35), we see that total transmission

occurs when Ŵ = 0, or when ηin = η1. In this case, as in transmission lines, we say

that the input impedance is matched to that of the incident medium. There are a few

methods of accomplishing this.

As a start, suppose that η3 = η1, and region 2 is of such thickness that β2l = mπ ,

where m is an integer. Now β2 = 2π/λ2, where λ2 is the wavelength as measured in
region 2. Therefore

2π

λ2

l = mπ

or

l = m
λ2

2
(37)

With β2l = mπ , the second region thickness is an integer multiple of half-wavelengths

as measured in that medium. Equation (36) now reduces to ηin = η3. Thus the general

effect of a multiple half-wave thickness is to render the second region immaterial to

1 For convenience, (34a) and (34b) have been written for a specific time at which the incident wave

amplitude, E+
x10, occurs at z = −l. This establishes a zero-phase reference at the front interface for the

incident wave, and so it is from this reference that the reflected wave phase is determined. Equivalently,

we have repositioned the z = 0 point at the front interface. Eq. (36) allows this because it is only a

function of the interface spacing, l.
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the results on reflection and transmission. Equivalently, we have a single-interface

problem involving η1 and η3. Now, with η3 = η1, we have a matched input impedance,

and there is no net reflected wave. This method of choosing the region 2 thickness is

known as half-wave matching. Its applications include, for example, antenna housings

on airplanes known as radomes, which form a part of the fuselage. The antenna,

inside the aircraft, can transmit and receive through this layer, which can be shaped to

enable good aerodynamic characteristics. Note that the half-wave matching condition

no longer applies as we deviate from the wavelength that satisfies it. When this is

done, the device reflectivity increases (with increased wavelength deviation), so it

ultimately acts as a bandpass filter.

Often, it is convenient to express the dielectric constant of the medium through

the refractive index (or just index), n, defined as

n =
√

ǫr (38)

Characterizing materials by their refractive indices is primarily done at optical fre-

quencies (on the order of 1014 Hz), whereas at much lower frequencies, a dielectric

constant is traditionally specified. Since ǫr is complex in lossy media, the index will

also be complex. Rather than complicate the situation in this way, we will restrict

our use of the refractive index to cases involving lossless media, having ǫ′′
r = 0, and

µr = 1. Under lossless conditions, we may write the plane wave phase constant and

the material intrinsic impedance in terms of the index through

β = k = ω
√

µ0ǫ0

√
ǫr =

nω

c
(39)

and

η =
1

√
ǫr

√
µ0

ǫ0

=
η0

n
(40)

Finally, the phase velocity and wavelength in a material of index n are

νp =
c
n

(41)

and

λ =
νp

f
=

λ0

n
(42)

where λ0 is the wavelength in free space. It is obviously important not to confuse

the index n with the similar-appearing Greek η (intrinsic impedance), which has an

entirely different meaning.

Another application, typically seen in optics, is the Fabry-Perot interferometer.

This, in its simplest form, consists of a single block of glass or other transparent
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material of index n, whose thickness, l, is set to transmit wavelengths which satisfy

the condition λ = λ0/n = 2l/m. Often we want to transmit only one wavelength,

not several, as (37) would allow. We would therefore like to assure that adjacent

wavelengths that are passed through the device are separated as far as possible, so

that only one will lie within the input power spectrum. In terms of wavelength as

measured in the material, this separation is in general given by

λm−1 − λm = �λ f =
2l

m − 1
−

2l
m

=
2l

m(m − 1)

.=
2l
m2

Note that m is the number of half-wavelengths in region 2, or m = 2l/λ = 2nl/λ0,

where λ0 is the desired free-space wavelength for transmission. Thus

�λ f
.=

λ2
2

2l
(43a)

In terms of wavelength measured in free space, this becomes

�λ f 0 = n�λ f
.=

λ2
0

2nl
(43b)

�λ f 0 is known as the free spectral range of the Fabry-Perot interferometer in terms

of free-space wavelength separation. The interferometer can be used as a narrow-

band filter (transmitting a desired wavelength and a narrow spectrum around this

wavelength) if the spectrum to be filtered is narrower than the free spectral range.

EXAMPLE 12.4

Suppose we wish to filter an optical spectrum of full width �λs0 = 50 nm (measured

in free space), whose center wavelength, λ0, is in the red part of the visible spectrum

at 600 nm, where one nm (nanometer) is 10−9 m. A Fabry-Perot filter is to be used,

consisting of a lossless glass plate in air, having refractive index n = 1.45. We need

to find the required range of glass thicknesses such that multiple wavelength orders

will not be transmitted.

Solution. We require that the free spectral range be greater than the optical spectral

width, or �λ f 0 > �λs . Using (43b)

l <
λ2

0

2n�λs0

So

l <
6002

2(1.45)(50)
= 2.5 × 103nm = 2.5 µm

where 1µm (micrometer) = 10−6 m. Fabricating a glass plate of this thickness or less

is somewhat ridiculous to contemplate. Instead, what is often used is an airspace of

thickness on this order, between two thick plates whose surfaces on the sides opposite

the airspace are antireflection coated. This is in fact a more versatile configuration

because the wavelength to be transmitted (and the free spectral range) can be adjusted

by varying the plate separation.



CHAPTER 12 Plane Wave Reflection and Dispersion 423

Next, we remove the restriction η1 = η3 and look for a way to produce zero

reflection. Returning to Eq. (36), suppose we set β2l = (2m − 1)π/2, or an odd

multiple of π/2. This means that

2π

λ2

l = (2m − 1)
π

2
(m = 1, 2, 3, . . .)

or

l = (2m − 1)
λ2

4
(44)

The thickness is an odd multiple of a quarter-wavelength as measured in region 2.

Under this condition, (36) reduces to

ηin =
η2

2

η3

(45)

Typically, we choose the second region impedance to allow matching between given

impedances η1 and η3. To achieve total transmission, we require that ηin = η1, so that

the required second region impedance becomes

η2 = √
η1η3 (46)

With the conditions given by (44) and (46) satisfied, we have performed quarter-wave
matching. The design of antireflective coatings for optical devices is based on this

principle.

EXAMPLE 12.5

We wish to coat a glass surface with an appropriate dielectric layer to provide total

transmission from air to the glass at a free-space wavelength of 570 nm. The glass

has refractive index n3 = 1.45. Determine the required index for the coating and its

minimum thickness.

Solution. The known impedances are η1 = 377 
 and η3 = 377/1.45 = 260 
.

Using (46) we have

η2 =
√

(377)(260) = 313 


The index of region 2 will then be

n2 =
(

377

313

)

= 1.20

The wavelength in region 2 will be

λ2 =
570

1.20
= 475 nm

The minimum thickness of the dielectric layer is then

l =
λ2

4
= 119 nm = 0.119 µm
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in in

Figure 12.5 A three-interface problem in which input

impedance ηin,a is transformed back to the front interface

to form input impedance ηin,b.

The procedure in this section for evaluating wave reflection has involved calcu-

lating an effective impedance at the first interface, ηin, which is expressed in terms of

the impedances that lie beyond the front surface. This process of impedance trans-
formation is more apparent when we consider problems involving more than two

interfaces.

For example, consider the three-interface situation shown in Figure 12.5, where

a wave is incident from the left in region 1. We wish to determine the fraction of the

incident power that is reflected and back-propagates in region 1 and the fraction of the

incident power that is transmitted into region 4. To do this, we need to find the input

impedance at the front surface (the interface between regions 1 and 2). We start by

transforming the impedance of region 4 to form the input impedance at the boundary

between regions 2 and 3. This is shown as ηin,b in Figure 12.5. Using (36), we have

ηin,b = η3

η4 cos β3lb + jη3 sin β3lb

η3 cos β3lb + jη4 sin β3lb
(47)

We have now effectively reduced the situation to a two-interface problem in which

ηin,b is the impedance of all that lies beyond the second interface. The input impedance

at the front interface, ηin,a , is now found by transforming ηin,b as follows:

ηin,a = η2

ηin,b cos β2la + jη2 sin β2la

η2 cos β2la + jηin,b sin β2la
(48)

The reflected power fraction is now |Ŵ|2, where

Ŵ =
ηin,a − η1

ηin,a + η1
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The fraction of the power transmitted into region 4 is, as before, 1−|Ŵ|2. The method

of impedance transformation can be applied in this manner to any number of inter-

faces. The process, although tedious, is easily handled by a computer.

The motivation for using multiple layers to reduce reflection is that the resulting

structure is less sensitive to deviations from the design wavelength if the impedances

(or refractive indices) are arranged to progressively increase or decrease from layer to

layer. For multiple layers to antireflection coat a camera lens, for example, the layer

on the lens surface would be of impedance very close to that of the glass. Subsequent

layers are given progressively higher impedances. With a large number of layers

fabricated in this way, the situation begins to approach (but never reaches) the ideal

case, in which the top layer impedance matches that of air, while the impedances

of deeper layers continuously decrease until reaching the value of the glass surface.

With this continuously varying impedance, there is no surface from which to reflect,

and so light of any wavelength is totally transmitted. Multilayer coatings designed in

this way produce excellent broadband transmission characteristics.

D12.3. A uniform plane wave in air is normally incident on a dielectric slab of

thickness λ2/4, and intrinsic impedance η2 = 260 
. Determine the magnitude

and phase of the reflection coefficient.

Ans. 0.356; 180◦

12.4 PLANE WAVE PROPAGATION
IN GENERAL DIRECTIONS

In this section, we will learn how to mathematically describe uniform plane waves

that propagate in any direction. Our motivation for doing this is our need to address

the problem of incident waves on boundaries that are not perpendicular to the prop-

agation direction. Such problems of oblique incidence generally occur, with normal

incidence being a special case. Addressing such problems requires (as always) that we

establish an appropriate coordinate system. With the boundary positioned in the x, y
plane, for example, the incident wave will propagate in a direction that could involve

all three coordinate axes, whereas with normal incidence, we were only concerned

with propagation along z. We need a mathematical formalism that will allow for the

general direction case.

Let us consider a wave that propagates in a lossless medium, with propagation

constant β = k = ω
√

µǫ. For simplicity, we consider a two-dimensional case, where

the wave travels in a direction between the x and z axes. The first step is to consider the

propagation constant as a vector, k, indicated in Figure 12.6. The direction of k is the

propagation direction, which is the same as the direction of the Poynting vector in

our case.2 The magnitude of k is the phase shift per unit distance along that direction.

2 We assume here that the wave is in an isotropic medium, where the permittivity and permeability do

not change with field orientation. In anisotropic media (where ǫ and/or µ depend on field orientation),

the directions of the Poynting vector and k may differ.
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Figure 12.6 Representation of a uniform plane wave with

wavevector k at angle θ to the x axis. The phase at point

(x, z) is given by k · r. Planes of constant phase (shown as

lines perpendicular to k) are spaced by wavelength λ but

have wider spacing when measured along the x or z axis.

Part of the process of characterizing a wave involves specifying its phase at any

spatial location. For the waves we have considered that propagate along the z axis,

this was accomplished by the factor e± jkz in the phasor form. To specify the phase in

our two-dimensional problem, we make use of the vector nature of k and consider the

phase at a general location (x, z) described through the position vector r. The phase

at that location, referenced to the origin, is given by the projection of k along r times

the magnitude of r, or just k · r. If the electric field is of magnitude E0, we can thus

write down the phasor form of the wave in Figure 12.6 as

Es = E0e− jk · r (49)

The minus sign in the exponent indicates that the phase along r moves in time in

the direction of increasing r. Again, the wave power flow in an isotropic medium

occurs in the direction along which the phase shift per unit distance is maximum—or

along k. The vector r serves as a means to measure phase at any point using k. This

construction is easily extended to three dimensions by allowing k and r to each have

three components.

In our two-dimensional case of Figure 12.6, we can express k in terms of its x
and z components:

k = kxax + kzaz
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The position vector, r, can be similarly expressed:

r = xax + zaz

so that

k · r = kx x + kzz

Equation (49) now becomes

Es = E0e− j(kx x+kz z) (50)

Whereas Eq. (49) provided the general form of the wave, Eq. (50) is the form that

is specific to the situation. Given a wave expressed by (50), the angle of propagation

from the x axis is readily found through

θ = tan−1

(
kz

kx

)

The wavelength and phase velocity depend on the direction one is considering. In the

direction of k, these will be

λ =
2π

k
=

2π
(

k2
x + k2

z
)1/2

and

νp =
ω

k
=

ω
(

k2
x + k2

z
)1/2

If, for example, we consider the x direction, these quantities will be

λx =
2π

kx

and

νpx =
ω

kx

Note that both λx and νpx are greater than their counterparts along the direction of k.

This result, at first surprising, can be understood through the geometry of Figure 12.6.

The diagram shows a series of phase fronts (planes of constant phase) which intersect

k at right angles. The phase shift between adjacent fronts is set at 2π in the figure; this

corresponds to a spatial separation along the k direction of one wavelength, as shown.

The phase fronts intersect the x axis, and we see that along x the front separation is

greater than it was along k. λx is the spacing between fronts along x and is indicated
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on the figure. The phase velocity along x is the velocity of the intersection points

between the phase fronts and the x axis. Again, from the geometry, we see that this

velocity must be faster than the velocity along k and will, of course, exceed the

speed of light in the medium. This does not constitute a violation of special relativity,

however, since the energy in the wave flows in the direction of k and not along x or z.

The wave frequency is f = ω/2π and is invariant with direction. Note, for example,

that in the directions we have considered,

f =
νp

λ
=

νpx

λx
=

ω

2π

EXAMPLE 12.6

Consider a 50-MHz uniform plane wave having electric field amplitude 10 V/m. The

medium is lossless, having ǫr = ǫ′
r = 9.0 and µr = 1.0. The wave propagates in the

x, y plane at a 30◦ angle to the x axis and is linearly polarized along z. Write down

the phasor expression for the electric field.

Solution. The propagation constant magnitude is

k = ω
√

µǫ =
ω

√
ǫr

c
=

2π × 50 × 106(3)

3 × 108
= 3.2 m−1

The vector k is now

k = 3.2(cos 30ax + sin 30ay) = 2.8ax + 1.6ay m−1

Then

r = x ax + y ay

With the electric field directed along z, the phasor form becomes

Es = E0e− jk · r az = 10e− j(2.8x+1.6y) az

D12.4. For Example 12.6, calculate λx , λy , νpx , and νpy .

Ans. 2.2 m; 3.9 m; 1.1 × 108 m/s; 2.0 × 108 m/s

12.5 PLANE WAVE REFLECTION AT
OBLIQUE INCIDENCE ANGLES

We now consider the problem of wave reflection from plane interfaces, in which

the incident wave propagates at some angle to the surface. Our objectives are (1) to

determine the relation between incident, reflected, and transmitted angles, and (2) to

derive reflection and transmission coefficients that are functions of the incident angle

and wave polarization. We will also show that cases exist in which total reflection or

total transmission may occur at the interface between two dielectrics if the angle of

incidence and the polarization are appropriately chosen.



CHAPTER 12 Plane Wave Reflection and Dispersion 429

Figure 12.7 Geometries for plane wave incidence at angle θ1 onto an interface

between dielectrics having intrinsic impedances η1 and η2. The two polarization

cases are shown: (a) p-polarization (or TM), with E in the plane of incidence;

(b) s-polarization (or TE), with E perpendicular to the plane of incidence.

The situation is illustrated in Figure 12.7, in which the incident wave direction and

position-dependent phase are characterized by wavevector k+
1 . The angle of incidence

is the angle between k+
1 and a line that is normal to the surface (the x axis in this case).

The incidence angle is shown as θ1. The reflected wave, characterized by wavevector

k−
1 , will propagate away from the interface at angle θ ′

1. Finally, the transmitted wave,

characterized by k2, will propagate into the second region at angle θ2 as shown. One

would suspect (from previous experience) that the incident and reflected angles are

equal (θ1 = θ ′
1), which is correct. We need to show this, however, to be complete.

The two media are lossless dielectrics, characterized by intrinsic impedances η1

and η2. We will assume, as before, that the materials are nonmagnetic, and thus have

permeability µ0. Consequently, the materials are adequately described by specifying

their dielectric constants, ǫr1 and ǫr2, or their refractive indices, n1 = √
ǫr1 and

n2 = √
ǫr2.

In Figure 12.7, two cases are shown that differ by the choice of electric field

orientation. In Figure 12.7a, the E field is polarized in the plane of the page, with H
therefore perpendicular to the page and pointing outward. In this illustration, the plane

of the page is also the plane of incidence, which is more precisely defined as the plane

spanned by the incident k vector and the normal to the surface. With E lying in the

plane of incidence, the wave is said to have parallel polarization or to be p-polarized
(E is parallel to the incidence plane). Note that although H is perpendicular to the

incidence plane, it lies parallel (or transverse) to the interface. Consequently, another

name for this type of polarization is transverse magnetic, or TM polarization.

Figure 12.7b shows the situation in which the field directions have been rotated

by 90◦. NowH lies in the plane of incidence, whereas E is perpendicular to the plane.

Because E is used to define polarization, the configuration is called perpendicular
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polarization, or is said to be s-polarized.3 E is also parallel to the interface, and so

the case is also called transverse electric, or TE polarization. We will find that the

reflection and transmission coefficients will differ for the two polarization types, but

that reflection and transmission angles will not depend on polarization. We only need

to consider s- and p-polarizations because any other field direction can be constructed

as some combination of s and p waves.

Our desired knowledge of reflection and transmission coefficients, as well as how

the angles relate, can be found through the field boundary conditions at the interface.

Specifically, we require that the transverse components of E and H be continuous

across the interface. These were the conditions we used to find Ŵ and τ for normal

incidence (θ1 = 0), which is in fact a special case of our current problem. We will

consider the case of p-polarization (Figure 12.7a) first. To begin, we write down the

incident, reflected, and transmitted fields in phasor form, using the notation developed

in Section 12.4:

E+
s1 = E+

10e− jk+
1 · r (51)

E−
s1 = E−

10e− jk−
1 · r (52)

Es2 = E20e− jk2 · r (53)

where

k+
1 = k1(cos θ1 ax + sin θ1 az) (54)

k−
1 = k1(− cos θ ′

1 ax + sin θ ′
1 az) (55)

k2 = k2(cos θ2 ax + sin θ2 az) (56)

and where

r = x ax + z az (57)

The wavevector magnitudes are k1 = ω
√

ǫr1/c = n1ω/c and k2 = ω
√

ǫr2/c =
n2ω/c.

Now, to evaluate the boundary condition that requires continuous tangential elec-

tric field, we need to find the components of the electric fields (z components) that

are parallel to the interface. Projecting all E fields in the z direction, and using (51)

through (57), we find

E+
zs1 = E+

z10e− jk+
1 · r = E+

10 cos θ1e− jk1(x cos θ1+z sin θ1) (58)

E−
zs1 = E−

z10e− jk−
1 · r = E−

10 cos θ ′
1e jk1(x cos θ ′

1−z sin θ ′
1) (59)

Ezs2 = Ez20e− jk2 · r = E20 cos θ2e− jk2(x cos θ2+z sin θ2) (60)

3 The s designation is an abbreviation for the German senkrecht, meaning perpendicular. The p in

p-polarized is an abbreviation for the German word for parallel, which is parallel.



CHAPTER 12 Plane Wave Reflection and Dispersion 431

The boundary condition for a continuous tangential electric field now reads:

E+
zs1 + E−

zs1 = Ezs2 (at x = 0)

We now substitute Eqs. (58) through (60) into (61) and evaluate the result at x = 0

to obtain

E+
10 cos θ1 e− jk1z sin θ1 + E−

10 cos θ ′
1 e− jk1z sin θ ′

1 = E20 cos θ2 e− jk2z sin θ2 (61)

Note that E+
10, E−

10, and E20 are all constants (independent of z). Further, we require

that (61) hold for all values of z (everywhere on the interface). For this to occur, it

must follow that all the phase terms appearing in (61) are equal. Specifically,

k1z sin θ1 = k1z sin θ ′
1 = k2z sin θ2

From this, we see immediately that θ ′
1 = θ1, or the angle of reflection is equal to the

angle of incidence. We also find that

k1 sin θ1 = k2 sin θ2 (62)

Equation (62) is known as Snell’s law of refraction. Because, in general, k = nω/c,

we can rewrite (62) in terms of the refractive indices:

n1 sin θ1 = n2 sin θ2 (63)

Equation (63) is the form of Snell’s law that is most readily used for our present

case of nonmagnetic dielectrics. Equation (62) is a more general form which would

apply, for example, to cases involving materials with different permeabilities as well

as different permittivities. In general, we would have k1 = (ω/c)
√

µr1ǫr1 and k2 =
(ω/c)

√
µr2ǫr2.

Having found the relations between angles, we next turn to our second objective,

which is to determine the relations between the amplitudes, E+
10, E−

10, and E20. To

accomplish this, we need to consider the other boundary condition, requiring tangen-

tial continuity of H at x = 0. The magnetic field vectors for the p-polarized wave are

all negative y-directed. At the boundary, the field amplitudes are related through

H+
10 + H−

10 = H20 (64)

Then, when we use the fact that θ ′
1 = θ1 and invoke Snell’s law, (61) becomes

E+
10 cos θ1 + E−

10 cos θ1 = E20 cos θ2 (65)

Using the medium intrinsic impedances, we know, for example, that E+
10/H+

10 = η1

and E+
20/H+

20 = η2. Eq. (64) can be written as follows:

E+
10 cos θ1

η1p
−

E−
10 cos θ1

η1p
=

E+
20 cos θ2

η2p
(66)

Note the minus sign in front of the second term in (66), which results from the fact

that E−
10 cos θ1 is negative (from Figure 12.7a), whereas H−

10 is positive (again from

the figure). When we write Eq. (66), effective impedances, valid for p-polarization,
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are defined through

η1p = η1 cos θ1 (67)

and

η2p = η2 cos θ2 (68)

Using this representation, Eqs. (65) and (66) are now in a form that enables them

to be solved together for the ratios E−
10/E+

10 and E20/E+
10. Performing analogous

procedures to those used in solving (7) and (8), we find the reflection and transmission

coefficients:

Ŵp =
E−

10

E+
10

=
η2p − η1p

η2p + η1p
(69)

τp =
E20

E+
10

=
2η2p

η2p + η1p

(
cos θ1

cos θ2

)

(70)

A similar procedure can be carried out for s-polarization, referring to Figure 12.7b.

The details are left as an exercise; the results are

Ŵs =
E−

y10

E+
y10

=
η2s − η1s

η2s + η1s
(71)

τs =
Ey20

E+
y10

=
2η2s

η2s + η1s
(72)

where the effective impedances for s-polarization are

η1s = η1 sec θ1 (73)

and

η2s = η2 sec θ2 (74)

Equations (67) through (74) are what we need to calculate wave reflection and trans-

mission for either polarization, and at any incident angle.

EXAMPLE 12.7

A uniform plane wave is incident from air onto glass at an angle from the normal of

30◦. Determine the fraction of the incident power that is reflected and transmitted for

(a) p-polarization and (b) s-polarization. Glass has refractive index n2 = 1.45.
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Solution. First, we apply Snell’s law to find the transmission angle. Using n1 = 1

for air, we use (63) to find

θ2 = sin−1

(
sin 30

1.45

)

= 20.2◦

Now, for p-polarization:

η1p = η1 cos 30 = (377)(.866) = 326 


η2p = η2 cos 20.2 =
377

1.45
(.938) = 244 


Then, using (69), we find

Ŵp =
244 − 326

244 + 326
= −0.144

The fraction of the incident power that is reflected is

Pr

Pinc
= |Ŵp|2 = .021

The transmitted fraction is then

Pt

Pinc
= 1 − |Ŵp|2 = .979

For s-polarization, we have

η1s = η1 sec 30 = 377/.866 = 435 


η2s = η2 sec 20.2 =
377

1.45(.938)
= 277 


Then, using (71):

Ŵs =
277 − 435

277 + 435
= −.222

The reflected power fraction is thus

|Ŵs |2 = .049

The fraction of the incident power that is transmitted is

1 − |Ŵs |2 = .951

In Example 12.7, reflection coefficient values for the two polarizations were found

to be negative. The meaning of a negative reflection coefficient is that the component

of the reflected electric field that is parallel to the interface will be directed opposite

the incident field component when both are evaluated at the boundary.

This effect is also observed when the second medium is a perfect conductor. In this

case, we know that the electric field inside the conductor must be zero. Consequently,

η2 = E20/H20 = 0, and the reflection coefficients will be Ŵp = Ŵs = −1. Total

reflection occurs, regardless of the incident angle or polarization.
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12.6 TOTAL REFLECTION AND TOTAL
TRANSMISSION OF OBLIQUELY
INCIDENT WAVES

Now that we have methods available to us for solving problems involving oblique in-

cidence reflection and transmission, we can explore the special cases of total reflectio
and total transmission. We look for special combinations of media, incidence angles,

and polarizations that produce these properties. To begin, we identify the necessary

condition for total reflection. We want total power reflection, so that |Ŵ|2 = ŴŴ∗ = 1,

where Ŵ is either Ŵp or Ŵs . The fact that this condition involves the possibility of a

complex Ŵ allows some flexibility. For the incident medium, we note that η1p and

η1s will always be real and positive. On the other hand, when we consider the second

medium, η2p and η2s involve factors of cos θ2 or 1/ cos θ2, where

cos θ2 =
[

1 − sin2 θ2

]1/2 =

[

1 −
(

n1

n2

)2

sin2 θ1

]1/2

(75)

where Snell’s law has been used. We observe that cos θ2, and hence η2p and η2s ,

become imaginary whenever sin θ1 > n2/n1. Let us consider parallel polarization,

for example. Under conditions of imaginary η2p, (69) becomes

Ŵp =
j |η2p| − η1p

j |η2p| + η1p
= −

η1p − j |η2p|
η1p + j |η2p|

= −
Z
Z∗

where Z = η1p − j |η2p|. We can therefore see that ŴpŴ
∗
p = 1, meaning total power

reflection whenever η2p is imaginary. The same will be true whenever η2p is zero,

which will occur when sin θ1 = n2/n1. We thus have our condition for total reflection,

which is

sin θ1 ≥
n2

n1

(76)

From this condition arises the critical angle of total reflection, θc, defined through

sin θc =
n2

n1

(77)

The total reflection condition can thus be more succinctly written as

θ1 ≥ θc (for total reflection) (78)

Note that for (76) and (77) to make sense, it must be true that n2 < n1, or the wave

must be incident from a medium of higher refractive index than that of the medium

beyond the boundary. For this reason, the total reflection condition is sometimes

called total internal reflection; it is often seen (and applied) in optical devices such
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Figure 12.8 Beam-steering prism for

Example 12.8.

as beam-steering prisms, where light within the glass structure totally reflects from

glass-air interfaces.

EXAMPLE 12.8

A prism is to be used to turn a beam of light by 90◦, as shown in Figure 12.8.

Light enters and exits the prism through two antireflective (AR-coated) surfaces.

Total reflection is to occur at the back surface, where the incident angle is 45◦ to the

normal. Determine the minimum required refractive index of the prism material if the

surrounding region is air.

Solution. Considering the back surface, the medium beyond the interface is air, with

n2 = 1.00. Because θ1 = 45◦, (76) is used to obtain

n1 ≥
n2

sin 45
=

√
2 = 1.41

Because fused silica glass has refractive index ng = 1.45, it is a suitable material for

this application and is in fact widely used.

Another important application of total reflection is in optical waveguides. These,

in their simplest form, are constructed of three layers of glass, in which the middle

layer has a slightly higher refractive index than the outer two. Figure 12.9 shows

the basic structure. Light, propagating from left to right, is confined to the middle

layer by total reflection at the two interfaces, as shown. Optical fiber waveguides are

constructed on this principle, in which a cylindrical glass core region of small radius

is surrounded coaxially by a lower-index cladding glass material of larger radius.

Basic waveguiding principles as applied to metallic and dielectric structures will be

presented in Chapter 13.
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Figure 12.9 A dielectric slab waveguide

(symmetric case), showing light confinement

to the center material by total reflection.

We next consider the possibility of total transmission. In this case, the requirement

is simply that Ŵ = 0. We investigate this possibility for the two polarizations. First,

we consider s-polarization. If Ŵs = 0, then from (71) we require that η2s = η1s , or

η2 sec θ2 = η1 sec θ1

Using Snell’s law to write θ2 in terms of θ1, the preceding equation becomes

η2

[

1 −
(

n1

n2

)2

sin2 θ1

]−1/2

= η1

[

1 − sin2 θ1

]−1/2

There is no value of θ1 that will satisfy this, so we turn instead to p-polarization. Using

(67), (68), and (69), with Snell’s law, we find that the condition for Ŵp = 0 is

η2

[

1 −
(

n1

n2

)2

sin2 θ1

]1/2

= η1

[

1 − sin2 θ1

]1/2

This equation does have a solution, which is

sin θ1 = sin θB =
n2

√

n2
1 + n2

2

(79)

where we have used η1 = η0/n1 and η2 = η0/n2. We call this special angle θB , where

total transmission occurs, the Brewster angle or polarization angle. The latter name

comes from the fact that if light having both s- and p-polarization components is

incident at θ1 = θB , the p component will be totally transmitted, leaving the partially

reflected light entirely s-polarized. At angles that are slightly off the Brewster angle,

the reflected light is still predominantly s-polarized. Most reflected light that we see

originates from horizontal surfaces (such as the surface of the ocean), and so the light

has mostly horizontal polarization. Polaroid sunglasses take advantage of this fact to

reduce glare, for they are made to block the transmission of horizontally polarized

light while passing light that is vertically polarized.
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EXAMPLE 12.9

Light is incident from air to glass at Brewster’s angle. Determine the incident and

transmitted angles.

Solution. Because glass has refractive index n2 = 1.45, the incident angle will be

θ1 = θB = sin−1





n2
√

n2
1 + n2

2



 = sin−1

(
1.45

√
1.452 + 1

)

= 55.4◦

The transmitted angle is found from Snell’s law, through

θ2 = sin−1

(
n1

n2

sin θB

)

= sin−1




n1

√

n2
1 + n2

2



 = 34.6◦

Note from this exercise that sin θ2 = cos θB , which means that the sum of the incident

and refracted angles at the Brewster condition is always 90◦.

Many of the results we have seen in this section are summarized in Figure 12.10,

in which Ŵp and Ŵs , from (69) and (71), are plotted as functions of the incident

angle, θ1. Curves are shown for selected values of the refractive index ratio, n1/n2.

For all plots in which n1/n2 > 1, Ŵs and Ŵp achieve values of ±1 at the critical angle.

At larger angles, the reflection coefficients become imaginary (and are not shown)

but nevertheless retain magnitudes of unity. The occurrence of the Brewster angle is

evident in the curves for Ŵp (Figure 12.10a) because all curves cross the θ1 axis. This

behavior is not seen in the Ŵs functions because Ŵs is positive for all values of θ1

when n1/n2 > 1.

D12.5. In Example 12.9, calculate the reflection coefficient for s-polarized

light.

Ans. −0.355

12.7 WAVE PROPAGATION
IN DISPERSIVE MEDIA

In Chapter 11, we encountered situations in which the complex permittivity of the

medium depends on frequency. This is true in all materials through a number of pos-

sible mechanisms. One of these, mentioned earlier, is that oscillating bound charges

in a material are in fact harmonic oscillators that have resonant frequencies associated

with them (see Appendix D). When the frequency of an incoming electromagnetic

wave is at or near a bound charge resonance, the wave will induce strong oscilla-

tions; these in turn have the effect of depleting energy from the wave in its original

form. The wave thus experiences absorption, and it does so to a greater extent than

it would at a frequency that is detuned from resonance. A related effect is that the
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(a)

(b)

Figure 12.10 (a) Plots of Ŵp [Eq. (69)] as functions of

the incident angle, θ1, as shown in Figure 12.7a. Curves are

shown for selected values of the refractive index ratio,

n1/n2. Both media are lossless and have µr = 1. Thus

η1 = η0/n1 and η2 = η0/n2. (b) Plots of Ŵs [Eq. (71)]

as functions of the incident angle, θ1, as shown in

Figure 12.7b. As in Figure 12.10a, the media are lossless,

and curves are shown for selected n1/n2.
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Figure 12.11 The angular dispersion of a prism can be

measured using a movable device which measures both

wavelength and power. The device senses light through a

small aperture, thus improving wavelength resolution.

real part of the dielectric constant will be different at frequencies near resonance than

at frequencies far from resonance. In short, resonance effects give rise to values of

ǫ′ and ǫ′′ that will vary continuously with frequency. These in turn will produce a

fairly complicated frequency dependence in the attenuation and phase constants as

expressed in Eqs. (44) and (45) in Chapter 11.

This section concerns the effect of a frequency-varying dielectric constant (or

refractive index) on a wave as it propagates in an otherwise lossless medium. This

situation arises quite often because significant refractive index variation can occur at

frequencies far away from resonance, where absorptive losses are negligible. A classic

example of this is the separation of white light into its component colors by a glass

prism. In this case, the frequency-dependent refractive index results in different angles

of refraction for the different colors—hence the separation. The color separation effect

produced by the prism is known as angular dispersion, or more specifically, chromatic
angular dispersion.

The term dispersion implies a separation of distinguishable components of a

wave. In the case of the prism, the components are the various colors that have

been spatially separated. An important point here is that the spectral power has been

dispersed by the prism. We can illustrate this idea by considering what it would take

to measure the difference in refracted angles between, for example, blue and red light.

One would need to use a power detector with a very narrow aperture, as shown in

Figure 12.11. The detector would be positioned at the locations of the blue and red

light from the prism, with the narrow aperture allowing essentially one color at a

time (or light over a very narrow spectral range) to pass through to the detector. The

detector would then measure the power in what we could call a “spectral packet,” or a

very narrow slice of the total power spectrum. The smaller the aperture, the narrower

the spectral width of the packet, and the greater the precision in the measurement.4 It

4 To perform this experiment, one would need to measure the wavelength as well. To do this, the

detector would likely be located at the output of a spectrometer or monochrometer whose input slit

performs the function of the bandwidth-limiting aperture.
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Figure 12.12 ω-β diagram for a material in which

the refractive index increases with frequency. The

slope of a line tangent to the curve at ω0 is the group

velocity at that frequency. The slope of a line joining

the origin to the point on the curve at ω0 is the phase

velocity at ω0.

is important for us to think of wave power as subdivided into spectral packets in this

way because it will figure prominently in our interpretation of the main topic of this

section, which is wave dispersion in time.

We now consider a lossless nonmagnetic medium in which the refractive index

varies with frequency. The phase constant of a uniform plane wave in this medium

will assume the form

β(ω) = k = ω
√

µ0ǫ(ω) = n(ω)
ω

c
(80)

If we take n(ω) to be a monotonically increasing function of frequency (as is usu-

ally the case), a plot of ω versus β would look something like the curve shown in

Figure 12.12. Such a plot is known as an ω-β diagram for the medium. Much can be

learned about how waves propagate in the material by considering the shape of the

ω-β curve.

Suppose we have two waves at two frequencies, ωa and ωb, which are co-

propagating in the material and whose amplitudes are equal. The two frequencies

are labeled on the curve in Figure 12.12, along with the frequency midway between

the two, ω0. The corresponding phase constants, βa , βb, and β0, are also labeled. The

electric fields of the two waves are linearly polarized in the same direction (along x ,

for example), while both waves propagate in the forward z direction. The waves will

thus interfere with each other, producing a resultant wave whose field function can

be found simply by adding the E fields of the two waves. This addition is done using
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the complex fields:

Ec,net(z, t) = E0[e− jβa ze jωa t + e− jβbze jωb t ]

Note that we must use the full complex forms (with frequency dependence retained)

as opposed to the phasor forms, since the waves are at different frequencies. Next,

we factor out the term e− jβ0ze jω0t :

Ec,net(z, t) = E0e− jβ0ze jω0t [e j�βze− j�ωt + e− j�βze j�ωt ]

= 2E0e− jβ0ze jω0t cos(�ωt −�βz) (81)

where

�ω = ω0 − ωa = ωb − ω0

and

�β = β0 − βa = βb − β0

The preceding expression for �β is approximately true as long as �ω is small. This

can be seen from Figure 12.12 by observing how the shape of the curve affects �β,

given uniform frequency spacings.

The real instantaneous form of (81) is found through

Enet(z, t) = Re{Ec,net} = 2E0 cos(�ωt − �βz) cos(ω0t − β0z) (82)

If �ω is fairly small compared to ω0, we recognize (82) as a carrier wave at fre-

quency ω0 that is sinusoidally modulated at frequency �ω. The two original waves

are thus “beating” together to form a slow modulation, as one would hear when the

same note is played by two slightly out-of-tune musical instruments. The resultant

wave is shown in Figure 12.13.

net

Figure 12.13 Plot of the total electric field strength as a function of z (with

t = 0) of two co-propagating waves having different frequencies, ωa and ωb,

as per Eq. (81). The rapid oscillations are associated with the carrier

frequency, ω0 = (ωa + ωb)/2. The slower modulation is associated with the

envelope or ‘‘beat’’ frequency, �ω = (ωb − ωa )/2.
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Of interest to us are the phase velocities of the carrier wave and the modulation

envelope. From (82), we can immediately write these down as:

νpc =
ω0

β0

(carrier velocity) (83)

νpe =
�ω

�β
(envelope velocity) (84)

Referring to the ω-β diagram, Figure 12.12, we recognize the carrier phase velocity

as the slope of the straight line that joins the origin to the point on the curve whose

coordinates are ω0 and β0. We recognize the envelope velocity as a quantity that

approximates the slope of the ω-β curve at the location of an operation point specified

by (ω0, β0). The envelope velocity in this case is thus somewhat less than the carrier

velocity. As �ω becomes vanishingly small, the envelope velocity is exactly the slope

of the curve at ω0. We can therefore state the following for our example:

lim
�ω→0

�ω

�β
=

dω

dβ

∣

∣

∣

∣

ω0

= νg(ω0) (85)

The quantity dω/dβ is called the group velocity function for the material, νg(ω). When

evaluated at a specified frequency ω0, it represents the velocity of a group of frequen-

cies within a spectral packet of vanishingly small width, centered at frequency ω0. In

stating this, we have extended our two-frequency example to include waves that have a

continuous frequency spectrum. Each frequency component (or packet) is associated

with a group velocity at which the energy in that packet propagates. Since the slope

of the ω-β curve changes with frequency, group velocity will obviously be a function

of frequency. The group velocity dispersion of the medium is, to the first order, the

rate at which the slope of the ω-β curve changes with frequency. It is this behavior

that is of critical practical importance to the propagation of modulated waves within

dispersive media and to understanding the extent to which the modulation envelope

may degrade with propagation distance.

EXAMPLE 12.10

Consider a medium in which the refractive index varies linearly with frequency over

a certain range:

n(ω) = n0

ω

ω0

Determine the group velocity and the phase velocity of a wave at frequency ω0.

Solution. First, the phase constant will be

β(ω) = n(ω)
ω

c
=

n0ω
2

ω0c
Now

dβ

dω
=

2n0ω

ω0c



CHAPTER 12 Plane Wave Reflection and Dispersion 443

so that

νg =
dω

dβ
=

ω0c
2n0ω

The group velocity at ω0 is

νg(ω0) =
c

2n0

The phase velocity at ω0 will be

νp(ω0) =
ω

β(ω0)
=

c
n0

12.8 PULSE BROADENING
IN DISPERSIVE MEDIA

To see how a dispersive medium affects a modulated wave, let us consider the prop-

agation of an electromagnetic pulse. Pulses are used in digital signals, where the

presence or absence of a pulse in a given time slot corresponds to a digital “one” or

“zero.” The effect of the dispersive medium on a pulse is to broaden it in time. To

see how this happens, we consider the pulse spectrum, which is found through the

Fourier transform of the pulse in time domain. In particular, suppose the pulse shape

in time is Gaussian, and has electric field given at position z = 0 by

E(0, t) = E0e− 1
2

(t/T )2

e jω0t (86)

where E0 is a constant, ω0 is the carrier frequency, and T is the characteristic half-

width of the pulse envelope; this is the time at which the pulse intensity, or magnitude

of the Poynting vector, falls to 1/e of its maximum value (note that intensity is

proportional to the square of the electric field). The frequency spectrum of the pulse

is the Fourier transform of (86), which is

E(0, ω) =
E0T
√

2π
e− 1

2
T 2(ω−ω0)2

(87)

Note from (87) that the frequency displacement from ω0 at which the spectral intensity
(proportional to |E(0, ω)|2) falls to 1/e of its maximum is �ω = ω − ω0 = 1/T .

Figure 12.14a shows the Gaussian intensity spectrum of the pulse, centered at

ω0, where the frequencies corresponding to the 1/e spectral intensity positions, ωa
and ωb, are indicated. Figure 12.14b shows the same three frequencies marked on

the ω-β curve for the medium. Three lines are drawn that are tangent to the curve at

the three frequency locations. The slopes of the lines indicate the group velocities at

ωa , ωb, and ω0, indicated as νga , νgb, and νg0. We can think of the pulse spreading

in time as resulting from the differences in propagation times of the spectral energy

packets that make up the pulse spectrum. Since the pulse spectral energy is highest
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(a)

(b)

Figure 12.14 (a) Normalized power spectrum of a Gaussian

pulse, as determined from Eq. (86). The spectrum is centered at

carrier frequency ω0 and has 1/e half-width, �ω. Frequencies ωa

and ωb correspond to the 1/e positions on the spectrum. (b) The

spectrum of Figure 12.14a as shown on the ω-β diagram for the

medium. The three frequencies specified in Figure 12.14a are

associated with three different slopes on the curve, resulting in

different group delays for the spectral components.

at the center frequency, ω0, we can use this as a reference point about which further

spreading of the energy will occur. For example, let us consider the difference in

arrival times (group delays) between the frequency components, ω0 and ωb, after

propagating through a distance z of the medium:

�τ = z
(

1

νgb
−

1

νg0

)

= z

(

dβ

dω

∣

∣

∣

∣

ωb

−
dβ

dω

∣

∣

∣

∣

ω0

)

(88)

The essential point is that the medium is acting as what could be called a temporal
prism. Instead of spreading out the spectral energy packets spatially, it is spreading
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them out in time. In this process, a new temporal pulse envelope is constructed whose

width is based fundamentally on the spread of propagation delays of the different

spectral components. By determining the delay difference between the peak spectral

component and the component at the spectral half-width, we construct an expression

for the new temporal half-width. This assumes, of course, that the initial pulse width

is negligible in comparison, but if not, we can account for that also, as will be shown

later on.

To evaluate (88), we need more information about the ω-β curve. If we assume

that the curve is smooth and has fairly uniform curvature, we can express β(ω) as the

first three terms of a Taylor series expansion about the carrier frequency, ω0:

β(ω)
.= β(ω0) + (ω − ω0)β1 +

1

2
(ω − ω0)2β2 (89)

where

β0 = β(ω0)

β1 =
dβ

dω

∣

∣

∣

∣

ω0

(90)

and

β2 =
d2β

dω2

∣

∣

∣

∣

ω0

(91)

Note that if the ω-β curve were a straight line, then the first two terms in (89) would

precisely describe β(ω). It is the third term in (89), involving β2, that describes the

curvature and ultimately the dispersion.

Noting that β0, β1, and β2 are constants, we take the first derivative of (89) with

respect to ω to find

dβ

dω
= β1 + (ω − ω0)β2 (92)

We now substitute (92) into (88) to obtain

�τ = [β1 + (ωb − ω0)β2] z − [β1 + (ω0 − ω0)β2] z = �ωβ2z =
β2z
T

(93)

where �ω = (ωb−ω0) = 1/T . β2, as defined in Eq. (91), is the dispersion parameter.

Its units are in general time2/distance, that is, pulse spread in time per unit spectral

bandwidth, per unit distance. In optical fibers, for example, the units most commonly

used are picoseconds2/kilometer (psec2/km). β2 can be determined when we know

how β varies with frequency, or it can be measured.

If the initial pulse width is very short compared to �τ , then the broadened pulse

width at location z will be simply �τ . If the initial pulse width is comparable to �τ ,

then the pulse width at z can be found through the convolution of the initial Gaussian
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pulse envelope of width T with a Gaussian envelope whose width is �τ . Thus, in

general, the pulse width at location z will be

T ′ =
√

T 2 + (�τ )2 (94)

EXAMPLE 12.11

An optical fiber link is known to have dispersion β2 = 20 ps2/km. A Gaussian light

pulse at the input of the fiber is of initial width T = 10 ps. Determine the width of

the pulse at the fiber output if the fiber is 15 km long.

Solution. The pulse spread will be

�τ =
β2z
T

=
(20)(15)

10
= 30 ps

So the output pulse width is

T ′ =
√

(10)2 + (30)2 = 32 ps

An interesting by-product of pulse broadening through chromatic dispersion is

that the broadened pulse is chirped. This means that the instantaneous frequency

of the pulse varies monotonically (either increases or decreases) with time over the

pulse envelope. This again is just a manifestation of the broadening mechanism, in

which the spectral components at different frequencies are spread out in time as they

propagate at different group velocities. We can quantify the effect by calculating the

group delay, τg , as a function of frequency, using (92). We obtain:

τg =
z
νg

= z
dβ

dω
= (β1 + (ω − ω0)β2) z (95)

This equation tells us that the group delay will be a linear function of frequency

and that higher frequencies will arrive at later times if β2 is positive. We refer to

the chirp as positive if the lower frequencies lead the higher frequencies in time

[requiring a positive β2 in (95)]; chirp is negative if the higher frequencies lead in time

(negative β2). Figure 12.15 shows the broadening effect and illustrates the chirping

phenomenon.

D12.6. For the fiber link of Example 12.11, a 20-ps pulse is input instead of

the 10-ps pulse in the example. Determine the output pulsewidth.

Ans. 25 ps

As a final point, we note that the pulse bandwidth, �ω, was found to be 1/T .

This is true as long as the Fourier transform of the pulse envelope is taken, as was

done with (86) to obtain (87). In that case, E0 was taken to be a constant, and so the

only time variation arose from the carrier wave and the Gaussian envelope. Such a
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Figure 12.15 Gaussian pulse intensities as functions of

time (smooth curves) before and after propagation through

a dispersive medium, as exemplified by the ω-β diagram of

Figure 12.14b. The electric field oscillations are shown

under the second trace to demonstrate the chirping effect

as the pulse broadens. Note the reduced amplitude of the

broadened pulse, which occurs because the pulse energy

(the area under the intensity envelope) is constant.

pulse, whose frequency spectrum is obtained only from the pulse envelope, is known

as transform-limited. In general, however, additional frequency bandwidth may be

present since E0 may vary with time for one reason or another (such as phase noise

that could be present on the carrier). In these cases, pulse broadening is found from

the more general expression

�τ = �ωβ2z (96)

where �ω is the net spectral bandwidth arising from all sources. Clearly, transform-

limited pulses are preferred in order to minimize broadening because these will have

the smallest spectral width for a given pulse width.
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CHAPTER 12 PROBLEMS

12.1 A uniform plane wave in air, E+
x1 = E+

x10 cos(1010t − βz) V/m, is normally

incident on a copper surface at z = 0. What percentage of the incident

power density is transmitted into the copper?

12.2 The plane z = 0 defines the boundary between two dielectrics. For z < 0,

ǫr1 = 9, ǫ′′
r1 = 0, and µ1 = µ0. For z > 0, ǫ′

r2 = 3, ǫ′′
r2 = 0, and µ2 = µ0.

Let E+
x1 = 10 cos(ωt − 15z) V/m and find (a) ω; (b) 〈S+

1 〉; (c) 〈S−
1 〉;

(d) 〈S+
2 〉.

12.3 A uniform plane wave in region 1 is normally incident on the planar

boundary separating regions 1 and 2. If ǫ′′
1 = ǫ′′

2 = 0, while ǫ′
r1 = µ3

r1 and

ǫ′
r2 = µ3

r2, find the ratio ǫ′
r2/ǫ

′
r1 if 20% of the energy in the incident wave is

reflected at the boundary. There are two possible answers.

12.4 A 10 MHz uniform plane wave having an initial average power density of

5 W/m2 is normally incident from free space onto the surface of a lossy

material in which ǫ′′
2 /ǫ′

2 = 0.05, ǫ′
r2 = 5, and µ2 = µ0. Calculate the

distance into the lossy medium at which the transmitted wave power density

is down by 10 dB from the initial 5 W/m2.

12.5 The region z < 0 is characterized by ǫ′
r = µr = 1 and ǫ′′

r = 0. The total E
field here is given as the sum of two uniform plane waves, Es =
150 e− j10zax + (50 
 20◦) e j10zax V/m. (a) What is the operating frequency?

(b) Specify the intrinsic impedance of the region z > 0 that would provide

the appropriate reflected wave. (c) At what value of z, −10 cm < z < 0, is

the total electric field intensity a maximum amplitude?

12.6 In the beam-steering prism of Example 12.8, suppose the antireflective

coatings are removed, leaving bare glass-to-air interfaces. Calcluate the

ratio of the prism output power to the input power, assuming a single transit.

12.7 The semi-infinite regions z < 0 and z > 1 m are free space. For

0 < z < 1 m, ǫ′
r = 4, µr = 1, and ǫ′′

r = 0. A uniform plane wave with

ω = 4 × 108 rad/s is traveling in the az direction toward the interface at

z = 0. (a) Find the standing wave ratio in each of the three regions. (b) Find

the location of the maximum |E| for z < 0 that is nearest to z = 0.

12.8 A wave starts at point a, propagates 1 m through a lossy dielectric rated at

0.1 dB/cm, reflects at normal incidence at a boundary at which

Ŵ = 0.3 + j0.4, and then returns to point a. Calculate the ratio of the final

power to the incident power after this round trip, and specify the overall loss

in decibels.

12.9 Region 1, z < 0, and region 2, z > 0, are both perfect dielectrics (µ = µ0,

ǫ′′ = 0). A uniform plane wave traveling in the az direction has a radian

frequency of 3 × 1010 rad/s. Its wavelengths in the two regions are λ1 =
5 cm and λ2 = 3 cm. What percentage of the energy incident on the
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boundary is (a) reflected; (b) transmitted? (c) What is the standing wave

ratio in region 1?

12.10 In Figure 12.1, let region 2 be free space, while µr1 = 1, ǫ′′
r1 = 0, and ǫ′

r1 is

unknown. Find ǫ′
r1 if (a) the amplitude of E−

1 is one-half that of E+
1 ;

(b) 〈S−
1 〉 is one-half of 〈S+

1 〉; (c) |E1|min is one-half of |E1|max.

12.11 A 150-MHz uniform plane wave is normally incident from air onto a

material whose intrinsic impedance is unknown. Measurements yield a

standing wave ratio of 3 and the appearance of an electric field minimum at

0.3 wavelengths in front of the interface. Determine the impedance of the

unknown material.

12.12 A 50-MHz uniform plane wave is normally incident from air onto the

surface of a calm ocean. For seawater, σ = 4 S/m, and ǫ′
r = 78. (a)

Determine the fractions of the incident power that are reflected and

transmitted. (b) Qualitatively, how (if at all) will these answers change as

the frequency is increased?

12.13 A right-circularly polarized plane wave is normally incident from air onto a

semi-infinite slab of plexiglas (ǫ′
r = 3.45, ǫ′′

r = 0). Calculate the fractions

of the incident power that are reflected and transmitted. Also, describe the

polarizations of the reflected and transmitted waves.

12.14 A left-circularly polarized plane wave is normally incident onto the surface

of a perfect conductor. (a) Construct the superposition of the incident and

reflected waves in phasor form. (b) Determine the real instantaneous form

of the result of part (a). (c) Describe the wave that is formed.

12.15 Sulfur hexafluoride (SF6) is a high-density gas that has refractive index,

ns = 1.8 at a specified pressure, temperature, and wavelength. Consider the

retro-reflecting prism shown in Fig. 12.16, that is immersed in SF6. Light

enters through a quarter-wave antireflective coating and then totally reflects

from the back surfaces of the glass. In principle, the beam should

experience zero loss at the design wavelength (Pout = Pin). (a) Determine

the minimum required value of the glass refractive index, ng , so that the

interior beam will totally reflect. (b) Knowing ng , find the required

refractive index of the quarter-wave film, n f . (c) With the SF6 gas evacuated

Pout

Pin
ns

l /4

nf ng

Figure 12.16 See

Problem 12.15.
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from the chamber, and with the glass and film values as previously found,

find the ratio, Pout/Pin. Assume very slight misalignment, so that the long

beam path through the prism is not retraced by reflected waves.

12.16 In Figure 12.5, let regions 2 and 3 both be of quarter-wave thickness.

Region 4 is glass, having refractive index, n4 = 1.45; region 1 is air. (a)

Find ηin,b. (b) Find ηin,a . (c) Specify a relation between the four intrinsic

impedances that will enable total transmission of waves incident from the

left into region 4. (d) Specify refractive index values for regions 2 and 3 that

will accomplish the condition of part (c). (e) Find the fraction of incident

power transmitted if the two layers were of half-wave thickness instead of

quarter wave.

12.17 A uniform plane wave in free space is normally incident onto a dense

dielectric plate of thickness λ/4, having refractive index n. Find the

required value of n such that exactly half the incident power is reflected

(and half transmitted). Remember that n > 1.

12.18 A uniform plane wave is normally incident onto a slab of glass (n = 1.45)

whose back surface is in contact with a perfect conductor. Determine the

reflective phase shift at the front surface of the glass if the glass thickness is

(a) λ/2; (b) λ/4; (c) λ/8.

12.19 You are given four slabs of lossless dielectric, all with the same intrinsic

impedance, η, known to be different from that of free space. The thickness

of each slab is λ/4, where λ is the wavelength as measured in the slab

material. The slabs are to be positioned parallel to one another, and the

combination lies in the path of a uniform plane wave, normally incident.

The slabs are to be arranged such that the airspaces between them are either

zero, one-quarter wavelength, or one-half wavelength in thickness. Specify

an arrangement of slabs and airspaces such that (a) the wave is totally

transmitted through the stack, and (b) the stack presents the highest

reflectivity to the incident wave. Several answers may exist.

12.20 The 50-MHz plane wave of Problem 12.12 is incident onto the ocean

surface at an angle to the normal of 60◦. Determine the fractions of the

incident power that are reflected and transmitted for (a) s-polarization, and

(b) p-polarization.

12.21 A right-circularly polarized plane wave in air is incident at Brewster’s angle

onto a semi-infinite slab of plexiglas (ǫ′
r = 3.45, ǫ′′

r = 0). (a) Determine the

fractions of the incident power that are reflected and transmitted.

(b) Describe the polarizations of the reflected and transmitted waves.

12.22 A dielectric waveguide is shown in Figure 12.17 with refractive indices as

labeled. Incident light enters the guide at angle φ from the front surface

normal as shown. Once inside, the light totally reflects at the upper n1 − n2

interface, where n1 > n2. All subsequent reflections from the upper and

lower boundaries will be total as well, and so the light is confined to the
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Figure 12.17 See Problems 12.22 and

12.23.

guide. Express, in terms of n1 and n2, the maximum value of φ such that

total confinement will occur, with n0 = 1. The quantity sin φ is known as

the numerical aperture of the guide.

12.23 Suppose that φ in Figure 12.17 is Brewster’s angle, and that θ1 is the critical

angle. Find n0 in terms of n1 and n2.

12.24 A Brewster prism is designed to pass p-polarized light without any

reflective loss. The prism of Figure 12.18 is made of glass (n = 1.45) and is

in air. Considering the light path shown, determine the vertex angle α.

12.25 In the Brewster prism of Figure 12.18, determine for s-polarized light the

fraction of the incident power that is transmitted through the prism, and

from this specify the dB insertion loss, defined as 10log10 of that number.

12.26 Show how a single block of glass can be used to turn a p-polarized beam of

light through 180◦, with the light suffering (in principle) zero reflective loss.

The light is incident from air, and the returning beam (also in air) may be

displaced sideways from the incident beam. Specify all pertinent angles and

use n = 1.45 for glass. More than one design is possible here.

12.27 Using Eq. (79) in Chapter 11 as a starting point, determine the ratio of the

group and phase velocities of an electromagnetic wave in a good conductor.

Assume conductivity does not vary with frequency.

12.28 Over a small wavelength range, the refractive index of a certain material

varies approximately linearly with wavelength as n(λ)
.= na + nb(λ − λa),

where na , nb and λa are constants, and where λ is the free-space wavelength.

(a) Show that d/dω = −(2πc/ω2)d/dλ. (b) Using β(λ) = 2πn/λ,

Figure 12.18 See Problems

12.24 and 12.25.
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determine the wavelength-dependent (or independent) group delay over a

unit distance. (c) Determine β2 from your result of part (b). (d) Discuss the

implications of these results, if any, on pulse broadening.

12.29 A T = 5 ps transform-limited pulse propagates in a dispersive medium for

which β2 = 10 ps2/km. Over what distance will the pulse spread to twice its

initial width?

12.30 A T = 20 ps transform-limited pulse propagates through 10 km of a

dispersive medium for which β2 = 12 ps2/km. The pulse then propagates

through a second 10 km medium for which β2 = −12 ps2/km. Describe the

pulse at the output of the second medium and give a physical explanation

for what happened.
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Guided Waves

I
n this chapter, we investigate several structures for guiding electromagnetic

waves, and we explore the principles by which these operate. Included are trans-

mission lines, which we first explored from the viewpoint of their currents and

voltages in Chapter 10, and which we now revisit from a fields point of view. We

then broaden the discussion to include several waveguiding devices. Broadly defined,

a waveguide is a structure through which electromagnetic waves can be transmitted

from point to point and within which the fields are confined to a certain extent. A

transmission line fits this description, but it is a special case that employs two conduc-

tors, and it propagates a purely TEM field configuration. Waveguides in general depart

from these restrictions and may employ any number of conductors and dielectrics—or

as we will see, dielectrics alone and no conductors.

The chapter begins with a presentation of several transmission line structures,

with emphasis on obtaining expressions for the primary constants, L, C, G, and R, for

high- and low-frequency operating regimes. Next, we begin our study of waveguides

by first taking a broad view of waveguide devices to obtain a physical understanding

of how they work and the conditions under which they are used. We then explore the

simple parallel-plate structure and distinguish between its operation as a transmission

line and as a waveguide. In this device, the concept of waveguide modes is developed,

as are the conditions under which these will occur. We will study the electric and

magnetic field configurations of the guided modes using simple plane wave models

and the wave equation. We will then study more complicated structures, including

rectangular waveguides, dielectric slab waveguides, and optical fibers. ■

13.1 TRANSMISSION LINE FIELDS
AND PRIMARY CONSTANTS

We begin by establishing the equivalence between transmission line operations when

considering voltage and current, from the point of view of the fields within the line.

Consider, for example, the parallel-plate line shown in Figure 13.1. In the line, we

453
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Figure 13.1 A transmission-line wave represented by voltage and

current distributions along the length is associated with transverse

electric and magnetic fields, forming a TEM wave.

assume that the plate spacing, d , is much less than the line width, b (into the page),

so electric and magnetic fields can be assumed to be uniform within any transverse

plane. Lossless propagation is also assumed. Figure 13.1 shows the side view, which

includes the propagation axis z. The fields, along with the voltage and current, are

shown at an instant in time.

The voltage and current in phasor form are:

Vs(z) = V0e− jβz (1a)

Is(z) =
V0

Z0

e− jβz (1b)

where Z0 =
√

L/C . The electric field in a given transverse plane at location z is just

the parallel-plate capacitor field:

Esx (z) =
Vs

d
=

V0

d
e− jβz (2a)

The magnetic field is equal to the surface current density, assumed uniform, on either

plate [Eq. (12), Chapter 7]:

Hsy(z) = Ksz =
Is

b
=

V0

bZ0

e− jβz (2b)

The two fields, both uniform, orthogonal, and lying in the transverse plane, are iden-

tical in form to those of a uniform plane wave. As such, they are transverse electro-

magnetic (TEM) fields, also known simply as transmission-line fields. They differ

from the fields of the uniform plane wave only in that they exist within the interior of

the line, and nowhere else.

The power flow down the line is found through the time-average Poynting vector,

integrated over the line cross section. Using (2a) and (2b), we find:

Pz =
∫ b

0

∫ d

0

1

2
Re

{

Exs H∗
ys

}

dxdy =
1

2

V0

d
V ∗

0

bZ∗
0

(bd) =
|V0|2

2Z∗
0

=
1

2
Re

{

Vs I ∗
s
}

(3)

The power transmitted by the line is one of the most important quantities that we

wish to know from a practical standpoint. Eq. (3) shows that this can be obtained

consistently through the line fields, or through the voltage and current. As would be
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Figure 13.2 The geometry of the

parallel-plate transmission line.

expected, this consistency is maintained when losses are included. The fields picture is

in fact advantageous, and is generally preferred, since it is easy to incorporate dielectric

loss mechanisms (other than conductivity) in addition to the dispersive properties of

the dielectric. The transmission-line fields are also needed to produce the primary

constants, as we now demonstrate for the parallel-plate line and other selected line

geometries.

We assume the line is filled with dielectric having permittivity ǫ′, conductivity

σ , and permeability µ, usually µ0 (Figure 13.2). The upper and lower plate thickness

is t , which, along with the plate width b and plate conductivity σc, is used to evaluate

the resistance per unit length parameter R under low-frequency conditions. We will,

however, consider high-frequency operation, in which the skin effect gives an effective

plate thickness or skin depth δ that is much less than t .
First, the capacitance and conductance per unit length are simply those of the

parallel-plate structure, assuming static fields. Using Eq. (27) from Chapter 6, we find

C =
ǫ′b
d

(4)

The value of permittivity used should be appropriate for the range of operating

frequencies considered.

The conductance per unit length may be determined easily from the capacitance

expression by use of the simple relation between capacitance and resistance [Eq. (45),

Chapter 6]:

G =
σ

ǫ′ C =
σb
d

(5)

The evaluation of L and R involves the assumption of a well-developed skin

effect such that δ ≪ t . Consequently, the inductance is primarily external because

the magnetic flux within either conductor is negligible compared to that between

conductors. Therefore,

L .= Lext =
µd
b

(6)

Note that LextC = µǫ′ = 1/ν2
p, and we are therefore able to evaluate the external

inductance for any transmission line for which we know the capacitance and insulator

characteristics.

The last of the four parameters that we need is the resistance R per unit length.

If the frequency is very high and the skin depth δ is very small, then we obtain an
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appropriate expression for R by distributing the total current uniformly throughout

a depth δ. The skin effect resistance (through both conductors in series over a unit

length) is

R =
2

σcδb
(7)

Finally, it is convenient to include the common expression for the characteristic

impedance of the line here with the parameter formulas:

Z0 =
√

Lext

C
=

√

µ

ǫ′
d
b

(8)

If necessary, a more accurate value may be obtained from Eq. (47), Chapter 10. Note

that when substituting (8) into (2b), and using (2a), we obtain the expected relation

for a TEM wave, Exs = ηHys , where η =
√

µ/ǫ′.

D13.1. Parameters for the planar transmission line shown in Figure 13.2 are

b = 6 mm, d = 0.25 mm, t = 25 mm, σc = 5.5 × 107 S/m, ǫ′ = 25 pF/m,

µ = µ0, and σ/ωǫ′ = 0.03. If the operating frequency is 750 MHz, calculate:

(a) α; (b) β; (c) Z0.

Ans. 0.47 Np/m; 26 rad/m; 9.3 � 0.7◦ 	

13.1.1 Coaxial (High Frequencies)

We next consider a coaxial cable in which the dielectric has an inner radius a and

outer radius b (Figure 13.3). The capacitance per unit length, obtained as Eq. (5) of

Section 6.3, is

C =
2πǫ′

ln(b/a)
(9)

Figure 13.3 Coaxial transmission-line

geometry.
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Now, using the relation RC = ǫ/σ (see Problem 6.6), the conductance is

G =
2πσ

ln(b/a)
(10)

where σ is the conductivity of the dielectric between the conductors at the operating

frequency.

The inductance per unit length was computed for the coaxial cable as Eq. (50) in

Section 8.10,

Lext =
µ

2π
ln(b/a) (11)

Again, this is an external inductance, for the small skin depth precludes any appre-

ciable magnetic flux within the conductors.

For a circular conductor of radius a and conductivity σc, we let Eq. (90) of

Section 11.4 apply to a unit length, obtaining

Rinner =
1

2πaδσc

There is also a resistance for the outer conductor, which has an inner radius b. We

assume the same conductivity σc and the same value of skin depth δ, leading to

Router =
1

2πbδσc

Because the line current flows through these two resistances in series, the total resis-

tance is the sum:

R =
1

2πδσc

(
1

a
+

1

b

)

(12)

Finally, the characteristic impedance, assuming low losses, is

Z0 =
√

Lext

C
=

1

2π

√

µ

ǫ′ ln
b
a

(13)

13.1.2 Coaxial (Low Frequencies)

We now obtain the coaxial line parameter values at very low frequencies where there

is no appreciable skin effect and the current is assumed to be distributed uniformly

throughout the conductor cross sections.

We first note that the current distribution in the conductor does not affect either

the capacitance or conductance per unit length. Therefore,

C =
2πǫ′

ln(b/a)
(14)

and

G =
2πσ

ln(b/a)
(15)

The resistance per unit length may be calculated by dc methods, R = l/(σc S), where

l = 1 m and σc is the conductivity of the outer and inner conductors. The area of the
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center conductor is πa2 and that of the outer is π (c2 − b2). Adding the two resistance

values, we have

R =
1

σcπ

(
1

a2
+

1

c2 − b2

)

(16)

Only one of the four parameter values remains to be found, the inductance per unit

length. The external inductance that we calculated at high frequencies is the greatest

part of the total inductance. To it, however, must be added smaller terms representing

the internal inductances of the inner and outer conductors.

At very low frequencies where the current distribution is uniform, the internal

inductance of the center conductor is the subject of Problem 43 in Chapter 8; the

relationship is also given as Eq. (62) in Section 8.10:

La,int =
µ

8π
(17)

The determination of the internal inductance of the outer shell is a more difficult

problem, and most of the work was requested in Problem 36 in Chapter 8. There,

we found that the energy stored per unit length in an outer cylindrical shell of inner

radius b and outer radius c with uniform current distribution is

WH =
µI 2

16π (c2 − b2)

(

b2 − 3c2 +
4c2

c2 − b2
ln

c
b

)

Thus the internal inductance of the outer conductor at very low frequencies is

Lbc,int =
µ

8π (c2 − b2)

(

b2 − 3c2 +
4c2

c2 − b2
ln

c
b

)

(18)

At low frequencies the total inductance is obtained by adding (11), (17), and (18):

L =
µ

2π

[

ln
b
a

+
1

4
+

1

4(c2 − b2)

(

b2 − 3c2 +
4c2

c2 − b2
ln

c
b

)]

(19)

13.1.3 Coaxial (Intermediate Frequencies)

There still remains the frequency interval where the skin depth is neither very much

larger than nor very much smaller than the radius. In this case, the current distribution

is governed by Bessel functions, and both the resistance and internal inductance are

complicated expressions. Values are tabulated in the handbooks, and it is necessary to

use them for very small conductor sizes at high frequencies and for larger conductor

sizes used in power transmission at low frequencies.1

1 Bessel functions are discussed within the context of optical fiber in Section 13.7. The current

distribution, internal inductance, and internal resistance of round wires is discussed (with numerical

examples) in Weeks, pp. 35–44. See the References at the end of this chapter.
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D13.2. The dimensions of a coaxial transmission line are a = 4 mm, b =
17.5 mm, and c = 20 mm. The conductivity of the inner and outer conductors

is 2 × 107 S/m, and the dielectric properties are µr = 1, ǫ′
r = 3, and σ/ωǫ′ =

0.025. Assume that the loss tangent is constant with frequency. Determine:

(a) L , C, R, G, and Z0 at 150 MHz; (b) L and R at 60 Hz.

Ans. 0.30 µH/m, 113 pF/m, 0.27 	/m, 2.7 mS/m, 51 	; 0.36 µH/m, 1.16 m	/m

13.1.4 Two-Wire (High Frequencies)

For the two-wire transmission line of Figure 13.4 with conductors of radius a and

conductivity σc with center-to-center separation d in a medium of permeability µ,

permittivity ǫ′, and conductivity σc, the capacitance per unit length is found using the

results of Section 6.4:

C =
πǫ′

cosh−1(d/2a)
(20)

or

C .=
πǫ′

ln(d/a)
(a ≪ d)

The external inductance may be found from LextC = µǫ′. It is

Lext =
µ

π
cosh−1(d/2a) (21)

or

Lext
.=

µ

π
ln(d/a) (a ≪ d)

The conductance per unit length may be written immediately from an inspection of

the capacitance expression, and using the relation RC = ǫ/σ :

G =
πσ

cosh−1(d/2a)
(22)

The resistance per unit length is twice that of the center conductor of the coax,

R =
1

πaδσc
(23)

Figure 13.4 The geometry of the

two-wire transmission line.
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Finally, using the capacitance and the external inductance expressions, we obtain a

value for the characteristic impedance,

Z0 =
√

Lext

C
=

1

π

√

µ

ǫ
cosh−1(d/2a) (24)

13.1.5 Two-Wire (Low Frequencies)

At low frequencies where a uniform current distribution may be assumed, we again

must modify the L and R expressions, but not those for C and G. The latter two are

again expressed by (20) and (22):

C =
πǫ′

cosh−1(d/2a)

G =
πσ

cosh−1(d/2a)

The inductance per unit length must be increased by twice the internal inductance of

a straight round wire,

L =
µ

π

[

1

4
+ cosh−1(d/2a)

]

(25)

The resistance becomes twice the dc resistance of a wire of radius a, conductivity σc,

and unit length:

R =
2

πa2σc
(26)

D13.3. The conductors of a two-wire transmission line each have a radius of

0.8 mm and a conductivity of 3 × 107 S/m. They are separated by a center-to-

center distance of 0.8 cm in a medium for which ǫ′
r = 2.5, µr = 1, and σ =

4×10−9 S/m. If the line operates at 60 Hz, find: (a) δ; (b) C ; (c) G; (d) L; (e) R.

Ans. 1.2 cm; 30 pF/m; 5.5 nS/m; 1.02 µH/m; 0.033 	/m

13.1.6 Microstrip Line (Low Frequencies)

Microstrip line is one example of a class of configurations involving planar conduc-

tors of finite widths on or within dielectric substrates; they are usually employed

as device interconnects for microelectronic circuitry. The microstrip configuration,

shown in Figure 13.5, consists of a dielectric (assumed lossless) of thickness d and of

permittivity ǫ′ = ǫrǫ0, sandwiched between a conducting ground plane and a narrow

conducting strip of width w . The region above the top strip is air (assumed here) or

a dielectric of lower permittivity.

The structure approaches the case of the parallel-plate line if w ≫ d. In a

microstrip, such an assumption is generally not valid, and so significant charge den-

sities exist on both surfaces of the upper conductor. The resulting electric field, origi-

nating at the top conductor and terminating on the bottom conductor, will exist within
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Figure 13.5 Microstrip line

geometry.

both substrate and air regions. The same is true for the magnetic field, which cir-

culates around the top conductor. This electromagnetic field configuration cannot

propagate as a purely TEM wave because wave velocities within the two media will

differ. Instead, waves having z components of E and H occur, with the z component

magnitudes established so that the air and dielectric fields do achieve equal phase

velocities (the reasoning behind this will be explained in Section 13.6). Analyzing

the structure while allowing for the special fields is complicated, but it is usually

permissible to approach the problem under the assumption of negligible z compo-

nents. This is the quasi TEM approximation, in which the static fields (obtainable

through numerical solution of Laplace’s equation, for example) are used to evaluate

the primary constants. Accurate results are obtained at low frequencies (below 1 or

2 GHz). At higher frequencies, results obtained through the static fields can still be

used but in conjunction with appropriate modifying functions. We will consider the

simple case of low-frequency operation and assume lossless propagation.2

To begin, it is useful to consider the microstrip line characteristics when the

dielectric is not present. Assuming that both conductors have very small thicknesses,

the internal inductance will be negligible, and so the phase velocity within the air-filled

line, νp0, will be

νp0 =
1

√
LextC0

=
1

√
µ0ǫ0

= c (27a)

where C0 is the capacitance of the air-filled line (obtained from the electric field for

that case), and c is the velocity of light. With the dielectric in place, the capacitance

changes, but the inductance does not, provided the dielectric permeability is µ0. Using

(27a), the phase velocity now becomes

νp =
1

√
LextC

= c
√

C0

C
=

c
√

ǫr,eff

(27b)

where the effective dielectric constant for the microstrip line is

ǫr,eff =
C
C0

=
(

c
νp

)2

(28)

It is implied from (28) that the microstrip capacitance C would result if both the

air and substrate regions were filled homogeneously with material having dielectric

constant ǫr,eff. The effective dielectric constant is a convenient parameter to use

2 The high-frequency case is treated in detail in Edwards (Reference 2).
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because it provides a way of unifying the effects of the dielectric and the conduc-

tor geometry. To see this, consider the two extreme cases involving large and small

width-to-height ratios, w/d . If w/d is very large, then the line resembles the parallel-

plate line, in which nearly all of the electric field exists within the dielectric. In this

case ǫr,eff
.= ǫr . On the other hand, for a very narrow top strip, or small w/d , the

dielectric and air regions contain roughly equal amounts of electric flux. In that case,

the effective dielectric constant approaches its minimum, given by the average of the

two dielectric constants. We therefore obtain the range of allowed values of ǫr,eff:

1

2
(ǫr + 1) < ǫr,eff < ǫr (29)

The physical interpretation of ǫr,eff is that it is a weighted average of the dielectric

constants of the substrate and air regions, with the weighting determined by the extent

to which the electric field fills either region. We may thus write the effective dielectric

constant in terms of a fiel fillin factor, q, for the substrate:

ǫr,eff = 1 + q(ǫr − 1) (30)

where 0.5 < q < 1. With large w/d, q → 1; with small w/d, q → 0.5.

Now, the characteristic impedances of the air-filled line and the line with dielectric

substrate are, respectively, Z air
0 =

√
Lext/C0 and Z0 =

√
LextC . Then, using (28), we

find

Z0 =
Z air

0√
ǫr,eff

(31)

A procedure for obtaining the characteristic impedance would be to first evaluate the

air-filled impedance for a given w/d . Then, knowing the effective dielectric constant,

determine the actual impedance using (31). Another problem would be to determine

the required ratio w/d for a given substrate material in order to achieve a desired

characteristic impedance.

Detailed analyses have led to numerous approximation formulas for the evalua-

tion of ǫr,eff, Z air
0 , and Z0 within different regimes (again, see Reference 2 and the ref-

erences therein). For example, with dimensions restricted such that 1.3 < w/d < 3.3,

applicable formulas include:

Z air
0

.= 60 ln



4

(

d
w

)

+

√

16

(

d
w

)2

+ 2





w
d

< 3.3 (32)

and

ǫr,eff
.=

ǫr + 1

2
+

ǫr − 1

2

(

1 + 10
d
w

)−0.555 w
d

> 1.3 (33)

Or, if a line is to be fabricated having a desired value of Z0, the effective dielectric

constant (from which the required w/d can be obtained) is found through:

ǫr,eff
.= ǫr [0.96 + ǫr (0.109 − 0.004ǫr ) (log10(10 + Z0) − 1)]−1 w

d
> 1.3 (34)
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D13.4. A microstrip line is fabricated on a lithium niobate substrate (ǫr = 4.8)

of 1 mm thickness. If the top conductor is 2 mm wide, find (a) ǫr,eff; (b) Z0; (c) νp.

Ans. 3.6; 47 	; 1.6 × 108 m/s

13.2 BASIC WAVEGUIDE OPERATION

Waveguides assume many different forms that depend on the purpose of the guide

and on the frequency of the waves to be transmitted. The simplest form (in terms of

analysis) is the parallel-plate guide shown in Figure 13.6. Other forms are the hollow-

pipe guides, including the rectangular waveguide of Figure 13.7, and the cylindrical

guide, shown in Figure 13.8. Dielectric waveguides, used primarily at optical fre-

quencies, include the slab waveguide of Figure 13.9 and the optical fiber, shown in

Figure 13.10. Each of these structures possesses certain advantages over the others,

depending on the application and the frequency of the waves to be transmitted. All

guides, however, exhibit the same basic operating principles, which we will explore

in this section.

To develop an understanding of waveguide behavior, we consider the parallel-

plate waveguide of Figure 13.6. At first, we recognize this as one of the transmission-

line structures that we investigated in Section 13.1. So the first question that arises is:

how does a waveguide differ from a transmission line to begin with? The difference lies

in the form of the electric and magnetic fields within the line. To see this, consider again

Figure 13.1, which shows the fields when the line operates as a transmission line. As

we saw earlier, a sinusoidal voltage wave, with voltage applied between conductors,

leads to an electric field that is directed vertically between the conductors as shown.

Because current flows only in the z direction, magnetic field will be oriented in and out

of the page (in the y direction). The interior fields comprise a plane electromagnetic

wave which propagates in the z direction (as the Poynting vector will show), since

both fields lie in the transverse plane. We refer to this as a transmission-line wave,

Figure 13.6 Parallel-plate waveguide, with metal plates at

x = 0, d. Between the plates is a dielectric of permittivity ǫ.
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Figure 13.7 Rectangular waveguide.

Figure 13.8 Cylindrical waveguide.

Figure 13.9 Symmetric dielectric slab waveguide,

with slab region (refractive index n1) surrounded by two

dielectrics of index n2 < n1.
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Figure 13.10 Optical fiber waveguide,

with the core dielectric (ρ < a) of refractive

index n1. The cladding dielectric (a < ρ < b) is

of index n2 < n1.

which, as discussed in Section 13.1, is a transverse electromagnetic, or TEM, wave.

The wavevector k, shown in Figure 13.1, indicates the direction of wave travel as well

as the direction of power flow.

As the frequency is increased, a remarkable change occurs in the way the fields

progagate down the line. Although the original field configuration of Figure 13.1 may

still be present, another possibility emerges, which is shown in Figure 13.11. Again,

a plane wave is guided in the z direction, but by means of a progression of zig-zag

reflections at the upper and lower plates. Wavevectors ku and kd are associated with

the upward-and downward-propagating waves, respectively, and these have identical

magnitudes,

|ku | = |kd | = k = ω
√

µǫ

For such a wave to propagate, all upward-propagating waves must be in phase (as

must be true of all downward-propagating waves). This condition can only be satisfied

at certain discrete angles of incidence, shown as θ in Figure 13.11. An allowed value

of θ , along with the resulting field configuration, comprise a waveguide mode of the

structure. Associated with each guided mode is a cutoff frequency. If the operating

frequency is below the cutoff frequency, the mode will not propagate. If above cutoff,

k
u k

d

k
u

θ

θ

Figure 13.11 In a parallel-plate waveguide, plane waves can

propagate by oblique reflection from the conducting walls. This

produces a waveguide mode that is not TEM.
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Figure 13.12 Plane wave representation of TE and TM modes in a

parallel-plate guide.

the mode propagates. The TEM mode, however, has no cutoff; it will be supported

at any frequency. At a given frequency, the guide may support several modes, the

quantity of which depends on the plate separation and on the dielectric constant

of the interior medium, as will be shown. The number of modes increases as the

frequency is raised.

So to answer our initial question on the distinction between transmission lines

and waveguides, we can state the following: Transmission lines consist of two or

more conductors and as a rule will support TEM waves (or something which could

approximate such a wave). A waveguide may consist of one or more conductors, or

no conductors at all, and will support waveguide modes of forms similar to those

just described. Waveguides may or may not support TEM waves, depending on the

design.

In the parallel-plate guide, two types of waveguide modes can be supported.

These are shown in Figure 13.12 as arising from the s and p orientations of the plane

wave polarizations. In a manner consistent with our previous discussions on oblique

reflection (Section 12.5), we identify a transverse electric or TE mode when E is

perpendicular to the plane of incidence (s-polarized); this positions E parallel to the

transverse plane of the waveguide, as well as to the boundaries. Similarly, a transverse
magnetic or TM mode results with a p polarized wave; the entire H field is in the

y direction and is thus within the transverse plane of the guide. Both possibilities

are illustrated in Figure 13.12. Note, for example, that with E in the y direction

(TE mode), H will have x and z components. Likewise, a TM mode will have

x and z components of E.3 In any event, the reader can verify from the geome-

try of Figure 13.12 that it is not possible to achieve a purely TEM mode for val-

ues of θ other than 90◦. Other wave polarizations are possible that lie between the

TE and TM cases, but these can always be expressed as superpositions of TE and

TM modes.

3 Other types of modes can exist in other structures (not the parallel-plate guide) in which both E and

H have z components. These are known as hybrid modes, and they typically occur in guides with

cylindrical cross sections, such as the optical fiber.
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13.3 PLANE WAVE ANALYSIS OF THE
PARALLEL-PLATE WAVEGUIDE

Let us now investigate the conditions under which waveguide modes will occur,

using our plane wave model for the mode fields. In Figure 13.13a, a zig-zag path

is again shown, but this time phase fronts are drawn that are associated with two

of the upward-propagating waves. The first wave has reflected twice (at the top and

bottom surfaces) to form the second wave (the downward-propagating phase fronts

are not shown). Note that the phase fronts of the second wave do not coincide with

those of the first wave, and so the two waves are out of phase. In Figure 13.13b,

the wave angle has been adjusted so that the two waves are now in phase. Having

satisfied this condition for the two waves, we will find that all upward-propagating

waves will have coincident phase fronts. The same condition will automatically occur

for all downward-propagating waves. This is the requirement to establish a guided

mode.

In Figure 13.14 we show the wavevector, ku , and its components, along with a

series of phase fronts. A drawing of this kind for kd would be the same, except the

Figure 13.13 (a) Plane wave

propagation in a parallel-plate guide in

which the wave angle is such that the

upward-propagating waves are not in

phase. (b) The wave angle has been

adjusted so that the upward waves are

in phase, resulting in a guided mode.
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Figure 13.14 The components of the

upward wavevector are κm and βm, the

transverse and axial phase constants. To

form the downward wavevector, kd, the

direction of κm is reversed.

x component, κm , would be reversed. In Section 12.4, we measured the phase shift

per unit distance along the x and z directions by the components, kx and kz , which

varied continuously as the direction of k changed. In our discussion of waveguides,

we introduce a different notation, where κm and βm are used for kx and kz . The

subscript m is an integer indicating the mode number. This provides a subtle hint that

βm and κm will assume only certain discrete values that correspond to certain allowed

directions of ku and kd , such that our coincident phase front requirement is satisfied.4

From the geometry we see that for any value of m,

βm =
√

k2 − κ2
m (35)

Use of the symbol βm for the z components of ku and kd is appropriate because βm
will ultimately be the phase constant for the mth waveguide mode, measuring phase

shift per distance down the guide; it is also used to determine the phase velocity of

the mode, ω/βm , and the group velocity, dω/dβm .

Throughout our discussion, we will assume that the medium within the guide is

lossless and nonmagnetic, so that

k = ω
√

µ0ǫ′ =
ω

√

ǫ′
r

c
=

ωn
c

(36)

4 Subscripts (m) are not shown on ku and kd but are understood. Changing m does not affect the

magnitudes of these vectors, only their directions.
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which we express either in terms of the dielectric constant, ǫ′
r , or the refractive index,

n, of the medium.

It is κm , the x component of ku and kd , that will be useful to us in quantifying

our requirement on coincident phase fronts through a condition known as transverse
resonance. This condition states that the net phase shift measured during a round trip

over the full transverse dimension of the guide must be an integer multiple of 2π

radians. This is another way of stating that all upward- (or downward-) propagating

plane waves must have coincident phases. The various segments of this round trip are

illustrated in Figure 13.15. We assume for this exercise that the waves are frozen in

time and that an observer moves vertically over the round trip, measuring phase shift

along the way. In the first segment (Figure 13.15a), the observer starts at a position

just above the lower conductor and moves vertically to the top conductor through

distance d . The measured phase shift over this distance is κmd rad. On reaching the

top surface, the observer will note a possible phase shift on reflection (Figure 13.15b).

This will be π if the wave is TE polarized and will be zero if the wave is TM polarized

(see Figure 13.16 for a demonstration of this). Next, the observer moves along the

reflected wave phases down to the lower conductor and again measures a phase shift

of κmd (Figure 13.15c). Finally, after including the phase shift on reflection at the

bottom conductor, the observer is back at the original starting point and is noting the

phase of the next upward-propagating wave.

The total phase shift over the round trip is required to be an integer multiple

of 2π :

κmd + φ + κmd + φ = 2mπ (37)

where φ is the phase shift on reflection at each boundary. Note that with φ = π

(TE waves) or 0 (TM waves), the net reflective phase shift over a round trip is 2π or 0,

regardless of the angle of incidence. Thus the reflective phase shift has no bearing on

the current problem, and we may simplify (37) to read

κm =
mπ

d
(38)

which is valid for both TE and TM modes. Note from Figure 13.14 that κm = k cos θm .

Thus the wave angles for the allowed modes are readily found from (38) with (36):

θm = cos−1
(mπ

kd

)

= cos−1
(mπc

ωnd

)

= cos−1

(
mλ

2nd

)

(39)

where λ is the wavelength in free space.

We can next solve for the phase constant for each mode, using (35) with (38):

βm =
√

k2 − κ2
m = k

√

1 −
(mπ

kd

)2

= k
√

1 −
(mπc

ωnd

)2

(40)
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0R

0

Figure 13.15 The net phase shift over

a round trip in the parallel-plate guide is

found by first measuring the transverse

phase shift between plates of the initial

upward wave (a); next, the transverse

phase shift in the reflected (downward)

wave is measured, while accounting for

the reflective phase shift at the top plate

(b); finally, the phase shift on reflection at

the bottom plate is added, thus returning

to the starting position, but with a new

upward wave (c). Transverse resonance

occurs if the phase at the final point is the

same as that at the starting point (the two

upward waves are in phase).
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Figure 13.16 The phase shift of a wave on reflection from a perfectly conducting surface

depends on whether the incident wave is TE (s-polarized) or TM (p-polarized). In both

drawings, electric fields are shown as they would appear immediately adjacent to the

conducting boundary. In (a) the field of a TE wave reverses direction upon reflection to

establish a zero net field at the boundary. This constitutes a π phase shift, as is evident by

considering a fictitious transmitted wave (dashed line) formed by a simple rotation of the

reflected wave into alignment with the incident wave. In (b) an incident TM wave experiences

a reversal of the z component of its electric field. The resultant field of the reflected wave,

however, has not been phase-shifted; rotating the reflected wave into alignment with the

incident wave (dashed line) shows this.

We define the radian cutoff frequency for mode m as

ωcm =
mπc
nd

(41)

so that (40) becomes

βm =
nω

c

√

1 −
(ωcm

ω

)2

(42)

The significance of the cutoff frequency is readily seen from (42): If the operating

frequency ω is greater than the cutoff frequency for mode m, then that mode will have

phase constant βm that is real-valued, and so the mode will propagate. For ω < ωcm ,

βm is imaginary, and the mode does not propagate.

Associated with the cutoff frequency is the cutoff wavelength, λcm , defined as the

free-space wavelength at which cutoff for mode m occurs. This will be

λcm =
2πc
ωcm

=
2nd
m

(43)
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Note, for example, that in an air-filled guide (n = 1) the wavelength at which the

lowest-order mode first starts to propagate is λc1 = 2d , or the plate separation is

one-half wavelength. Mode m will propagate whenever ω > ωcm , or equivalently

whenever λ < λcm . Use of the cutoff wavelength enables us to construct a second

useful form of Eq. (42):

βm =
2πn
λ

√

1 −
(

λ

λcm

)2

(44)

EXAMPLE 13.1

A parallel-plate waveguide has plate separation d = 1 cm and is filled with teflon

having dielectric constant ǫ′
r = 2.1. Determine the maximum operating frequency

such that only the TEM mode will propagate. Also find the range of frequencies

over which the TE1 and TM1 (m = 1) modes, and no higher-order modes, will

propagate.

Solution. Using (41), the cutoff frequency for the first waveguide mode (m = 1)

will be

fc1 =
ωc1

2π
=

2.99 × 1010

2
√

2.1
= 1.03 × 1010 Hz = 10.3 GHz

To propagate only TEM waves, we must have f < 10.3 GHz. To allow TE1 and

TM1 (along with TEM) only, the frequency range must be ωc1 < ω < ωc2, where

ωc2 = 2ωc1, from (41). Thus, the frequencies at which we will have the m = 1 modes

and TEM will be 10.3 GHz < f < 20.6 GHz.

EXAMPLE 13.2

In the parallel-plate guide of Example 13.1, the operating wavelength is λ = 2 mm.

How many waveguide modes will propagate?

Solution. For mode m to propagate, the requirement is λ < λcm . For the given wave-

guide and wavelength, the inequality becomes, using (43),

2 mm <
2
√

2.1 (10 mm)

m
from which

m <
2
√

2.1 (10 mm)

2 mm
= 14.5

Thus the guide will support modes at the given wavelength up to order m = 14. Since

there will be a TE and a TM mode for each value of m, this gives, not including the

TEM mode, a total of 28 guided modes that are above cutoff.
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The field configuration for a given mode can be found through the superposition

of the fields of all the reflected waves. We can do this for the TE waves, for example,

by writing the electric field phasor in the guide in terms of incident and reflected fields

through

Eys = E0e− jku ·r − E0e− jkd ·r (45)

where the wavevectors, ku and kd , are indicated in Figure 13.12. The minus sign in

front of the second term arises from the π phase shift on reflection. From the geometry

depicted in Figure 13.14, we write

ku = κmax + βmaz (46)

and

kd = −κmax + βmaz (47)

Then, using

r = xax + zaz

Eq. (45) becomes

Eys = E0(e− jκm x − e jkm x )e− jβm z = 2 j E0 sin(κm x)e− jβm z = E ′
0 sin(κm x)e− jβm z

(48)

where the plane wave amplitude, E0, and the overall phase are absorbed into E ′
0. In

real instantaneous form, (48) becomes

Ey(z, t) = Re
(

Eyse jωt) = E ′
0 sin(κm x) cos(ωt − βm z) (TE mode above cutoff)

(49)

We interpret this as a wave that propagates in the positive z direction (down the guide)

while having a field profile that varies with x .5 The TE mode field is the interference
pattern resulting from the superposition of the upward and downward plane waves.

Note that if ω < ωcm , then (42) yields an imaginary value for βm , which we may

write as − j |βm | = − jαm . Eqs. (48) and (49) then become

Eys = E ′
0 sin(κm x)e−αm z (50)

E(z, t) = E ′
0 sin(κm x)e−αm z cos(ωt) (TE mode below cutoff) (51)

This mode does not propagate, but simply oscillates at frequency ω, while exhibiting

a field pattern that decreases in strength with increasing z. The attenuation coefficient,

αm , is found from (42) with ω < ωcm :

αm =
nωcm

c

√

1 −
(

ω

ωcm

)2

=
2πn
λcm

√

1 −
(

λcm

λ

)2

(52)

5 We can also interpret this field as that of a standing wave in x while it is a traveling wave in z.
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We note from (39) and (41) that the plane wave angle is related to the cutoff

frequency and cutoff wavelength through

cos θm =
ωcm

ω
=

λ

λcm
(53)

So we see that at cutoff (ω = ωcm), θm = 0, and the plane waves are just reflecting

back and forth over the cross section; they are making no forward progress down

the guide. As ω is increased beyond cutoff (or λ is decreased), the wave angle in-

creases, approaching 90◦ as ω approaches infinity (or as λ approaches zero). From

Figure 13.14, we have

βm = k sin θm =
nω

c
sin θm (54)

and so the phase velocity of mode m will be

νpm =
ω

βm
=

c
n sin θm

(55)

The velocity minimizes at c/n for all modes, approaching this value at frequencies

far above cutoff; νpm approaches infinity as the frequency is reduced to approach the

cutoff frequency. Again, phase velocity is the speed of the phases in the z direction,

and the fact that this velocity may exceed the speed of light in the medium is not a

violation of relativistic principles, as discussed in Section 12.7.

The energy will propagate at the group velocity, νg = dω/dβ. Using (42), we

have

ν−1
gm =

dβm

dω
=

d
dω

[

nω

c

√

1 −
(ωcm

ω

)2

]

(56)

The derivative is straightforward. Carrying it out and taking the reciprocal of the

result yields:

νgm =
c
n

√

1 −
(ωcm

ω

)2

=
c
n

sin θm (57)

Group velocity is thus identified as the projection of the velocity associated with ku
or kd into the z direction. This will be less than or equal to the velocity of light in the

medium, c/n, as expected.

EXAMPLE 13.3

In the guide of Example 13.1, the operating frequency is 25 GHz. Consequently,

modes for which m = 1 and m = 2 will be above cutoff. Determine the group delay
difference between these two modes over a distance of 1 cm. This is the difference in

propagation times between the two modes when energy in each propagates over the

1-cm distance.
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Solution. The group delay difference is expressed as

�t =
(

1

νg2

−
1

νg1

)

(s/cm)

From (57), along with the results of Example 13.1, we have

νg1 =
c

√
2.1

√

1 −
(

10.3

25

)2

= 0.63c

νg2 =
c

√
2.1

√

1 −
(

20.6

25

)2

= 0.39c

Then

�t =
1

c

[
1

.39
−

1

.63

]

= 3.3 × 10−11 s/cm = 33 ps/cm

This computation gives a rough measure of the modal dispersion in the guide, applying

to the case of having only two modes propagating. A pulse, for example, whose center

frequency is 25 GHz would have its energy divided between the two modes. The pulse

would broaden by approximately 33 ps/cm of propagation distance as the energy in

the modes separates. If, however, we include the TEM mode (as we really must), then

the broadening will be even greater. The group velocity for TEM will be c/
√

2.1. The

group delay difference of interest will then be between the TEM mode and the m = 2

mode (TE or TM). We would therefore have

�tnet =
1

c

[
1

.39
− 1

]

= 52 ps/cm

D13.5. Determine the wave angles θm for the first four modes (m = 1, 2,

3, 4) in a parallel-plate guide with d = 2 cm, ǫ′
r = 1, and f = 30 GHz.

Ans. 76◦; 60◦; 41◦; 0◦

D13.6. A parallel-plate guide has plate spacing d = 5 mm and is filled with

glass (n = 1.45). What is the maximum frequency at which the guide will

operate in the TEM mode only?

Ans. 20.7 GHz

D13.7. A parallel-plate guide having d = 1 cm is filled with air. Find the

cutoff wavelength for the m = 2 mode (TE or TM).

Ans. 1 cm
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13.4 PARALLEL-PLATE GUIDE ANALYSIS
USING THE WAVE EQUATION

The most direct approach in the analysis of any waveguide is through the wave

equation, which we solve subject to the boundary conditions at the conducting walls.

The form of the equation that we will use is that of Eq. (28) in Section 11.1, which was

written for the case of free-space propagation. We account for the dielectric properties

in the waveguide by replacing k0 in that equation with k to obtain:

∇2Es = −k2Es (58)

where k = nω/c as before.

We can use the results of the last section to help us visualize the process of solving

the wave equation. For example, we may consider TE modes first, in which there will

be only a y component of E. The wave equation becomes:

∂2 Eys

∂x2
+

∂2 Eys

∂y2
+

∂2 Eys

∂z2
+ k2 Eys = 0 (59)

We assume that the width of the guide (in the y direction) is very large compared to

the plate separation d . Therefore we can assume no y variation in the fields (fringing

fields are ignored), and so ∂2 Eys/∂y2 = 0. We also know that the z variation will be

of the form e− jβm z . The form of the field solution will thus be

Eys = E0 fm(x)e− jβm z (60)

where E0 is a constant, and where fm(x) is a normalized function to be determined

(whose maximum value is unity). We have included subscript m on β, κ , and f (x),

since we anticipate several solutions that correspond to discrete modes, to which we

associate mode number m. We now substitute (60) into (59) to obtain

d2 fm(x)

dx2
+

(

k2 − β2
m
)

fm(x) = 0 (61)

where E0 and e− jβm z have divided out, and where we have used the fact that

d2

dz2
e− jβm z = −β2

me− jβm z

Note also that we have written (61) using the total derivative d2/dx2, as fm is a

function only of x . We next make use of the geometry of Figure 13.14, and we note
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that k2 − β2
m = κ2

m . Using this in (61) we obtain

d2 fm(x)

dx2
+ κ2

m fm(x) = 0 (62)

The general solution of (62) will be

fm(x) = cos(κm x) + sin(κm x) (63)

We next apply the appropriate boundary conditions in our problem to evaluate

κm . From Figure 13.6, conducting boundaries appear at x = 0 and x = d , at which

the tangential electric field (Ey) must be zero. In Eq. (63), only the sin(κm x) term

will allow the boundary conditions to be satisfied, so we retain it and drop the cosine

term. The x = 0 condition is automatically satisfied by the sine function. The x = d
condition is met when we choose the value of κm such that

κm =
mπ

d
(64)

We recognize Eq. (64) as the same result that we obtained using the transverse res-

onance condition of Section 13.3. The final form of Eys is obtained by substituting

fm(x) as expressed through (63) and (64) into (60), yielding a result that is consistent

with the one expressed in Eq. (48):

Eys = E0 sin
(mπx

d

)

e− jβm z (65)

An additional significance of the mode number m is seen when considering the

form of the electric field of (65). Specifically, m is the number of spatial half-cycles

of electric field that occur over the distance d in the transverse plane. This can be

understood physically by considering the behavior of the guide at cutoff. As we

learned in the last section, the plane wave angle of incidence in the guide at cutoff

is zero, meaning that the wave simply bounces up and down between the conducting

walls. The wave must be resonant in the structure, which means that the net round

trip phase shift is 2mπ . With the plane waves oriented vertically, βm = 0, and so

κm = k = 2nπ/λcm . So at cutoff,

mπ

d
=

2nπ

λcm
(66)

which leads to

d =
mλcm

2n
at cutoff (67)

Eq. (65) at cutoff then becomes

Eys = E0 sin
(mπx

d

)

= E0 sin

(
2nπx
λcm

)

(68)

The waveguide is simply a one-dimensional resonant cavity, in which a wave can

oscillate in the x direction if its wavelength as measured in the medium is an integer

multiple of 2d where the integer is m.
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λ

d/2

(a)

θ4

Figure 13.17 (a) A plane wave associated

with an m = 4 mode, showing a net phase

shift of 4π (two wavelengths measured in x)

occurring over distance d in the transverse

plane. (b) As frequency increases, an increase

in wave angle is required to maintain the 4π

transverse phase shift.

Now, as the frequency increases, wavelength will decrease, and so the require-

ment of wavelength equaling an integer multiple of 2d is no longer met. The response

of the mode is to establish z components of ku and kd , which results in the de-

creased wavelength being compensated by an increase in wavelength as measured
in the x direction. Figure 13.17 shows this effect for the m = 4 mode, in which the

wave angle, θ4, steadily increases with increasing frequency. Thus, the mode retains

precisely the functional form of its field in the x direction, but it establishes an increas-

ing value of βm as the frequency is raised. This invariance in the transverse spatial

pattern means that the mode will retain its identity at all frequencies. Group velocity,

expressed in (57), is changing as well, meaning that the changing wave angle with

frequency is a mechanism for group velocity dispersion, known simply as waveguide
dispersion. Pulses, for example, that propagate in a single waveguide mode will thus

experience broadening in the manner considered in Section 12.8.

Having found the electric field, we can find the magnetic field using Maxwell’s

equations. We note from our plane wave model that we expect to obtain x and z
components of Hs for a TE mode. We use the Maxwell equation

∇ × Es = − jωµHs (69)

where, in the present case of having only a y component of Es , we have

∇ ×Es =
∂ Eys

∂x
az −

∂ Eys

∂z
ax = κm E0 cos(κm x)e− jβm zaz + jβm E0 sin(κm x)e− jβm zax

(70)
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We solve for Hs by dividing both sides of (69) by − jωµ. Performing this operation

on (70), we obtain the two magnetic field components:

Hxs = −
βm

ωµ
E0 sin(κm x)e− jβm z (71)

Hzs = j
κm

ωµ
E0 cos(κm x)e− jβm z (72)

Together, these two components form closed-loop patterns for Hs in the x, z plane,

as can be verified using the streamline plotting methods developed in Section 2.6.

It is interesting to consider the magnitude of Hs , which is found through

|Hs | =
√

Hs ·H∗
s =

√

Hxs H∗
xs + Hzs H∗

zs (73)

Carrying this out using (71) and (72) results in

|Hs | =
E0

ωµ

(

κ2
m + β2

m
)1/2 (

sin2(κm x) + cos2(κm x)
)1/2

(74)

Using the fact that κ2
m + β2

m = k2 and using the identity sin2(κm x) + cos2(κm x) = 1,

(74) becomes

|Hs | =
k

ωµ
E0 =

ω
√

µǫ

ωµ
=

E0

η
(75)

where η =
√

µ/ǫ. This result is consistent with our understanding of waveguide

modes based on the superposition of plane waves, in which the relation between Es
and Hs is through the medium intrinsic impedance, η.

D13.8. Determine the group velocity of the m = 1 (TE or TM) mode in an

air-filled parallel-plate guide with d = 0.5 cm at f = (a) 30 GHz, (b) 60 GHz,

and (c) 100 GHz.

Ans. 0; 2.6 × 108 m/s; 2.9 × 108 m/s

D13.9. A TE mode in a parallel-plate guide is observed to have three maxima

in its electric field pattern between x = 0 and x = d . What is the value of m?

Ans. 3

13.5 RECTANGULAR WAVEGUIDES

In this section we consider the rectangular waveguide, a structure that is usually used

in the microwave region of the electromagnetic spectrum. The guide is shown in

Figure 13.7. As always, the propagation direction is along the z axis. The guide is

of width a along x and height b along y. We can relate the geometry to that of the

parallel-plate guide of previous sections by thinking of the rectangular guide as two
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parallel-plate guides of orthogonal orientation that are assembled to form one unit. We

have a pair of horizontal conducting walls (along the x direction) and a pair of vertical

walls (along y), all of which form one continuous boundary. The wave equation in

its full three-dimensional form [Eq. (59)] must now be solved, for in general we may

have field variations in all three coordinate directions.

In the parallel-plate guide, we found that the TEM mode can exist, along with

TE and TM modes. The rectangular guide will support the TE and TM modes, but

it will not support a TEM mode. This is because, in contrast to the parallel-plate

guide, we now have a conducting boundary that completely surrounds the transverse

plane. The nonexistence of TEM can be understood by remembering that any electric

field must have a zero tangential component at the boundary. This means that it is

impossible to set up an electric field that will not exhibit the sideways variation that

is necessary to satisfy this boundary condition. Because E varies in the transverse

plane, the computation of H through ∇ × E = − jωµH must lead to a z component

of H, and so we cannot have a TEM mode. We cannot find any other orientation of a

completely transverse E in the guide that will allow a completely transverse H.

13.5.1 Using Maxwell’s Equations to Relate Field
Components

With the modes dividing into TE and TM types, the standard approach is to first solve

the wave equation for the z components. By definition, Ez = 0 in a TE mode, and

Hz = 0 in a TM mode. Therefore, we will find the TE mode solution by solving

the wave equation for Hz , and we will obtain the TM mode solution by solving for

Ez . Using these results, all transverse field components are obtained directly through

Maxwell’s equations. This procedure may sound a little tedious (which it is), but we

can be certain to find all the modes this way. First, we will handle the problem of

finding transverse components in terms of the z components.

To begin the process, we assume that the phasor electric and magnetic fields will

be forward-z propagating functions that exhibit spatial variation in the xy plane; the

only z variation is that of a forward-propagating wave:

Es(x, y, z) = Es(x, y, 0)e− jβz (76a)

Hs(x, y, z) = Hs(x, y, 0)e− jβz (76b)

We can then obtain expressions for the transverse components of the phasor fields

by evaluating the x and y components of the Maxwell curl equations in sourceless

media. In evaluating the curl, it is evident from (76) that ∂/∂z = − jβ. The result is

∇ × Es = − jωµHs →

{

∂ Ezs/∂y + jβEys = − jωµHxs (x component) (77a)

jβExs + ∂ Ezs/∂x = jωµHys (y component) (77b)

∇ ×Hs = jωǫEs →

{

∂ Hzs/∂y + jβ Hys = jωǫExs (x component) (78a)

jβ Hxs + ∂ Hzs/∂x = − jωǫEys (y component) (78b)

Now, pairs of the above equations can be solved together in order to express the

individual transverse field components in terms of derivatives of the z components of
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E and H. For example, (77a) and (78b) can be combined, eliminating Eys , to give

Hxs =
− j
κ2

[

β
∂ Hzs

∂x
− ωǫ

∂ Ezs

∂y

]

(79a)

Then, using (76b) and (77a), eliminate Exs between them to obtain

Hys =
− j
κ2

[

β
∂ Hzs

∂y
+ ωǫ

∂ Ezs

∂x

]

(79b)

Using the same equation pairs, the transverse electric field components are then found:

Exs =
− j
κ2

[

β
∂ Ezs

∂x
+ ωµ

∂ Hzs

∂y

]

(79c)

Eys =
− j
κ2

[

β
∂ Ezs

∂y
− ωµ

∂ Hzs

∂x

]

(79d)

κ is defined in the same manner as in the parallel-plate guide [Eq. (35)]:

κ =
√

k2 − β2 (80)

where k = ω
√

µǫ. In the parallel-plate geometry, we found that discrete values of κ

and β resulted from the analysis, which we then subscripted with the integer mode

number, m (κm and βm). The interpretation of m was the number of field maxima that

occurred between plates (in the x direction). In the rectangular guide, field variations

will occur in both x and y, and so we will find it necessary to assign two integer

subscripts to κ and β, thus leading to

κmp =
√

k2 − β2
mp (81)

where m and p indicate the number of field variations in the x and y directions. The

form of Eq. (81) suggests that plane wave (ray) theory could be used to obtain the

mode fields in the rectangular guide, as was accomplished in Section 13.3 for the

parallel-plate guide. This is, in fact, the case, and is readily accomplished for cases

in which plane wave reflections occur between only two opposing boundaries (either

top to bottom or side to side), and this would be true only for certain TE modes. The

method becomes complicated when reflections occur at all four surfaces; but in any

case, the interpretation of κmp is the transverse (xy plane) component of the plane

wave-vector k, while βmp is the z component, as before.

The next step is to solve the wave equation for the z components of E and H,

from which we will find the fields of the TM and TE modes.

13.5.2 TM Modes

Finding the TM modes begins with the wave equation [Eq. (59)], in which derivatives

with respect to z are equivalent to multiplying by jβ. We write the equation for the z
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component of Es :

∂2 Ezs

∂x2
+

∂2 Ezs

∂y2
+ (k2 − β2

mp)Ezs = 0 (82)

The solution of (82) can be written as a sum of terms, each of which involves the

product of three functions that exhibit individual variation with x , y, and z:

Ezs(x, y, z) =
∑

m,p
Fm(x) G p(y) exp(− jβmp z) (83)

where the functions Fm(x) and G p(y) (not normalized) are to be determined. Each

term in (83) corresponds to one mode of the guide, and will by itself be a solution

to (82). To determine the functions, a single term in (83) is substituted into (82).

Noting that all derivatives are applied to functions of a single variable (and thus

partial derivatives become total derivatives), and using (81), the result is

G p(y)
d2 Fm

dx2
+ Fm(x)

d2G p

dy2
+ κ2

mp Fm(x) G p(y) = 0 (84)

in which the exp(− jβmp z) term has divided out. Rearranging (84), we get

1

Fm

d2 Fm

dx2

︸ ︷︷ ︸

−κ2
m

+
1

G p

d2G p

dy2

︸ ︷︷ ︸

−κ2
p

+ κ2
mp = 0 (85)

Terms in (85) are grouped such that all of the x variation is in the first term, which

varies only with x , and all y variation is in the second term, which varies only with y.

Now, consider what would happen if x is allowed to vary while holding y fixed. The

second and third terms would be fixed, and Eq. (85) must always hold. Therefore, the

x-varying first term must be a constant. This constant is denoted −κ2
m , as indicated in

(85). The same is true for the second term, which must also turn out to be a constant

if y is allowed to vary while x is fixed. We assign the second term the constant value

−κ2
p as indicated. Eq. (85) then states that

κ2
mp = κ2

m + κ2
p (86)

which suggests an immediate geometrical interpretation: As κmp is the transverse

plane component of the wavevector k, κm and κp are clearly the x and y components

of κmp (and of k)—again if one thinks in terms of plane waves and how they would

bounce around in the waveguide to form the overall mode. Also indicated in (86) is

the fact that κm and κp will be functions, respectively, of the integers m and p, as we

will find.

Under the above conditions, Eq. (85) will now separate into two equations—one

in each variable:

d2 Fm

dx2
+ κ2

m Fm = 0 (87a)

d2G p

dy2
+ κ2

p G p = 0 (87b)
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Equation (87) is now easily solved. We obtain

Fm(x) = Am cos(κm x) + Bm sin(κm x) (88a)

G p(y) = C p cos(κp y) + Dp sin(κp y) (88b)

Using these, along with (83), the general solution for z component of Es for a single

TM mode can be constructed:

Ezs = [Am cos(κm x) + Bm sin(κm x)][C p cos(κp y) + Dp sin(κp y)] exp(− jβmp z)

(89)

The constants in (89) can be evaluated by applying the boundary conditions of the

field on all four surfaces. Specifically, as Ezs is tangent to all the conducting surfaces,

it must vanish on all of them. Referring to Figure 13.7, the boundary conditions are

Ezs = 0 at x = 0, y = 0, x = a, and y = b

Obtaining zero field at x = 0 and y = 0 is accomplished by dropping the cosine terms

in (89) (setting Am = C p = 0). The values of κm and κp that appear in the remaining

sine terms are then set to the following, in order to assure zero field at x = a and

y = b:

κm =
mπ

a
(90a)

κp =
pπ

b
(90b)

Using these results, and defining B = Bm Dp, Eq. (89) becomes:

Ezs = B sin (κm x) sin
(

κp y
)

exp(− jβmp z) (91a)

Now, to find the remaining (transverse) field components, we substitute Eq. (91a) into

Eqs. (79) to obtain:

Exs = − jβmp
κm

κ2
mp

B cos (κm x) sin
(

κp y
)

exp(− jβmp z) (91b)

Eys = − jβmp
κp

κ2
mp

B sin (κm x) cos
(

κp y
)

exp(− jβmp z) (91c)

Hxs = jωǫ
κp

κ2
mp

B sin (κm x) cos
(

κp y
)

exp(− jβmp z) (91d)

Hys = − jωǫ
κm

κ2
mp

B cos (κm x) sin
(

κp y
)

exp(− jβmp z) (91e)

The above field components pertain to modes designated TMmp. Note that for these

modes, both m and p must be greater than or equal to 1. A zero value for either integer

will zero all fields.
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13.5.3 TE Modes

To obtain the TE mode fields, we solve the wave equation for the z component of H
and then use Eq. (79) as before to find the transverse components. The wave equation

is now the same as (82), except that Ezs is replaced by Hzs :

∂2 Hzs

∂x2
+

∂2 Hzs

∂y2
+ (k2 − β2

mp)Hzs = 0 (92)

and the solution is of the form:

Hzs(x, y, z) =
∑

m,p
F ′

m(x) G ′
p(y) exp(− jβmp z) (93)

The procedure from here is identical to that involving TM modes, and the general

solution will be

Hzs = [A′
m cos(κm x) + B ′

m sin(κm x)][C ′
p cos(κp y) + D′

p sin(κp y)] exp(− jβmp z)

(94)

Again, the expression is simplified by using the appropriate boundary conditions. We

know that tangential electric field must vanish on all conducting boundaries. When

we relate the electric field to magnetic field derivatives using (79c) and (79d), the

following conditions develop:

Exs

∣

∣

∣

y=0,b
= 0 ⇒

∂ Hzs

∂y

∣

∣

∣

y=0,b
= 0 (95a)

Eys

∣

∣

∣

x=0,a
= 0 ⇒

∂ Hzs

∂x

∣

∣

∣

x=0,a
= 0 (95b)

The boundary conditions are now applied to Eq. (94), giving, for Eq. (95a)

∂ Hzs

∂y
= [A′

m cos(κm x) + B ′
m sin(κm x)]

×[−κpC ′
p sin(κp y) + κp D′

p cos(κp y)] exp(− jβmp z)

The underlined terms are those that were modified by the partial differentiation.

Requiring this result to be zero at y = 0 and y = b leads to dropping the cos(κp y)

term (set D′
p = 0) and requiring that κp = pπ/b as before. Applying Eq. (95b) to

(94) results in

∂ Hzs

∂x
= [−κm A′

m sin(κm x) + κm B ′
m cos(κm x)]

× [C ′
p cos(κp y) + D′

p sin(κp y)] exp(− jβmp z)

where again, the underlined term has been modified by partial differentiation with

respect to x . Setting this result to zero at x = 0 and x = a leads to dropping the

cos(κm x) term (setting B ′
m = 0), and requiring that κm = mπ/a as before. With all

the above boundary conditions applied, the final expression for Hzs is now

Hzs = A cos (κm x) cos
(

κp y
)

exp(− jβmp z) (96a)
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where we define A = A′
mC ′

p. Applying Eqs. (79a) through (79d) to (96a) gives the

transverse field components:

Hxs = jβmp
κm

κ2
mp

A sin (κm x) cos
(

κp y
)

exp(− jβmp z) (96b)

Hys = jβmp
κp

κ2
mp

A cos (κm x) sin
(

κp y
)

exp(− jβmp z) (96c)

Exs = jωµ
κp

κ2
mp

A cos (κm x) sin
(

κp y
)

exp(− jβmp z) (96d)

Eys = − jωµ
κm

κ2
mp

A sin (κm x) cos
(

κp y
)

exp(− jβmp z) (96e)

These field components pertain to modes designated TEmp. For these modes, either

m or p may be zero, thus allowing the possibility of the important TEm0 or TE0p
cases, as will be discussed later. Some very good illustrations of TE and TM modes

are presented in Ref. 3.

13.5.4 Cutoff Conditions

The phase constant for a given mode can be expressed using Eq. (81):

βmp =
√

k2 − κ2
mp (97)

Then, using (86), along with (90a) and (90b), we have

βmp =
√

k2 −
(mπ

a

)2

−
( pπ

b

)2

(98)

This result can be written in a manner consistent with Eq. (42) by using k = ω
√

µǫ,

and defining a radian cutoff frequency, ωcmp , appropriate for the rectangular guide.

We obtain:

βmp = ω
√

µǫ

√

1 −
(ωCmp

ω

)2

(99)

where

ωCmp =
1

√
µǫ

[

(mπ

a

)2

+
( pπ

b

)2
]1/2

(100)

As discussed for the parallel-plate guide, it is again clear from (99) that the operating

frequency, ω, must exceed the cutoff frequency, ωCmp, to achieve a real value for

βmp (and thus enabling mode mp to propagate). Equation (100) applies to both TE

and TM modes, and thus some combination of both mode types may be present (or

above cutoff) at a given frequency. It is evident that the choice of guide dimensions,
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a and b, along with the material properties, ǫr and µr , will determine the number of

modes that will propagate. For the typical case in which µr = 1, using n = √
ǫr ,

and identifying the speed of light, c = 1/
√

µ0ǫ0, we may re-write (100) in a manner

consistent with Eq. (41):

ωCmp =
c
n

[
(mπ

a

)2

+
( pπ

b

)2
]1/2

(101)

This would lead to an expression for the cutoff wavelength, λCmp, in a manner con-

sistent with Eq. (43):

λCmp =
2πc
ωCmp

= 2n
[
(m

a

)2

+
( p

b

)2
]−1/2

(102)

λCmp is the free space wavelength at cutoff. If measured in the medium that fills the

waveguide, the cutoff wavelength would be given by Eq. (102) divided by n.

Now, in a manner consistent with Eq. (44), Eq. (99) becomes

βmp =
2πn
λ

√

1 −
λ

λCmp
(103)

where λ is the free space wavelength. As we saw before, a TEmp or TMmp mode can

propagate if its operating wavelength, λ, is less than λCmp.

13.5.5 Special Cases: TEm0 and TE0p Modes

The most important mode in the rectangular guide is the one that can propagate by

itself. As we know, this will be the mode that has the lowest cutoff frequency (or the

highest cutoff wavelength), so that over a certain range of frequencies, this mode will

be above cutoff, while all others are below cutoff. By inspecting Eq. (101), and noting

that a > b, the lowest cutoff frequency will occur for the mode in which m = 1 and

p = 0, which will be the TE10 mode (remember that a TM10 mode does not exist, as

can be shown in (91)). It turns out that this mode, and those of the same general type,

are of the same form as those of the parallel-plate structure.

The specific fields for the TEm0 family of modes are obtained from (96a) through

(96e) by setting p = 0, which means, using (86) and (90), that

κm = κmp

∣

∣

∣

p=0
=

mπ

a
(104)

and κp = 0. Under these conditions, the only surviving field components in (91)

will be Eys , Hxs , and Hzs . It is convenient to define the field equations in terms of

an electric field amplitude, E0, which is composed of all the amplitude terms in Eq.

(96e). Specifically, define

E0 = − jωµ
κm

κ2
m0

A = − j
ωµ

κm
A (105)
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Substituting (104) and (105) into Eqs. (96e), (96c), and (96a) leads to the following

expressions for the TEm0 mode fields:

Eys = E0 sin (κm x) e− jβm0z (106)

Hxs = −
βm0

ωµ
E0 sin (κm x) e− jβm0z (107)

Hzs = j
κm

ωµ
E0 cos(κm x)e− jβm0z (108)

It can be seen that these expressions are identical to the parallel-plate fields, Eqs. (65),

(71), and (72). For TEm0, we again note that the subscripts indicate that there are m
half cycles of the electric field over the x dimension and there is zero variation in y.

The cutoff frequency for the TEm0 mode is given by (101), appropriately modified:

ωCm0 =
mπc
na

(109)

Using (109) in (99), the phase constant is

βm0 =
nω

c

√

1 −
(mπc

ωna

)2

(110)

All of the implications on mode behavior above and below cutoff are exactly the same

as we found for the parallel-plate guide. The plane wave analysis is also carried out in

the same manner. TEm0 modes can be modeled as plane waves that propagate down

the guide by reflecting between the vertical side walls.

The electric field of the fundamental (TE10) mode is, from (106):

Eys = E0 sin
(πx

a

)

e− jβ10z (111)

This field is plotted in Figure 13.18a. The field is vertically polarized, terminates on

the top and bottom plates, and becomes zero at the two vertical walls, as is required

from our boundary condition on a tangential electric field at a conducting surface. Its

cutoff wavelength is found from (102) to be

λC10 = 2na (112)

which means that cutoff for this mode is achieved when the guide horizontal dimen-

sion, a, is equal to a half-wavelength (as measured in the medium).

Another possibility is the TE0p field configuration, which consists of a horizon-

tally polarized electric field. Figure 13.18b shows the field for TE01. The specific fields

for the TE0p family are obtained from Eqs. (96a) through (96e) by setting m = 0,
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(b)
(a)

Figure 13.18 (a) TE10 and (b) TE01 mode electric field configurations in a rectangular

waveguide.

which means, using (86) and (90), that

κp = κmp

∣

∣

∣

m=0
=

pπ

b
(113)

and κm = 0. Now, the surviving field components in Eqs. (91a) through (91e) will be

Exs , Hys , and Hzs . Now, define the electric field amplitude, E ′
0, which is composed

of all the amplitude terms in Eq. (96d):

E ′
0 = jωµ

κp

κ2
0p

A = j
ωµ

κp
A (114)

Using (113) and (114) in Eqs. (96d), (96b), and (96a) leads to the following expressions

for the TE0p mode fields:

Exs = E0 sin
(

κp y
)

e− jβ0p z (115)

Hys =
β0p

ωµ
E0 sin

(

κp y
)

e− jβ0p z (116)

Hzs = − j
κp

ωµ
E0 cos(κp y)e− jβ0p z (117)

where the cutoff frequency will be

ωC0p =
pπc
nb

(118)
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EXAMPLE 13.4

An air-filled rectangular waveguide has dimensions a = 2 cm and b = 1 cm. Deter-

mine the range of frequencies over which the guide will operate single mode (TE10).

Solution. Since the guide is air-filled, n = 1, and (109) gives, for m = 1:

fC10 =
ωC10

2π
=

c
2a

=
3 × 1010

2(2)
= 7.5 GHz

The next higher-order mode will be either TE20 or TE01, which, from (100) will have

the same cutoff frequency because a = 2b. This frequency will be twice that found

for TE10, or 15 GHz. Thus the operating frequency range over which the guide will

be single mode is 7.5 GHz < f < 15 GHz.

Having seen how rectangular waveguides work, questions arise: why are they

used and when are they useful? Let us consider for a moment the operation of a

transmission line at frequencies high enough such that waveguide modes can occur.

The onset of guided modes in a transmission line, known as moding, is in fact a

problem that needs to be avoided, because signal distortion may result. A signal that

is input to such a line will find its power divided in some proportions among the

various modes. The signal power in each mode propagates at a group velocity unique

to that mode. With the power thus distributed, distortion will occur over sufficient

distances, as the signal components among the modes lose synchronization with each

other, owing to the different delay times (group delays) associated with the different

modes. We encountered this concept in Example 13.3.

The above problem of modal dispersion in transmission lines is avoided by

ensuring that only the TEM mode propagates, and that all waveguide modes are

below cutoff. This is accomplished either by using line dimensions that are smaller

than one-half the signal wavelength, or by assuring an upper limit to the operating

frequency in a given line. But it is more complicated than this.

In Section 13.1, we saw that increasing the frequency increases the line loss as a

result of the skin effect. This is manifested through the increase in the series resistance

per unit length, R. One can compensate by increasing one or more dimensions in

the line cross section, as shown for example in Eqs. (7) and (12), but only to the

point at which moding may occur. Typically, the increasing loss with increasing

frequency will render the transmission line useless before the onset of moding, but

one still cannot increase the line dimensions to reduce losses without considering the

possibility of moding. This limitation on dimensions also limits the power handling

capability of the line, as the voltage at which dielectric breakdown occurs decreases

with decreasing conductor separation. Consequently, the use of transmission lines,

as frequencies are increased beyond a certain point, becomes undesirable, as losses

will become excessive, and as the limitation on dimensions will limit the power-

handling capability. Instead, we look to other guiding structures, among which is the

rectangular guide.

Because the rectangular guide will not support a TEM mode, it will not operate

until the frequency exceeds the cutoff frequency of the lowest-order guided mode of
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the structure. Thus, the guide must be constructed large enough to accomplish this

for a given frequency; the required transverse dimensions will consequently be larger

than those of a transmission line that is designed to support only the TEM mode. The

increased size, coupled with the fact that there is more conductor surface area than

in a transmission line of equal volume, means that losses will be substantially lower

in the rectangular waveguide structure. Additionally, the guides will support more

power at a given electric field strength than a transmission line, as the rectangular

guide will have a higher cross-sectional area.

Still, hollow pipe guides must operate in a single mode in order to avoid the

signal distortion problems arising from multimode transmission. This means that the

guides must be of dimension such that they operate above the cutoff frequency of

the lowest-order mode, but below the cutoff frequency of the next higher-order mode,

as demonstrated in Example 13.4. Increasing the operating frequency again means

that the guide transverse dimensions must be decreased to maintain single mode op-

eration. This can be accomplished to a point at which skin effect losses again become

problematic (remember that the skin depth is decreasing with increasing frequency,

in addition to the decrease in metal surface area with diminishing guide size). In addi-

tion, the guides become too difficult to fabricate, with machining tolerances becoming

more stringent. So again, as frequencies are further increased, we look for another

type of structure.

D13.10. Specify the minimum width, a, and the maximum height, b, of an

air-filled rectangular guide so that it will operate in a single mode over the

frequency range 15 GHz < f < 20 GHz.

Ans. 1 cm; 0.75 cm

13.6 PLANAR DIELECTRIC WAVEGUIDES

When skin effect losses become excessive, a good way to remove them is to remove the

metal in the structure entirely and use interfaces between dielectrics for the confining

surfaces. We thus obtain a dielectric waveguide; a basic form, the symmetric slab
waveguide, is shown in Figure 13.19. The structure is so named because of its vertical

symmetry about the z axis. The guide is assumed to have width in y much greater than

the slab thickness d , so the problem becomes two-dimensional, with fields presumed

to vary with x and z while being independent of y. The slab waveguide works in

very much the same way as the parallel-plate waveguide, except wave reflections

occur at the interfaces between dielectrics, having different refractive indices, n1

for the slab and n2 for the surrounding regions above and below. In the dielectric

guide, total reflection is needed, so the incident angle must exceed the critical angle.

Consequently, as discussed in Section 12.6, the slab index, n1, must be greater than

that of the surrounding materials, n2. Dielectric guides differ from conducting guides

in that power is not completely confined to the slab but resides partially above and

below.
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Figure 13.19 Symmetric dielectric slab waveguide structure, in

which waves propagate along z. The guide is assumed to be infinite

in the y direction, thus making the problem two-dimensional.

Dielectric guides are used primarily at optical frequencies (on the order of

1014 Hz). Again, guide transverse dimensions must be kept on the order of a wave-

length to achieve operation in a single mode. A number of fabrication methods can be

used to accomplish this. For example, a glass plate can be doped with materials that

will raise the refractive index. The doping process allows materials to be introduced

only within a thin layer adjacent to the surface that is a few micrometers thick.

To understand how the guide operates, consider Figure 13.20, which shows a wave

propagating through the slab by multiple reflections, but where partial transmission
into the upper and lower regions occurs at each bounce. Wavevectors are shown in

the middle and upper regions, along with their components in the x and z directions.

As we found in Chapter 12, the z components (β) of all wavevectors are equal, as

must be true if the field boundary conditions at the interfaces are to be satisfied for all

positions and times. Partial transmission at the boundaries is, of course, an undesirable

situation, since power in the slab will eventually leak away. We thus have a leaky wave
propagating in the structure, whereas we need to have a guided mode. Note that in

either case, we still have the two possibilities of wave polarization, and the resulting

mode designation—either TE or TM.

Total power reflection at the boundaries for TE or TM waves implies, respectively,

that |Ŵs |2 or |Ŵp|2 is unity, where the reflection coefficients are given in Eqs. (71) and

(69) in Chapter 12.

Ŵs =
η2s − η1s

η2s + η1s
(119)

and

Ŵp =
η2p − η1p

η2p + η1p
(120)

As discussed in Section 12.6, we require that the effective impedances, η2s or η2p,

be purely imaginary, zero, or infinite if (119) or (120) is to have unity magnitudes.
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Figure 13.20 Plane wave geometry of a leaky wave in a

symmetric slab waveguide. For a guided mode, total reflection

occurs in the interior, and the x components of k2u and k2d are

imaginary.

Knowing that

η2s =
η2

cos θ2

(121)

and

η2p = η2 cos θ2 (122)

the requirement is that cos θ2 be zero or imaginary, where, from Eq. (75), Section 12.6,

cos θ2 =
[

1 − sin2 θ2

]1/2 =

[

1 −
(

n1

n2

)2

sin2 θ1

]1/2

(123)

As a result, we require that

θ1 ≥ θc (124)

where the critical angle is defined through

sin θc =
n2

n1

(125)

Now, from the geometry of Figure 13.20, we can construct the field distribution

of a TE wave in the guide using plane wave superposition. In the slab region (−d/2 <

x < d/2), we have

Ey1s = E0e− jk1u ·r ± E0e− jk1d ·r
(

−
d
2

< x <
d
2

)

(126)
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where

k1u = κ1ax + βaz (127)

and

k1d = −κ1ax + βaz (128)

The second term in (126) may either add to or subtract from the first term, since either

case would result in a symmetric intensity distribution in the x direction. We expect

this because the guide is symmetric. Now, using r = xax + zaz , (126) becomes

Ey1s = E0[e jκ1x + e− jκ1x ]e− jβz = 2E0 cos(κ1x)e− jβz (129)

for the choice of the plus sign in (126), and

Ey1s = E0[e jκ1x − e− jκ1x ]e− jβz = 2 j E0 sin(κ1x)e− jβz (130)

if the minus sign is chosen. Because κ1 = n1k0 cos θ1, we see that larger values of κ1

imply smaller values of θ1 at a given frequency. In addition, larger κ1 values result

in a greater number of spatial oscillations of the electric field over the transverse

dimension, as (129) and (130) show. We found similar behavior in the parallel-plate

guide. In the slab waveguide, as with the parallel-plate guide, we associate higher-

order modes with increasing values of κ1.6

In the regions above and below the slab, waves propagate according to wave-

vectors k2u and k2d as shown in Figure 13.20. Above the slab, for example (x > d/2),

the TE electric field will be of the form

Ey2s = E02e− jk2·r = E02e− jκ2x e− jβz (131)

However, κ2 = n2k0 cos θ2, where cos θ2, given in (123), is imaginary. We may

therefore write

κ2 = − jγ2 (132)

where γ2 is real and is given by (using 123)

γ2 = jκ2 = jn2k0 cos θ2 = jn2k0(− j)

[
(

n1

n2

)2

sin2 θ1 − 1

]1/2

(133)

Equation (131) now becomes

Ey2s = E02e−γ2(x−d/2)e− jβz
(

x >
d
2

)

(134)

6 It would be appropriate to add the mode number subscript, m, to κ1, κ2, β, and θ1, because, as was true

with the metal guides, we will obtain discrete values of these quantities. To keep notation simple, the m
subscript is suppressed, and we will assume it to be understood. Again, subscripts 1 and 2 in this section

indicate, respectively, the slab and surrounding regions, and have nothing to do with mode number.
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Figure 13.21 Electric field amplitude

distributions over the transverse plane

for the first three TE modes in a

symmetric slab waveguide.

where the x variable in (131) has been replaced by x − (d/2) to position the field

magnitude, E02, at the boundary. Using similar reasoning, the field in the region below

the lower interface, where x is negative, and where k2d is involved, will be

Ey2s = E02eγ2(x+d/2)e− jβz
(

x < −
d
2

)

(135)

The fields expressed in (134) and (135) are those of surface waves. Note that they

propagate in the z direction only, according to e− jβz , but simply reduce in amplitude

with increasing |x |, according to the e−γ2(x−d/2) term in (134) and the eγ2(x+d/2) term

in (135). These waves represent a certain fraction of the total power in the mode, and

so we see an important fundamental difference between dielectric waveguides and

metal waveguides: in the dielectric guide, the fields (and guided power) exist over

a cross section that extends beyond the confining boundaries, and in principle they

exist over an infinite cross section. In practical situations, the exponential decay of

the fields above and below the boundaries is typically sufficient to render the fields

negligible within a few slab thicknesses from each boundary.

The total electric field distribution is composed of the field in all three regions

and is sketched in Figure 13.21 for the first few modes. Within the slab, the field

is oscillatory and is of a similar form to that of the parallel-plate waveguide. The

difference is that the fields in the slab waveguide do not reach zero at the boundaries

but connect to the evanescent fields above and below the slab. The restriction is that

the TE fields on either side of a boundary (being tangent to the interface) must match

at the boundary. Specifically,

Ey1s |x=±d/2 = Ey2s |x=±d/2 (136)

Applying this condition to (129), (130), (134), and (135) results in the final expressions

for the TE electric field in the symmetric slab waveguide, for the cases of even and
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odd symmetry:

Ese(even TE) =











E0e cos(κ1x)e− jβz (

− d
2

< x < d
2

)

E0e cos
(

κ1
d
2

)

e−γ2(x−d/2)e− jβz (

x > d
2

)

E0e cos
(

κ1
d
2

)

eγ2(x+d/2)e− jβz (

x < − d
2

)
(137)

Eso(odd TE) =









E0o sin(κ1x)e− jβz (

− d
2

< x < d
2

)

E0o sin
(

κ1
d
2

)

e−γ2(x−d/2)e− jβz (

x > d
2

)

−E0o sin
(

κ1
d
2

)

eγ2(x+d/2)e− jβz (

x < − d
2

)
(138)

Solution of the wave equation yields (as it must) results identical to these. The reader

is referred to References 2 and 3 for the details. The magnetic field for the TE modes

will consist of x and z components, as was true for the parallel-plate guide. Finally,

the TM mode fields will be nearly the same in form as those of TE modes, but with

a simple rotation in polarization of the plane wave components by 90◦. Thus, in

TM modes, Hy will result, and it will have the same form as Ey for TE, as presented

in (137) and (138).

Apart from the differences in the field structures, the dielectric slab waveguide

operates in a manner that is qualitatively similar to the parallel-plate guide. Again,

a finite number of discrete modes will be allowed at a given frequency, and this

number increases as frequency increases. Higher-order modes are characterized by

successively smaller values of θ1.

An important difference in the slab waveguide occurs at cutoff for any mode. We

know that θ = 0 at cutoff in the metal guides. In the dielectric guide at cutoff, the wave

angle, θ1, is equal to the critical angle, θc. Then, as the frequency of a given mode

is raised, its θ1 value increases beyond θc in order to maintain transverse resonance,

while maintaining the same number of field oscillations in the transverse plane.

As wave angle increases, however, the character of the evanescent fields changes

significantly. This can be understood by considering the wave angle dependence on

evanescent decay coefficient, γ2, as given by (133). Note, in that equation, that as θ1

increases (as frequency goes up), γ2 also increases, leading to a more rapid falloff

of the fields with increasing distance above and below the slab. The mode therefore

becomes more tightly confined to the slab as frequency is raised. Also, at a given

frequency, lower-order modes, having smaller wave angles, will have lower values

of γ2 as (133) indicates. Consequently, when considering several modes propagating

together at a single frequency, the higher-order modes will carry a greater percentage

of their power in the upper and lower regions surrounding the slab than will modes

of lower order.

One can determine the conditions under which modes will propagate by using the

transverse resonance condition, as we did with the parallel-plate guide. We perform

the transverse round trip analysis in the slab region in the same manner that was done

in Section 13.3, and obtain an equation similar to (37):

κ1d + φTE + κ1d + φTE = 2mπ (139)
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for TE waves and

κ1d + φTM + κ1d + φTM = 2mπ (140)

for the TM case. Eqs. (139) and (140) are called the eigenvalue equations for the

symmetric dielectric slab waveguide. The phase shifts on reflection, φTE and φTM ,

are the phases of the reflection coefficients, Ŵs and Ŵp, given in (119) and (120). These

are readily found, but they turn out to be functions of θ1. As we know, κ1 also depends

on θ1, but in a different way than φTE and φTM . Consequently, (139) and (140) are

transcendental in θ1, and they cannot be solved in closed form. Instead, numerical or

graphical methods must be used (see References 4 or 5). Emerging from this solution

process, however, is a fairly simple cutoff condition for any TE or TM mode:

k0d
√

n2
1 − n2

2 ≥ (m − 1)π (m = 1, 2, 3, . . .) (141)

For mode m to propagate, (141) must hold. The physical interpretation of the

mode number m is again the number of half-cycles of the electric field (for TE modes)

or magnetic field (for TM modes) that occur over the transverse dimension. The

lowest-order mode (m = 1) is seen to have no cutoff—it will propagate from zero

frequency on up. We will thus achieve single-mode operation (actually a single pair

of TE and TM modes) if we can assure that the m = 2 modes are below cutoff. Using

(141), our single-mode condition will thus be:

k0d
√

n2
1 − n2

2 < π (142)

Using k0 = 2π/λ, the wavelength range over which single-mode operation occurs is

λ > 2d
√

n2
1 − n2

2 (143)

EXAMPLE 13.5

A symmetric dielectric slab waveguide is to guide light at wavelength λ = 1.30 µm.

The slab thickness is to be d = 5.00 µm, and the refractive index of the surrounding

material is n2 = 1.450. Determine the maximum allowable refractive index of the

slab material that will allow single TE and TM mode operation.

Solution. Equation (143) can be rewritten in the form,

n1 <

√

(

λ

2d

)2

+ n2
2

Thus

n1 <

√

(

1.30

2(5.00)

)2

+ (1.450)2 = 1.456
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Clearly, fabrication tolerances are very exacting when constructing dielectric guides

for single-mode operation!

D13.11. A 0.5-mm-thick slab of glass (n1 = 1.45) is surrounded by air

(n2 = 1). The slab waveguides infrared light at wavelength λ = 1.0 µm. How

many TE and TM modes will propagate?

Ans. 2102

13.7 OPTICAL FIBER

Optical fiber works on the same principle as the dielectric slab waveguide, except

of course for the round cross section. A step index fiber is shown in Figure 13.10,

in which a high index core of radius a is surrounded by a lower-index cladding of

radius b. Light is confined to the core through the mechanism of total reflection, but

again some fraction of the power resides in the cladding as well. As we found in the

slab waveguide, the cladding power again moves in toward the core as frequency is

raised. Additionally, as is true in the slab waveguide, the fiber supports a mode that has

no cutoff.

Analysis of the optical fiber is complicated. This is mainly because of the round

cross section, along with the fact that it is generally a three-dimensional problem; the

slab waveguide had only two dimensions to be concerned about. It is possible to ana-

lyze the fiber using rays within the core that reflect from the cladding boundary as light

progresses down the fiber. We did this with the slab waveguide and obtained results

fairly quickly. The method is difficult in fiber, however, because ray paths are com-

plicated. There are two types of rays in the core: (1) those that pass through the fiber

axis (z axis), known as meridional rays, and (2) those that avoid the axis but progress

in a spiral-like path as they propagate down the guide. These are known as skew rays;
their analysis, although possible, is tedious. Fiber modes are developed that can be

associated with the individual ray types, or with combinations thereof, but it is easier

to obtain these by solving the wave equation directly. Our purpose in this section is to

provide a first exposure to the optical fiber problem (and to avoid an excessively long

treatment). To accomplish this, we will solve the simplest case in the quickest way.

The simplest fiber configuration is that of a step index, but with the core and

cladding indices of values that are very close, that is n1
.= n2. This is the weak-

quidance condition, whose simplifying effect on the analysis is significant. We

already saw how core and cladding indices in the slab waveguide need to be very

close in value in order to achieve single-mode or few-mode operation. Fiber manu-

facturers have taken this result to heart, such that the weak-guidance condition is in fact

satisfied by most commercial fibers today. Typical dimensions of a single-mode fiber

are between 5 and 10 µm for the core diameter, with the cladding diameter usually

125 µm. Refractive index differences between core and cladding are typically a small

fraction of a percent.
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The main result of the weak-guidance condition is that a set of modes appears in

which each mode is linearly polarized. This means that light having x-polarization,

for example, will enter the fiber and establish itself in a mode or in a set of modes

that preserve the x-polarization. Magnetic field is essentially orthogonal to E, and so

it would in that case lie in the y direction. The z components of both fields, although

present, are too weak to be of significance; the nearly equal core and cladding indices

lead to ray paths that are essentially parallel to the guide axis—deviating only slightly.

In fact, we may write for a given mode, Ex
.= ηHy , when η is approximated as the in-

trinsic impedance of the cladding. Therefore, in the weak-guidance approximation, the

fiber mode fields are treated as plane waves (nonuniform, of course). The designation

for these modes is LPℓm , meaning linearly polarized, with integer order parameters

ℓ and m. The latter express the numbers of variations over the two dimensions in the

circular transverse plane. Specifically, ℓ, the azimuthal mode number, is one-half the

number of power density maxima (or minima) that occur at a given radius as φ varies

from 0 to 2π. The radial mode number, m, expresses the number of maxima that occur

along a radial line (at constant φ) that extends from zero to infinity.

Although we may assume a linearly polarized field in a rectangular coordinate

system, we are obliged to work in cylindrical coordinates for obvious reasons. In

a manner that reminds us of the rectangular waveguide, it is possible to write the

x-polarized phasor electric field within a weakly guiding cylindrical fiber as a product

of three functions, each of which varies with one of the coordinate variables, ρ, φ,

and z:

Exs(ρ, φ, z) =
∑

i
Ri (ρ)�i (φ) exp(− jβi z) (144)

Each term in the summation is an individual mode of the fiber. Note that the z function

is just the propagation term, e− jβz , since we are assuming an infinitely long lossless

fiber.

The wave equation is Eq. (58), which we may write for the assumed x component

of Es , but in which the Laplacian operator is written in cylindrical coordinates:

1

ρ

∂

∂ρ

(

ρ
∂2 Exs

∂ρ

)

+
1

ρ2

∂2 Exs

∂φ2
+ (k2 − β2)Exs = 0 (145)

where we recognize that the ∂2/∂z2 operation, when applied to (144), leads to a

factor of −β2. We now substitute a single term of (144) into (145) [since each term

in (144) should alone satisfy the wave equation]. Dropping the subscript i , expanding

the radial derivative, and rearranging terms, we obtain:

ρ2

R
d2 R
dρ2

+
ρ

R
d R
dρ

+ ρ2(k2 − β2)

︸ ︷︷ ︸

ℓ2

= −
1

�

d2�

dφ2

︸ ︷︷ ︸

ℓ2

(146)

We note that the left-hand side of (146) varies only with ρ, whereas the right-hand side

varies only with φ. Since the two variables are independent, it must follow that each

side of the equation must be equal to a constant. Calling this constant ℓ2, as shown,
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we may write separate equations for each side; the variables are now separated:

d2�

dφ2
+ ℓ2� = 0 (147a)

d2 R
dρ2

+
1

ρ

d R
dρ

+
[

k2 − β2 −
ℓ2

ρ2

]

R = 0 (147b)

The solution of (147a) is of the form of the sine or cosine of φ:

�(φ) =
{

cos(ℓφ + α)

sin(ℓφ + α)
(148)

where α is a constant. The form of (148) dictates that ℓ must be an integer, since the

same mode field must occur in the transverse plane as φ is changed by 2π radians.

Since the fiber is round, the orientation of the x and y axes in the transverse plane is

immaterial, so we may choose the cosine function and set α = 0. We will thus use

�(φ) = cos(ℓφ).

The solution of (147b) to obtain the radial function is more complicated.

Eq. (147b) is a form of Bessel’s equation, whose solutions are Bessel functions

of various forms. The key parameter is the function βt = (k2 − β2)1/2, the square

of which appears in (147b). Note that βt will differ in the two regions: Within the

core (ρ < a), βt = βt1 = (n2
1k2

0 − β2)1/2; within the cladding (ρ > a), we have

βt = βt2 = (n2
2k2

0 −β2)1/2. Depending on the relative magnitudes of k and β, βt may

be real or imaginary. These possibilities lead to two solution forms of (147b):

R(ρ) =
{

AJℓ(βtρ) βt real

BKℓ(|βt |ρ) βt imaginary
(149)

where A and B are constants. Jℓ(βtρ) is the ordinary Bessel function of the first kind, of

order ℓ and of argument βtρ. Kℓ(|βt |ρ) is the modified Bessel function of the second

kind, of order ℓ, and having argument |βt |ρ. The first two orders of each of these

functions are illustrated in Figures 13.22a and b. In our study, it is necessary to know

the precise zero crossings of the J0 and J1 functions. Those shown in Figure 13.22a
are as follows: For J0, the zeros are 2.405, 5.520, 8.654, 11.792, and 14.931. For J1,

the zeros are 0, 3.832, 7.016, 10.173, and 13.324. Other Bessel function types would

contribute to the solutions in Eq. (149), but these exhibit nonphysical behavior with

radius and are not included.

We next need to determine which of the two solutions is appropriate for each

region. Within the core (ρ < a) we expect to get an oscillatory solution for the

field—much in the same manner as we found in the slab waveguide. Therefore,

we assign the ordinary Bessel function solutions to that region by requiring that

βt1 = (n2
1k2

0 − β2)1/2 is real. In the cladding (ρ > a), we expect surface waves that

decrease in amplitude with increasing radius away from the core/cladding boundary.
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Figure 13.22 (a) Ordinary Bessel

functions of the first kind, of orders 0 and 1,

and of argument βtρ, where βt is real. (b)

Modified Bessel functions of the second kind,

of orders 0 and 1, and of argument |βt |ρ,

where βt is imaginary.

The Bessel K functions provide this behavior and will apply if βt2 is imaginary.

Requiring this, we may therefore write |βt2| = (β2 − n2
2k2

0)1/2. The diminishing field

amplitude with increasing radius within the cladding allows us to neglect the effect

of the outer cladding boundary (at ρ = b), as fields there are presumed too weak for

this boundary to have any effect on the mode field.

Because βt1 and βt2 are in units of m−1, it is convenient to normalize these

quantities (while making them dimensionless) by multiplying both by the core radius,

a. Our new normalized parameters become

u ≡ aβt1 = a
√

n2
1k2

0 − β2 (150a)

w ≡ a|βt2| = a
√

β2 − n2
2k2

0 (150b)
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u and w are in direct analogy with the quantities κ1d and κ2d in the slab waveguide.

As in those parameters, β is the z component of both n1k0 and n2k0 and is the phase

constant of the guided mode. β must be the same in both regions so that the field

boundary conditions will be satisfied at ρ = a for all z and t .
We may now construct the total solution for Exs for a single guided mode, using

(144) along with (148), (149), (150a), and (150b):

Exs =
{

E0 Jℓ(uρ/a) cos(ℓφ)e− jβz ρ ≤ a
E0[Jℓ(u)/Kℓ(w)]Kℓ(wρ/a) cos(ℓφ)e− jβz ρ ≥ a

(151)

Note that we have let the coefficient A in (149) equal E0, and B = E0[Jℓ(u)/Kℓ(w)].

These choices assure that the expressions for Exs in the two regions become equal

at ρ = a, a condition approximately true as long as n1
.
= n2 (the weak-guidance

approximation).

Again, the weak-guidance condition also allows the approximation H .
= E/η,

with η taken as the intrinsic impedance of the cladding. Having Es and Hs enables us

to find the LPℓm mode average power density (or light intensity) through

|〈S〉| =

∣

∣

∣

∣

1

2
Re{Es ×H∗

s }
∣

∣

∣

∣

=
1

2
Re{Exs H∗

ys} =
1

2η
|Exs |2 (152)

Using (151) in (152), the mode intensity in W/m2 becomes

Iℓm = I0 J 2
ℓ

(
uρ

a

)

cos2(ℓφ) ρ ≤ a (153a)

Iℓm = I0

(
Jℓ(u)

Kℓ(w)

)2

K 2
ℓ

(
wρ

a

)

cos2(ℓφ) ρ ≥ a (153b)

where I0 is the peak intensity value. The role of the azimuthal mode number ℓ, as

evident in (153a) and (153b), is to determine the number of intensity variations around

the circle, 0 < φ < 2π ; it also determines the order of the Bessel functions that are

used. The influence of the radial mode number, m, is not immediately apparent in

(153a) and (153b). Briefly stated, m determines the range of allowed values of u that

occur in the Bessel function, J (uρ/a). The greater the value of m, the greater the

allowed values of u; with larger u, the Bessel function goes through more oscillations

over the range 0 < ρ < a, and so more radial intensity variations occur with larger m.

In the slab waveguide, the mode number (also m) determines the allowed ranges of

κ1. As we saw in Section 13.6, increasing κ1 at a given frequency means that the slab

ray propagates closer to the normal (smaller θ1), and so more spatial oscillations of

the field occur in the transverse direction (larger m).

The final step in the analysis is to obtain an equation from which values of

mode parameters (u, w, and β, for example) can be determined for a given operating

frequency and fiber construction. In the slab waveguide, two equations, (139) and

(140), were found using transverse resonance arguments, and these were associated
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with TE and TM waves in the slab. In our fiber, we do not apply transverse resonance

directly, but rather implicitly, by requiring that all fields satisfy the boundary conditions

at the core/cladding interface, ρ = a.7 We have already applied conditions on the

transverse fields to obtain Eq. (151). The remaining condition is continuity of the

z components of E and H. In the weak-guidance approximation, we have neglected

all z components, but we will consider them now for this last exercise. Using Faraday’s

law in point form, continuity of Hzs at ρ = a is the same as the continuity of the

z component of ∇ ×Es , provided that µ = µ0 (or is the same value) in both regions.

Specifically

(∇ × Es1)z
∣

∣

ρ=a = (∇ × Es2)z
∣

∣

ρ=a (154)

The procedure begins by expressing the electric field in (151) in terms of ρ and φ

components and then applying (154). This is a lengthy procedure and is left as an

exercise (or may be found in Reference 5). The result is the eigenvalue equation for

LP modes in the weakly guiding step index fiber:

Jℓ−1(u)

Jℓ(u)
= −

w
u

Kℓ−1(w)

Kℓ(w)
(155)

This equation, like (139) and (140), is transcendental, and it must be solved for u and

w numerically or graphically. This exercise in all of its aspects is beyond the scope of

our treatment. Instead, we will obtain from (155) the conditions for cutoff for a given

mode and some properties of the most important mode—that which has no cutoff,

and which is therefore the mode that is present in single-mode fiber.

The solution of (155) is facilitated by noting that u and w can be combined to give

a new parameter that is independent of β and depends only on the fiber construction

and on the operating frequency. This new parameter, called the normalized frequency,
or V number, is found using (150a) and (150b):

V ≡
√

u2 + w2 = ak0

√

n2
1 − n2

2 (156)

We note that an increase in V is accomplished through an increase in core radius,

frequency, or index difference.

The cutoff condition for a given mode can now be found from (155) in conjunction

with (156). To do this, we note that cutoff in a dielectric guide means that total

reflection at the core/cladding boundary just ceases, and power just begins to propagate

radially, away from the core. The effect on the electric field of Eq. (151) is to produce

a cladding field that no longer diminishes with increasing radius. This occurs in the

modified Bessel function, K (wρ/a), when w = 0. This is our general cutoff condition,

7 Recall that the equations for reflection coefficient (119) and (120), from which the phase shift on

reflection used in transverse resonance is determined, originally came from the application of the

field boundary conditions.
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which we now apply to (155), whose right-hand side becomes zero when w = 0. This

leads to cutoff values of u and V (uc and Vc), and, by (156), uc = Vc. Eq. (155) at

cutoff now becomes:

Jℓ−1(Vc) = 0 (157)

Finding the cutoff condition for a given mode is now a matter of finding the appro-

priate zero of the relevant ordinary Bessel function, as determined by (157). This

gives the value of V at cutoff for that mode.

For example, the lowest-order mode is the simplest in structure; therefore it has no

variations in φ and one variation (one maximum) in ρ. The designation for this mode

is therefore LP01, and with ℓ = 0, (157) gives the cutoff condition as J−1(Vc) = 0.

Because J−1 = J1 (true only for the J1 Bessel function), we take the first zero of J1,

which is Vc(01) = 0. The LP01 mode therefore has no cutoff and will propagate at the

exclusion of all other modes provided V for the fiber is greater than zero but less than

Vc for the next-higher-order mode. By inspecting Figure 13.22a, we see that the next

Bessel function zero is 2.405 (for the J0 function). Therefore, ℓ− 1 = 0 in (156), and

so ℓ = 1 for the next-higher-order mode. Also, we use the lowest value of mℓ(m = 1),

and the mode is therefore identified as LP11. Its cutoff V is Vc(11) = 2.405. If m = 2

were to be chosen instead, we would obtain the cutoff V number for the LP12 mode.

We use the next zero of the J0 function, which is 5.520, or Vc(12) = 5.520. In this

way, the radial mode number, m, numbers the zeros of the Bessel function of order

ℓ − 1, taken in order of increasing value.

When we follow the reasoning just described, the condition for single-mode

operation in a step index fiber is found to be

V < Vc(11) = 2.405 (158)

Then, using (156) along with k0 = 2π/λ, we find

λ > λc =
2πa

2.405

√

n2
1 − n2

2 (159)

as the requirement on free-space wavelength to achieve single-mode operation in a

step index fiber. The similarity to the single-mode condition in the slab waveguide

[Eq. (143)] is apparent. The cutoff wavelength, λc, is that for the LP11 mode. Its value

is quoted as a specification of most commercial single-mode fiber.

EXAMPLE 13.6

The cutoff wavelength of a step index fiber is quoted as λc = 1.20 µm. If the fiber is

operated at wavelength λ = 1.55 µm, what is V ?

Solution. Using (156) and (159), we find

V = 2.405
λc

λ
= 2.405

(
1.20

1.55

)

= 1.86
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The intensity profiles of the first two modes can be found using (153a) and (153b),

having determined u and w values for each mode from (155). For LP01, we find

I01 =







I0 J 2
0 (u01ρ/a) ρ ≤ a

I0

(
J0(u01)

K0(w01)

)2

K 2
0 (w01ρ/a) ρ ≥ a

(160)

and for LP11 we find

I11 =







I0 J 2
1 (u11ρ/a) cos2 φ ρ ≤ a

I0

(
J1(u11)

K1(w11)

)2

K 2
1 (w11ρ/a) cos2 φ ρ ≥ a

(161)

The two intensities for a single V value are plotted as functions of radius at φ = 0 in

Figure 13.23. We again note the lower confinement of the higher-order mode to the

core, as was true in the slab waveguide.

As V increases (accomplished by increasing the frequency, for example), existing

modes become more tightly confined to the core, while new modes of higher order

may begin to propagate. The behavior of the lowest-order mode with changing V is

depicted in Figure 13.24, where we again note that the mode becomes more tightly

confined as V increases. In determining the intensities, Eq. (155) must in general be

solved numerically to obtain u and w . Various analytic approximations to the exact

numerical solution exist, the best of which is the Rudolf-Neumann formula for the

LP01 mode, valid over the range 1.3 < V < 3.5:

w01
.
= 1.1428V − 0.9960 (162)

Having w01, u01 can be found from (156), knowing V .

Another important simplification for the LP01 mode is the approximation of its

intensity profile by a Gaussian function. An inspection of any of the intensity plots

of Figure 13.24 shows a resemblence to a Gaussian, which would be expressed as

I01 ≈ I0e−2ρ2/ρ2
0 (163)

where ρ0, termed the mode fiel radius, is defined as the radius from the fiber axis

at which the mode intensity falls to 1/e2 times its on-axis value. This radius depends

on frequency, and most generally on V. A similar approximation can be made for the

fundamental symmetric slab waveguide mode intensity. In step index fiber, the best fit

between the Gaussian approximation and the actual mode intensity as given in (160)

is given by the Marcuse formula:

ρ0

a
≈ 0.65 +

1.619

V 3/2
+

2.879

V 6
(164)
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Figure 13.23 Intensity plots from Eqs. (160) and

(161) of the first two LP modes in a weakly guiding step

index fiber, as functions of normalized radius, ρ/a. Both

functions were evaluated at the same operating

frequency; the relatively weak confinement of the LP11

mode compared to that of LP01 is evident.

The mode field radius (at a quoted wavelength) is another important specifi-

cation (along with the cutoff wavelength) of commercial single-mode fiber. It is

important to know for several reasons: First, in splicing or connecting two single-

mode fibers together, the lowest connection loss will be attained if both fibers have

the same mode field radius, and if the fiber axes are precisely aligned. Different

radii or displaced axes result in increased loss, but this can be calculated and com-

pared with measurement. Alignment tolerance (allowable deviation from precise axis

alignment) is relaxed somewhat if the fibers have larger mode field radii. Second,

a smaller mode field radius means that the fiber is less likely to suffer loss as a

result of bending. A loosely confined mode tends to radiate away more as the fiber

is bent. Finally, mode field radius is directly related to the mode phase constant, β,

since if u and w are known (found from ρ0), β can be found from (150a) or (150b).

Therefore, knowledge of how β changes with frequency (leading to the quantifi-

cation of dispersion) can be found by measuring the change in mode field radius

with frequency. Again, References 4 and 5 (and references therein) provide more

detail.

D13.12. For the fiber of Example 13.6, the core radius is given as a = 5.0 µm.

Find the mode field radius at wavelengths (a) 1.55 µm; (b) 1.30 µm.

Ans. 6.78 µm; 5.82 µm
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Figure 13.24 Intensity plots for the

LP01 mode in a weakly guiding step

index fiber. Traces are shown for V = 1.0

(solid), V = 1.2 (dashed), and V = 1.5

(dotted), corresponding to increases in

frequency in those proportions. Dashed

vertical lines indicate the core/cladding

boundary, at which for all three cases,

the J0 radial dependence in the core

connects to the K0 radial dependence in

the cladding, as demonstrated in Eq.

(160). The migration of mode power

toward the fiber axis as frequency

increases is evident.
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CHAPTER 13 PROBLEMS

13.1 The conductors of a coaxial transmission line are copper (σc = 5.8 ×
107 S/m), and the dielectric is polyethylene (ǫ′

r = 2.26, σ/ωǫ′ = 0.0002). If

the inner radius of the outer conductor is 4 mm, find the radius of the inner

conductor so that (a) Z0 = 50 	; (b) C = 100 pF/m; (c) L = 0.2 µH/m.

A lossless line can be assumed.

13.2 Find R, L , C , and G for a coaxial cable with a = 0.25 mm, b = 2.50 mm,

c = 3.30 mm, ǫr = 2.0, µr = 1, σc = 1.0 × 107 S/m, σ = 1.0 × 10−5 S/m,

and f = 300 MHz.

13.3 Two aluminum-clad steel conductors are used to construct a two-wire

transmission line. Let σAl = 3.8 × 107 S/m, σSt = 5 × 106 S/m, and

µSt = 100 µH/m. The radius of the steel wire is 0.5 in., and the aluminum

coating is 0.05 in. thick. The dielectric is air, and the center-to-center wire

separation is 4 in. Find C , L , G, and R for the line at 10 MHz.

13.4 Find R, L , C , and G for a two-wire transmission line in polyethylene at

f = 800 MHz. Assume copper conductors of radius 0.50 mm and

separation 0.80 cm. Use ǫr = 2.26 and σ/(ωǫ′) = 4.0 × 10−4.

13.5 Each conductor of a two-wire transmission line has a radius of 0.5 mm;

their center-to-center separation is 0.8 cm. Let f = 150 MHz, and assume

σ and σc are zero. Find the dielectric constant of the insulating medium

if (a) Z0 = 300 	; (b) C = 20 pF/m; (c) νp = 2.6 × 108 m/s.

13.6 The transmission line in Fig. 6.8 is filled with polyethylene. If it were filled

with air, the capacitance would be 57.6 pF/m. Assuming that the line is

lossless, find C , L , and Z0.

13.7 Pertinent dimensions for the transmission line shown in Figure 13.2 are b =
3 mm and d = 0.2 mm. The conductors and the dielectric are nonmagnetic.

(a) If the characteristic impedance of the line is 15 	, find ǫ′
r . Assume a

low-loss dielectric. (b) Assume copper conductors and operation at 2 × 108

rad/s. If RC = GL , determine the loss tangent of the dielectric.

13.8 A transmission line constructed from perfect conductors and an air

dielectric is to have a maximum dimension of 8 mm for its cross section.

The line is to be used at high frequencies. Specify the dimensions if it is

(a) a two-wire line with Z0 = 300 	; (b) a planar line with Z0 = 15 	;

(c) a 72 	 coax having a zero-thickness outer conductor.

13.9 A microstrip line is to be constructed using a lossless dielectric for which

ǫ′
r = 7.0. If the line is to have a 50 	 characteristic impedance, determine

(a) ǫr,eff; (b) w/d .

13.10 Two microstrip lines are fabricated end-to-end on a 2-mm-thick wafer of

lithium niobate (ǫ′
r = 4.8). Line 1 is of 4 mm width; line 2 (unfortunately)
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r r

Figure 13.25 See Problems 13.17 and 13.18.

has been fabricated with a 5 mm width. Determine the power loss in dB for

waves transmitted through the junction.

13.11 A parallel-plate waveguide is known to have a cutoff wavelength for the

m = 1 TE and TM modes of λc1 = 4.1 mm. The guide is operated at

wavelength λ = 1.0 mm. How many modes propagate?

13.12 A parallel-plate guide is to be constructed for operation in the TEM mode

only over the frequency range 0 < f < 3 GHz. The dielectric between

plates is to be teflon (ǫ′
r = 2.1). Determine the maximum allowable plate

separation, d .

13.13 A lossless parallel-plate waveguide is known to propagate the m = 2 TE

and TM modes at frequencies as low as 10 GHz. If the plate separation is

1 cm, determine the dielectric constant of the medium between plates.

13.14 A d = 1 cm parallel-plate guide is made with glass (n = 1.45) between

plates. If the operating frequency is 32 GHz, which modes will propagate?

13.15 For the guide of Problem 13.14, and at the 32 GHz frequency, determine the

difference between the group delays of the highest-order mode (TE or TM)

and the TEM mode. Assume a propagation distance of 10 cm.

13.16 The cutoff frequency of the m = 1 TE and TM modes in an air-filled

parallel-plate guide is known to be fc1 = 7.5 GHz. The guide is used at

wavelength λ = 1.5 cm. Find the group velocity of the m = 2 TE and TM

modes.

13.17 A parallel-plate guide is partially filled with two lossless dielectrics

(Figure 13.25) where ǫ′
r1 = 4.0, ǫ′

r2 = 2.1, and d = 1 cm. At a certain

frequency, it is found that the TM1 mode propagates through the guide

without suffering any reflective loss at the dielectric interface. (a) Find this

frequency. (b) Is the guide operating at a single TM mode at the frequency

found in part (a)? Hint: Remember Brewster’s angle?

13.18 In the guide of Figure 13.25, it is found that m = 1 modes propagating

from left to right totally reflect at the interface, so that no power is

transmitted into the region of dielectric constant ǫ′
r2. (a) Determine the

range of frequencies over which this will occur. (b) Does your part (a)

answer in any way relate to the cutoff frequency for m = 1 modes in either

region? Hint: Remember the critical angle?
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13.19 A rectangular waveguide has dimensions a = 6 cm and b = 4 cm. (a) Over

what range of frequencies will the guide operate single mode? (b) Over

what frequency range will the guide support both TE10 and TE01 modes

and no others?

13.20 Two rectangular waveguides are joined end-to-end. The guides have

identical dimensions, where a = 2b. One guide is air-filled; the other is

filled with a lossless dielectric characterized by ǫ′
r . (a) Determine the

maximum allowable value of ǫ′
r such that single-mode operation can be

simultaneously assured in both guides at some frequency. (b) Write an

expression for the frequency range over which single-mode operation will

occur in both guides; your answer should be in terms of ǫ′
r , guide

dimensions as needed, and other known constants.

13.21 An air-filled rectangular waveguide is to be constructed for single-mode

operation at 15 GHz. Specify the guide dimensions, a and b, such that the

design frequency is 10 percent higher than the cutoff frequency for the TE10

mode, while being 10 percent lower than the cutoff frequency for the

next-higher-order mode.

13.22 Using the relation 〈S〉 = 1
2
Re{Es ×H∗

s } and Eqs. (106) through (108), show

that the average power density in the TE10 mode in a rectangular waveguide

is given by

〈S〉 =
β10

2ωµ
E2

0 sin2(κ10x)az W/m2

13.23 Integrate the result of Problem 13.22 over the guide cross section, 0 < x <

a, 0 < y < b, to show that the average power in watts transmitted down the

guide is given as

Pav =
β10ab
4ωµ

E2
0 =

ab
4η

E2
0 sin θ10 W

where η =
√

µ/ǫ and θ10 is the wave angle associated with the TE10 mode.

Interpret.

13.24 Show that the group dispersion parameter, d2β/dω2, for a given mode in a

parallel-plate or rectangular waveguide is given by

d2β

dω2
= −

n
ωc

(ωc

ω

)2
[

1 −
(ωc

ω

)2
]−3/2

where ωc is the radian cutoff frequency for the mode in question [note that

the first derivative form was already found, resulting in Eq. (57)].

13.25 Consider a transform-limited pulse of center frequency f = 10 GHz, and

of full-width 2T = 1.0 ns. The pulse propagates in a lossless single-mode

rectangular guide which is air-filled and in which the 10 GHz operating

frequency is 1.1 times the cutoff frequency of the TE10 mode. Using the

result of Problem 13.24, determine the length of guide over which the
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Figure 13.26 See Problem 13.29.

pulse broadens to twice its initial width. What simple step can be taken to

reduce the amount of pulse broadening in this guide, while maintaining the

same initial pulse width? Additional background for this problem is found

in Section 12.6.

13.26 A symmetric dielectric slab waveguide has a slab thickness d = 10 µm,

with n1 = 1.48 and n2 = 1.45. If the operating wavelength is λ = 1.3 µm,

what modes will propagate?

13.27 A symmetric slab waveguide is known to support only a single pair of TE

and TM modes at wavelength λ = 1.55 µm. If the slab thickness is 5 µm,

what is the maximum value of n1 if n2 = 3.30?

13.28 In a symmetric slab waveguide, n1 = 1.50, n2 = 1.45, and d = 10 µm.

(a) What is the phase velocity of the m = 1 TE or TM mode at cutoff?

(b) How will your part (a) result change for higher-order modes (if at all)?

13.29 An asymmetric slab waveguide is shown in Figure 13.26. In this case, the

regions above and below the slab have unequal refractive indices, where

n1 > n3 > n2. (a) Write, in terms of the appropriate indices, an expression

for the minimum possible wave angle, θ1, that a guided mode may have.

(b) Write an expression for the maximum phase velocity a guided mode

may have in this structure, using given or known parameters.

13.30 A step index optical fiber is known to be single mode at wavelengths

λ > 1.2 µm. Another fiber is to be fabricated from the same materials, but it

is to be single mode at wavelengths λ > 0.63 µm. By what percentage must

the core radius of the new fiber differ from the old one, and should it be

larger or smaller?

13.31 Is the mode field radius greater than or less than the fiber core radius in

single-mode step index fiber?

13.32 The mode field radius of a step index fiber is measured as 4.5 µm at

free-space wavelength λ = 1.30 µm. If the cutoff wavelength is specified as

λc = 1.20 µm, find the expected mode field radius at λ = 1.55 µm.
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ELECTROMAGNETIC
RADIATION AND
ANTENNAS

W
e are used to the idea that loss mechanisms in electrical devices, including

transmission lines and waveguides, are associated with resistive effects

in which electrical power is transformed into heat. We have also assumed

that time-varying electric and magnetic fields are totally confined to a waveguide

or circuit. In fact, confinement is rarely complete, and electromagnetic power will

radiate away from the device to some degree. Radiation may generally be an unwanted

effect, as it represents an additional power loss mechanism, or a device may receive

unwanted signals from the surrounding region. On the other hand, a well-designed

antenna provides an efficient interface between guided waves and free-space waves

for purposes of intentionally radiating or receiving electromagnetic power. In either

case, it is important to understand the radiation phenomenon so that it can either be

used most effectively or be reduced to a minimum. In this chapter, our goal is to

establish such an understanding and to explore several practical examples of antenna

design.■

14.1 BASIC RADIATION PRINCIPLES: THE
HERTZIAN DIPOLE

The essential point of this chapter is that any time-varying current distribution will

radiate electromagnetic power. So our first task is to find the fields that radiate from a

specific time-varying source. This problem is different from any that we have explored.

In our treatment of waves and fields in bulk media and in waveguides, only the

wave motion in the medium was investigated, and the sources of the fields were not

considered. Earlier in Chapter 11, we found the current distribution in a conductor

by relating it to assumed electric and magnetic field intensities at the conductor

511



512 ENGINEERING ELECTROMAGNETICS

Figure 14.1 A differential current

filament of length d carries a current

I = I 0 cos ωt.

surface. Although this would relate the current source to the field, it is not practical

for our purposes because the conductors were considered infinite in size in at least

one dimension.

We begin by studying a current filament of infinitesimally small cross-section,

positioned within an infinite lossless medium that is specified by permeability µ and

permittivity ǫ (both real). The filament is specified as having a differential length, but

we will later extend the results easily to larger dimensions that are on the order of

a wavelength. The filament is positioned with its center at the origin and is oriented

along the z axis as shown in Figure 14.1. The positive sense of the current is taken in

the az direction. A uniform current I (t) = I0 cos ωt is assumed to flow in this short

length d . The existence of such a current would imply the existence of time-varying

charges of equal and opposite instantaneous amplitude on each end of the wire. For

this reason, the wire is termed an elemental or Hertzian dipole. This is distinct in

meaning from the more general definition of a dipole antenna that we will use later

in this chapter.

The first step is the application of the retarded vector magnetic potential expres-

sion, as presented in Section 9.5,

A =
∫

µ I [t − R/v] dL
4π R

(1)

where I is a function of the retarded time t − R/v .

When a single frequency is used to drive the antenna, v is the phase velocity of

a wave at that frequency in the medium around the current element, and is given by
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v = 1/
√

µǫ. Since no integration is required for the short filament, we have

A =
µ I [t − R/v] d

4π R
az (2)

Only the z component of A is present, for the current is only in the az direction. At

any point P at distance R from the origin, the vector potential is retarded by R/v and

so we use

I [t − R/v] = I0 cos

[

ω

(

t −
R
v

)]

= I0 cos [ωt − k R] (3)

where the wavenumber in the lossless medium is k = ω/v = ω
√

µǫ. In phasor form,

Eq. (3) becomes

Is = I0 e− jk R (4)

where the current amplitude, I0, is assumed to be real (as it will be throughout this

chapter). Incorporating (4) into (2), we find the phasor retarded potential:

As = Azs az =
µI0d
4π R

e− jk R az (5)

Using a mixed coordinate system for the moment, we now replace R by the small r
of the spherical coordinate system and then determine which spherical components

are represented by Azs . Using the projections as illustrated in Figure 14.2, we find

Ars = Azs cos θ (6a)

Aθs = −Azs sin θ (6b)

and therefore

Ars =
µI0d
4πr

cos θ e− jkr (7a)

Figure 14.2 The

resolution of Azs at P( r, θ, φ)

into the two spherical

components Ar s and Aθs.

The sketch is arbitrarily

drawn in the φ = 90◦ plane.
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Aθs = −
µI0d
4πr

sin θ e− jkr (7b)

From these two components of the vector magnetic potential at P we can now

find Bs or Hs from the definition of As ,

Bs = µHs = ∇ × As (8)

Taking the indicated partial derivatives as specified by the curl operator in spherical

coordinates, we are able to separate Eq. (8) into its three spherical components, of

which only the φ component is non-zero:

Hφs =
1

µr
∂

∂r
(r Aθs) −

1

µr
∂ Ars

∂θ
(9)

Now, substituting (7a) and (7b) into (9), we find the magnetic field:

Hφs =
I0d
4π

sin θ e− jkr
(

j
k
r

+
1

r2

)

(10)

The electric field that is associated with Eq. (10) is found from one of Maxwell’s

equations—specifically the point form of Ampere’s circuital law as applied to the

surrounding region (where conduction and convection current are absent). In phasor

form, this is Eq. (23) in Chapter 11, except that in the present case we allow for a

lossless medium having permittivity ǫ:

∇ ×Hs = jωǫEs (11)

Using (11), we expand the curl in spherical coordinates, assuming the existence of

only a φ component for Hs . The resulting electric field components are:

Ers =
1

jωǫ

1

r sin θ

∂

∂θ
(Hφs sin θ ) (12a)

Eθs =
1

jωǫ

(

−
1

r

)
∂

∂r
(r Hφs) (12b)

Then on substituting (10) into (12a) and (12b) we find:

Ers =
I0d
2π

η cos θ e− jkr
(

1

r2
+

1

jkr3

)

(13a)

Eθs =
I0d
4π

η sin θ e− jkr
(

jk
r

+
1

r2
+

1

jkr3

)

(13b)

where the intrinsic impedance is, as always, η =
√

µ/ǫ.

Equations (10), (13a), and (13b) are the fields that we set out to find. The next step

is to interpret them. We first notice the e− jkr factor appearing with each component.

By itself, this term describes a spherical wave, propagating outward from the origin

in the positive r direction with a phase constant k = 2π/λ. λ is the wavelength as
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measured in the medium. Matters are complicated by the complex r -dependent terms

in parentheses that appear in all three equations. These terms can be expressed in

polar form (magnitude and phase), leading to the following modified versions of the

three field equations for the Hertzian dipole:

Hφs =
I0kd
4πr

[

1 +
1

(kr )2

]1/2

sin θ exp[− j(kr − δφ)] (14)

Ers =
I0d

2πr2
η

[

1 +
1

(kr )2

]1/2

cos θ exp[− j(kr − δr )] (15)

Eθs =
I0kd
4πr

η

[

1 −
1

(kr )2
+

1

(kr )4

]1/2

sin θ exp[− j(kr − δθ )] (16)

where the additional phase terms are

δφ = tan−1 [ kr ] (17a)

δr = tan−1 [ kr ] −
π

2
(17b)

and

δθ = tan−1

[

kr
(

1 −
1

(kr )2

)]

(18)

In (17) and (18), the principal value is always taken when evaluating the inverse

tangent. This means that the phases as expressed in (17) and (18) will occur within

the range ±π/2 as kr varies between zero and infinity. Suppose a single frequency

(k value) is chosen, and the fields are observed at a fixed instant in time. Consider

observing the field along a path in the direction of increasing r , in which spatial

oscillations will be seen as r varies. As a result of the phase terms in (17) and (18),

the oscillation period will change with increasing r . We may demonstrate this by

considering the Hφ component as a function of r under the following conditions:

I0d = 4π θ = 90◦ t = 0

Using k = 2π/λ, Eq. (14) becomes

Hφs =
2π

λr

[

1 +

(
λ

2πr

)2
]1/2

exp

{

− j
[

2πr
λ

− tan−1

(
2πr
λ

)]}

(19)

The real part of (19) gives the real instantaneous field at t = 0:

Hφ(r, 0) =
2π

λr

[

1 +

(
λ

2πr

)2
]1/2

cos

[

tan−1

(
2πr
λ

)

−
2πr
λ

]

(20)

We next use the identity, cos(a − b) = cos a cos b + sin a sin b, in addition to

cos(tan−1 x) = 1/
√

1 + x2 and sin(tan−1 x) = x/
√

1 + x2. With these, Eq. (20)
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simplifies to

Hφ =
1

r2

[

cos

(
2πr
λ

)

+
2πr
λ

sin

(
2πr
λ

)]

(21)

A few important points emerge when studying Eq. (21). First, at distances r that

are on the order of a wavelength, the expression consists of two sinusoidal functions

having the same period but in which the amplitude of the second one increases with

increasing r . This leads to significant nonsinusoidal behavior, in that the field as a

function of r/λ will oscillate, but with nonuniform periodicity, and with positive and

negative amplitudes that differ in each cycle. Second, at distances r that are much

greater than a wavelength, the second term in (21) dominates, and the field variation

with r approaches that of a pure sinusoid. We may therefore say that, for all practical

purposes, the wave at large distances, where r >> λ, is a uniform plane wave having a

sinusoidal variation with distance (and time, of course) and a well-defined wavelength.

This wave evidently carries power away from the differential antenna.

We should now take a more careful look at the expressions containing terms

varying as 1/r3, 1/r2, and 1/r in Eqs. (10), (13a), and (13b). At points very close

to the current element, the 1/r3 term must be dominant. In the numerical example

we have used, the relative values of the terms in 1/r3, 1/r2, and 1/r in the Eθs
expression are about 250, 16, and 1, respectively, when r is 1 cm. The variation

of an electric field as 1/r3 should remind us of the electrostatic field of the dipole

(Chapter 4). The development of this concept is the subject of Problem 14.4. The

near-field terms represent energy stored in a reactive (capacitive) field, and they do

not contribute to the radiated power. The inverse-square term in the Hφs expression

is similarly important only in the region very near to the current element. It corre-

sponds to the induction field of the dc element, as found through the Biot-Savart law

(Problem 14.5).

At distances corresponding to, say, 10 or more wavelengths from the current

element, the product kr = 2πr/λ > 20π , and the fields dramatically simplify.

In Eqs. (14)–(16), the terms within brackets involving 1/(kr )2 and 1/(kr )4 can be

considered much less than unity, and can be neglected. In addition, the phases (Eqs.

(17) and (18)) all approach π/2. The effect is also seen in Eqs. (10), (13a), and (13b),

in which all terms except the inverse-distance (1/r ) term may be neglected. At such

distances, at which kr >> 1 (equivalently r >> λ), we are said to be in the far-fiel
or far-zone. The remaining field terms that have the 1/r dependence are the radiation
fields. This produces an approximately zero Ers field, leaving only Eθs and Hφs . Thus,

in the far zone:

Ers
.= 0

Eθs = j
I0kd
4πr

η sin θ e− jkr (22)

Hφs = j
I0kd
4πr

sin θ e− jkr (23)
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Figure 14.3 The polar plot of the

E -plane pattern of a vertical current

element. The crest amplitude of Eθs is

plotted as a function of the polar angle

θ at a constant distance r . The locus is

a circle.

The relation between these fields is evidently the same as that of a uniform plane wave,

which an expanding spherical wave approximates at large radii, and over regions in

which 1/r is approximately constant. Specifically,

Eθs = ηHφs (kr >> 1 or r >> λ) (24)

The variation of both radiation fields with the polar angle θ is the same; the fields

maximize in the equatorial plane (xy plane) of the current element and vanish off the

ends of the element. The variation with angle may be shown by plotting a vertical, or

E-plane pattern (assuming a vertical orientation of the current element). The E plane is

simply the coordinate plane that contains the electric field, which in our present case,

is any surface of constant φ in the spherical coordinate system. Figure 14.3 shows

an E-plane plot of Eq. (22) in polar coordinates, in which the relative magnitude of

Eθs is plotted against θ for a constant r . The length of the vector shown in the figure

represents the magnitude of Eθ , normalized to unity at θ = 90◦; the vector length is

just | sin θ |, and so as θ varies, the tip of the vector traces out a circle as shown.

A horizontal, or H-plane pattern may also be plotted for this or more complicated

antenna systems. In the present case, this would show the variation of field intensity

with φ. The H -plane of the current element (the plane that contains the magnetic field)

is any plane that is normal to the z axis. As Eθ is not a function of φ, the H -plane

plot would be simply a circle centered at the origin.

D14.1. A short antenna with a uniform current distribution in air has I0d =

3 × 10−4 A · m and λ = 10 cm. Find |Eθs | at θ = 90◦, φ = 0◦, and r =: (a)

1 cm; (b) 2 cm; (c) 20 cm; (d) 200 cm; (e) 2 m.

Ans. 125 V/m; 25 V/m; 2.8 V/m; 0.28 V/m; 0.028 V/m
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14.2 ANTENNA SPECIFICATIONS

It is important to fully describe and quantify the radiation from a general antenna. To

do this, we need to be aware of a few new concepts and definitions.

In order to evaluate the radiated power, the time-average Poynting vector must

be found (Eq. (77), Chapter 11). In the present case, this will become

< S > =
1

2
Re {Eθs H∗

φs} ar W/m2 (25)

Substituting (22) and (23) into (25), we obtain the time-average Poynting vector

magnitude:

| < S > | = Sr =
1

2

(
I0kd
4πr

)2

η sin2 θ (26)

From this we find the time-average power that crosses the surface of a sphere of radius

r , centered at the antenna:

Pr =
∫ 2π

φ=0

∫ π

θ=0

Sr r2 sin θdθdφ = 2π

(
1

2

) (
I0kd
4π

)2

η

∫ π

0

sin3 θ dθ (27)

The integral is evaluated, and we substitute k = 2π/λ. We will also assume that the

medium is free space, where η = η0
.= 120π . We finally obtain:

Pr = 40π2

(
I0d
λ

)2

W (28)

This is the same average power that would be dissipated in a resistance Rrad by

sinusoidal current of amplitude I0 in the absence of any radiation, where

Pr =
1

2
I 2
0 Rrad (29)

We call this effective resistance the radiation resistance of the antenna. For the dif-

ferential antenna, this becomes

Rrad =
2Pr

I 2
0

= 80π2

(
d
λ

)2

(30)

If, for example, the differential length is 0.01λ, then Rrad is about 0.08 
. This

small resistance is probably comparable to the ohmic resistance of a practical antenna

(providing a measure of the power dissipated through heat), and thus the efficiency

of the antenna is likely to be too low. Effective matching to the source also becomes

very difficult to achieve, for the input reactance of an electrically short antenna is

much greater in magnitude than the input resistance Rrad.

Evaluating the net power from the antenna, as carried out in (27), involved the

integration of the Poynting vector over a spherical shell of presumed large radius,

such that the antenna appeared as a point source at the sphere center. In view of this,
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a new concept of power density can be introduced; this involves the power that is

carried within a very thin cone with its vertex at the antenna location. The axis of the

cone extends along a line of radius, and thus the cone intersects the spherical surface

over which the integral in (27) is taken. That portion of the sphere area that the cone

intersects will have area A. We define the solid angle of the cone in the following

manner: If A = r2, where r is the sphere radius, then the cone is defined as having a

solid angle, 
, equal to one steradian (sr).1 As the total sphere area is 4πr2, we see

that the total solid angle contained within a sphere is 4π steradians.

As a consequence of this definition, differential area on the sphere surface can

be expressed in terms of a differential solid angle through:

d A = r2 d
 (31)

The total sphere area can then be expressed as an integral over solid angle, or equiv-

alently by an integral using spherical coordinates:

Anet = 4πr2 =
∫ 4π

0

r2d
 =
∫ 2π

0

∫ π

0

r2 sin θ dθ dφ (32)

from which we identify the differential solid angle as expressed in spherical coordi-

nates:

d
 = sin θ dθ dφ (33)

D14.2. A cone is centered on the positive z axis with its vertex at the origin.

The cone angle in spherical coordinates is θ1. (a) If the cone subtends 1 sr of

solid angle, determine θ1; (b) If θ1 = 45◦, find the solid angle subtended.

Ans. 32.8◦; π
√

2

We can now express the Poynting vector magnitude as found in Eq. (26) in units

of power per unit solid angle. To do this, we multiply the Watts/m2 power density

in (26) by the sphere area encompassed in one steradian—which is r2. The result,

known as the radiation intensity, is

K (θ, φ) = r2Sr W/Sr (34)

For the Hertzian dipole, the intensity is independent of φ, and we would have (using

(26)):

K (θ ) =
1

2

(
I0kd
4π

)2

η sin2 θ W/Sr (35)

1 This definition is related to that of the radian, in which the arc length on a circle traced out by a

change of angle of one radian is the circle radius, r .
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f

dW

dA = r2dW = r2 sinqdq df

q

r

Figure 14.4 A cone having differential solid angle,

d
, subtends a (shaded) differential area on the

surface of a sphere of radius r . This area, given by

dA = r 2d
, can also be expressed in our more

familiar spherical coordinate system as

dA = r 2 sin θdθdφ.

In the general case, the total radiated power is then

Pr =
∫ 4π

0

K d
 =
∫ 2π

0

∫ π

0

K (θ, φ) sin θdθdφ W (36)

which, for the Hertzian dipole, gives the same result as found in (28).

The advantage of using the radiation intensity for power density is that this quan-

tity is independent of the radius. This is true, however, only if the original power

density exhibits a 1/r2 dependence. In fact, all antennas have this functional depen-

dence on radius in the far zone, in that when far enough away, the antenna appears as a

point source of power. Assuming the surrounding medium does not absorb any power,

the integral of the Poynting vector over a closed sphere of any radius must give the

same result. This fact demands an inverse-square dependence on radius for the power

density. With the radial dependence removed, one can concentrate on the angular

dependence of the power density as expressed by K , and this will differ significantly

among different antennas.

A special case of a power source is an isotropic radiator, defined as having a

constant radiation intensity (i.e., K = Kiso is independent of θ and φ). This gives a

simple relation between K and the total radiated power:

Pr =
∫ 4π

0

Kiso d
 = 4π Kiso ⇒ Kiso = Pr/4π (isotropic radiator) (37)

Generally, K will vary with angle, giving more intensity in some directions than

in others. It is useful to compare the radiation intensity in a given direction to that
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which would occur if the antenna were to radiate the same net power isotropically.

The directivity function, D(θ, φ), does this.2 Using (36) and (37), we can write the

directivity:

D(θ, φ) =
K (θ, φ)

Kiso
=

K (θ, φ)

Pr/4π
=

4π K (θ, φ)
∮

K d

(38)

Of particular interest in most cases is the maximum value of the directivity, Dmax,

which is sometimes called simply D (without the θ and φ dependence indicated):

D = Dmax =
4π Kmax
∮

K d

(39)

in which the maximum radiation intensity, Kmax , will usually occur at more than one

set of values of θ and φ. Typically, the directivity is quoted in decibels, according to

the definition:

Dd B = 10 log10 (Dmax ) dB (40)

EXAMPLE 14.1

Evaluate the directivity of the Hertzian dipole.

Solution. Use Eqs. (35) and (28), with k = 2π/λ and η = η0 = 120π in the

expression:

D(θ, φ) =
4π K (θ, φ)

Pr
=

2π
( I0d

2λ

)2
120π sin2 θ

40π2
( I0d

λ

)2
=

3

2
sin2 θ

The maximum of this result, occurring at θ = π/2, is:

Dmax =
3

2
Or, in decibels : Dd B = 10 log10

(
3

2

)

= 1.76 dB

D14.3. What is the directivity in dB of a power source at the origin that

radiates: a) uniformly into the upper half-space, but nothing into the lower half-

space, b) into all space with a cos2 θ power density dependence, c) into all space

with a | cosn θ | dependence?

Ans. 3; 4.77; 10 log10(n + 1)

Usually, one would like to have a much higher directivity than what we just

found for the Hertzian dipole. One implication of a low directivity (and a problem

2 In earlier times (and in older texts), the directivity function was called the directive gain. The latter

term has since been discarded by the Antenna Standards Committee of the IEEE Antennas and

Propagation Society, in favor of the term “directivity.” Details are found in IEEE Std 145-1993.
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with the short antenna) is that power is radiated over a broad angular range in the

E plane. In most cases, it is desired to confine the power to a narrow range, or

small beamwidth, thus increasing the directivity. The 3-dB beamwidth is defined

as the separation between the two angles at which the directivity falls to one-half

its maximum value. For the Hertzian dipole, and using the D(θ, φ) result from the

previous example, the beamwidth will be the span between the two θ values on either

side of 90◦ at which sin2 θ = 1/2, or | sin θ | = 1/
√

2 = 0.707. These two values

are 45◦ and 135◦, representing a 3-dB beamwidth of 135◦ − 45◦ = 90◦. We will

see that using a longer antenna leads to both a narrower beamwidth and an increased

radiation resistance. In the H plane, radiation is uniform at all values of φ, no matter

what length is used. It is necessary to use multiple antennas in an array in order to

narrow the beam in the H -plane.

We have based several definitions on the total average power that is radiated by

the antenna, Pr . It is desirable, however, to distinguish the radiated power from the

input power that is supplied to the antenna, Pin. It is likely that Pin will be somewhat

greater than Pr because of resistive losses in the conducting materials that make up

the antenna. To overcome this resistance, a greater input voltage amplitude would be

necessary to generate a given current amplitude, I0, on which all of our power compu-

tations have been based. The antenna gain is defined in such a way to accommodate

this difference.3

Specifically, suppose that the antenna in question were to isotropically radiate

all of the electrical power that is supplied to it, which is Pin. The radiation intensity

would simply be Ks = Pin/4π . Gain is defined as the ratio of the actual radiation

intensity in a specified direction, to Ks :

G(θ, φ) =
K (θ, φ)

Ks
=

4π K (θ, φ)

Pin
(41)

Note that the term 4π K (θ, φ) would be the radiated power of an isotropic antenna

whose (in that case, constant) radiation intensity is K (θ, φ). The gain thus expresses

the ratio of the radiated power of an antenna to the input power as if the antenna were
to radiate isotropically with constant K as evaluated at a selected θ and φ. Using

(38), we can relate directivity to gain:

D(θ, φ) =
4π K (θ, φ)

Pr
=

Pin

Pr
G(θ, φ) =

1

ηr
G(θ, φ) (42)

where ηr is the radiation efficienc of the antenna, defined as the ratio of the radiated

power to the input power. Other ways of writing this are:

ηr =
Pr

Pin
=

G(θ, φ)

D(θ, φ)
=

Gmax

Dmax

(43)

which expresses ηr as the maximum gain divided by the maximum directivity.

3 The antenna gain defined in this way is sometimes called the power gain.
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14.3 MAGNETIC DIPOLE

An interesting device that is closely related to the Hertzian dipole is the magnetic
dipole antenna. Shown in Figure 14.5, the antenna consists of a circular current loop

of radius a, centered at the origin, and in the xy plane. The loop current is sinusoidal

and is given by I (t) = I0 cos ωt , as was the case in the Hertzian dipole. Although it is

possible to work out the fields for this antenna, beginning with the retarded potentials

as in the previous section, there is a much faster way.

We first note that the circulating current implies the existence of a circulating

electric field that overlaps the wire and that has the same time dependence. So one

could simply replace the wire by a circular electric field that we could designate as

E(a, t) = E0(a) cos(ωt) aφ . Such a change would replace conduction current with

displacement current, which will have no effect on the surrounding field solutions for

E and H. Next, suppose that we could replace the electric field by a magnetic field,

again of the form H(a, t) = H0 cos(ωt) aφ . This is the magnetic field that would be

generated by the Hertzian dipole at radius a in the xy plane, and it enables us to obtain

the solution for the current loop field through the following method:

We begin with Maxwell’s equations in a sourceless medium (ρv = J = 0):

∇ ×H = ǫ
∂E
∂t

(44a)

∇ × E = −µ
∂H
∂t

(44b)

∇ · E = 0 (44c)

∇ ·H = 0 (44d)

f f

z

y

x

P

q

Ef

Hq

I0

r

a

z
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I0

r

d

Figure 14.5 Magnetic (left) and electric dipole antennas are dual structures, producing identical

field patterns but with the roles of E and H interchanged.
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By inspection, we see that the equations would be unchanged if we replace E with H,

H with −E, ǫ with µ, and µ with ǫ. This illustrates the concept of duality in electro-

magnetics. The fact that the current loop electric field will have the same functional

form as the electric dipole magnetic field means that with the above substitutions,

we can construct the current loop fields directly from the electric dipole results. It

is because of this duality between field solutions of the two devices that the name,

magnetic dipole antenna, is applied to the current loop device.

Before making the substitutions, we must relate the currents and geometries of

the two devices. To do this, consider first the static electric dipole result of Chapter 4

(Eq. (35)). We can specialize this result by finding the electric field on the z axis

(θ = 0). We find

E|θ=0 =
Qd

2πǫz3
az (45)

We can next study the current loop magnetic field as found on the z axis, in which a

steady current I0 is present. This result can be obtained using the Biot–Savart Law:

H|θ=0 =
πa2 I0

2π z3
az (46)

Now the current associated with a harmonically time-varying charge on the electric

dipole, Q(t), is

I0 =
d Q
dt

= jωQ ⇒ Q =
I0

jω
(47)

If we substitute Eq. (47) into Eq. (45), and replace d with jωǫ(πa2), we find that

Eq. (45) is transformed to Eq. (46). We now perform these substitutions, along with

the replacements, H for E, −E for H, ǫ for µ, and µ for ǫ, on Eqs. (14), (15), and

(16). The results are

Eφs = − j
ωµ(πa2)I0k

4πr

[

1 +
1

(kr )2

]1/2

sin θ exp[− j(kr − δφ)] (48)

Hrs = j
ωµ(πa2)I0

2πr2

1

η

[

1 +
1

(kr )2

]1/2

cos θ exp[− j(kr − δr )] (49)

Hθs = j
ωµ(πa2)I0k

4πr
1

η

[

1 −
1

(kr )2
+

1

(kr )4

]1/2

sin θ exp[− j(kr − δθ )] (50)

where δr , δθ , and δφ are as defined in Eqs. (17) and (18). In the far-field (kr >> 1),

Eφs and Hθs survive, and these simplify to compare closely with (22) and (23). This

process of exploiting duality in electromagnetics is a very powerful method that can

be applied in many situations.
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14.4 THIN WIRE ANTENNAS

In addition to giving insights on radiation fundamentals, the Hertzian dipole results

provide us with a basis from which the fields associated with more complicated

antennas can be derived. In this section this methodology is applied to the more

practical problem of straight thin wire antennas of any length. We will find that for

a given wavelength, changes in antenna length lead to dramatic variations in (and

control of) the radiation pattern. We will also note improvement in directivity and

efficiency when using certain antenna lengths.

The basic arrangement is shown in Figure 14.6. In a simplistic way, it is possible

to think of the antenna as having been formed by bending the two wires of an open-

ended transmission line down and up by 90◦. The midpoint, at which the bends

occur, is known as the feed point. The current, originally present, persists and is

instantaneously flowing in the same direction in the lower and upper sections of the

antenna. If the current is sinusoidal, a standing wave is set up in the antenna wires,

with zeros occurring at the wire ends at z = ±ℓ. A symmetric antenna of this type is

called a dipole.

The actual current distribution on a very thin wire antenna is very nearly sinu-

soidal. With zero current at the ends, maxima occur one-quarter wavelength from

each end, and the current continues to vary in this manner toward the feed point. The

current at the feed will be small for an antenna whose overall length, 2ℓ, is an integral

number of wavelengths; but it will be equal to the maximum found at any point on

the antenna if the antenna length is an odd multiple of a half wavelength.

Figure 14.6 A thin dipole antenna driven

sinusoidally by a two-wire line. The current

amplitude distribution, shown in the adjacent

plot, is approximately linear if the overall length is

sufficiently less than a half-wavelength. Current

amplitude maximizes at the center (feed) point.
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On a short antenna, where 2ℓ is significantly less than a half-wavelength, we see

only the first portion of the sine wave; the amplitude of the current increases in an

approximately linear manner, from zero at the ends to a maximum value at the feed, as

indicated in Figure 14.6. The gap at the feed point is small and has negligible effects.

The short antenna approximation (in which a linear current variation along the length

can be assumed) is reasonable for antennas having an overall length that is less than

about one-tenth of a wavelength.

A simple extension of the Hertzian dipole results can be performed in the short

antenna regime (ℓ < λ/20). If this is the case, then retardation effects may be ne-

glected. That is, signals arriving at any field point P from the two ends of the antenna

are approximately in phase. The average current along the antenna is I0/2, where

I0 is the input current at the feed. The electric and magnetic field intensities will

thus be one-half the values given in (22) and (23), and there are no changes in the

vertical and horizontal patterns. The power will be one-quarter of its previous value,

and thus the radiation resistance will also be one-quarter of the value given by (30).

Matters improve as the antenna length is increased, but retardation effects must then

be included.

For longer lengths, the current distribution is treated the same as that of an open-

ended transmission line that propagates a TEM wave. This will be a standing wave

in which the current phasor is given by

Is(z)
.= I0 sin(kz) (51)

where the open end is located at z = 0. Also, for a TEM wave on a transmission line,

the phase constant will be β = k = ω
√

µǫ. When the line is unfolded to form the

antenna, the z axis is rotated to the vertical orientation with z = 0 occurring at the

feed point. The current in (51) is then modified to be

Is(z)
.=

{
I0 sin k(ℓ − z) (z > 0)

I0 sin k(ℓ + z) (z < 0)

}

= I0 sin k(ℓ − |z|) (52)

The strategy from here is to consider the antenna as made up of a stack of

Hertzian dipoles, each having length dz (Figure 14.7). The current amplitude in each

Hertzian is determined according to its position z along the length, and is given by

(52). The far-zone field from each Hertzian can then be written using Eq. (22), suitably

modified. We write this as a differential field contribution at a far point at distance r ′

and spherical coordinate angle, θ ′:

d Eθs = j
Is(z) k dz

4πr ′ η sin θ ′ e− jkr ′
(53)

The coordinates r ′ and θ ′ are, of course, referenced from the center of the

Hertzian, which itself is at a position z along the antenna length. We need to ref-

erence these local coordinates to the origin, which occurs at the antenna feed point.

To do this, we borrow from the methods used to analyze the static electric dipole

as presented in Sec. 4.7. Referring to Fig. 14.7, we can write the relation between



CHAPTER 14 ELECTROMAGNETIC RADIATION AND ANTENNAS 527

z cosq

dz z

q r´

r

P(r,q)

Is(z)

q´

Figure 14.7 A dipole antenna can be represented as a stack of

Hertzian dipoles whose individual phasor currents are given by I s(z).

One Hertzian dipole is shown at location z, and has length dz. When

the observation point, P, lies in the far zone, distance lines r and r ′

are approximately parallel, so they differ in length by z cos θ .

the distance r ′ from the Hertzian at location z, and the distance r from the origin to

the same point as

r ′ .= r − z cos θ (54)

where, in the far field, θ ′ .= θ , and distance lines r ′ and r are approximately parallel.

Eq. (53) is then modified to read

d Eθs = j
Is(z) k dz

4πr
η sin θ e− jk(r−z cos θ ) (55)

Notice that in obtaining (55) from (53) we have approximated r ′ .= r in the denom-

inator, as the use of Eq. (54) will make little difference when considering amplitude
variations with z and θ . The exponential term in (55) does include (54) because slight

variations in z or θ will greatly impact the phase.

Now, the total electric field at the far-zone position (r, θ ) will be the sum of all the

Hertzian dipole contributions along the antenna length, which becomes the integral:

Eθs(r, θ ) =
∫

d Eθs =
∫ ℓ

−ℓ

j
Is(z) k dz

4πr
η sin θ e− jk(r−z cos θ )

=
[

j
I0 k
4πr

η sin θ e− jkr
] ∫ ℓ

−ℓ

sin k(ℓ − |z|) e jkz cos θ dz
(56)

To evaluate the last integral, we first express the complex exponential in terms of sine

and cosine terms using the Euler identity. Denoting the bracketed terms outside the
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integral as A, we write:

Eθs(r, θ ) = A
∫ ℓ

−ℓ

sin k(ℓ − |z|)
︸ ︷︷ ︸

even

cos(kz cos θ )
︸ ︷︷ ︸

even

+ j sin k(ℓ − |z|)
︸ ︷︷ ︸

even

sin(kz cos θ )
︸ ︷︷ ︸

odd

dz

in which the even or odd parity of each term is indicated. The imaginary part of the

integrand, consisting of the product of even and odd functions, yields a term with

net odd parity; it thus integrates to zero over the symmetric limits of −ℓ to ℓ. This

leaves the real part, whose integral can be expressed over the positive z range and

then further simplified using trigonometric identities:

Eθs(r, θ ) = 2A
∫ ℓ

0

sin k(ℓ − z) cos(kz cos θ ) dz

= A
∫ ℓ

0

sin [k(ℓ − z) + kz cos θ ] + sin [k(ℓ − z) − kz cos θ ] dz

= A
∫ ℓ

0

sin [kz(cos θ − 1) + kℓ] − sin [kz(cos θ + 1) − kℓ] dz

The last integral is straightforward and evaluates as

Eθs(r, θ ) = 2A
[

cos(kℓ cos θ ) − cos(kℓ)

k sin2 θ

]

Now, reincorporating the expression for A gives the final result:

Eθs(r, θ ) = j
I0η

2πr
e− jkr

[
cos(kℓ cos θ ) − cos(kℓ)

sin θ

]

= E0 F(θ )

[
e− jkr

r

]

(57)

where we identify the field amplitude

E0 = j
I0η

2π
(58)

and where the terms involving θ and ℓ are isolated to form the E-plane pattern function
for the dipole antenna:

F(θ ) =
[

cos(kℓ cos θ ) − cos(kℓ)

sin θ

]

(59)

This important function, when normalized, is the E-plane pattern of the dipole an-

tenna. It explicitly shows how choices in dipole length affect the θ dependence in

the pattern, and it ultimately determines the dependence on ℓ of the directive gain,

directivity, and radiated power for a given current.

Plots of the magnitude of F(θ ) in the E-plane are shown in Figure 14.8a and b for

selected dipole lengths. In these, the xz plane is chosen, although the results will be

the same in any plane that contains the z axis. The plots show a trend toward narrower

radiation beams as length increases, but to the point at which secondary maxima,

or sidelobes, develop for overall antenna lengths (2ℓ) that exceed one wavelength.
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57.5˚

(a) (b)

Figure 14.8 E -plane plots, normalized to maxima of 1.0, found from F (θ ) for dipole

antennas having overall lengths, 2ℓ, of (a) λ/16 (solid black), λ/2 (dashed), and λ (red), and (b)

1.3λ (dashed), and 2λ (red). In (a), the beam-narrowing trend is evident as length increases (or

as wavelength decreases). Note that the λ/16 curves are nearly circular and thus approximate

the Hertzian dipole pattern. At lengths that exceed one wavelength, sidelobes begin to develop,

as exhibited in the smaller beams in the 1.3λ pattern in (b). As length increases, the sidelobes

grow to form the four symmetrically arranged main lobes of the 2λ antenna, where the lobe in

the first quadrant maximizes at θ = 57.5◦. The main lobes along x that were present in the 1.3λ

antenna diminish with increasing length, and have vanished completely when the length

reaches 2λ.

The presence of sidelobes is usually not wanted, mainly because they represent ra-

diated power in directions other than that of the main beam (θ = π/2). Sidelobe

power will therefore likely miss the intended receiver. In addition, the sidelobe di-

rections change with wavelength, and will therefore impart an angular spread to

a radiated signal, to an extent which will of course increase with increasing signal

bandwidth. These problems are avoided by using antenna lengths that are less than one

wavelength.

The radiation intensity can now be found for the dipole antenna by using Eq.

(34), along with (25):

K (θ ) = r2Sr =
1

2
Re

{

Eθs H∗
φs

}

r2

where Hφs = Eθs/η. Substituting (57), we obtain

K (θ ) =
ηI 2

0

8π2
[F(θ )]2 =

15 I 2
0

π
[F(θ )]2 W/Sr (60)

where in the last equality free space is assumed, in which η = η0 = 120π . The total

radiated power is now the integral of the radiation intensity over all solid angles, or

Pr =
∫ 4π

0

K d
 =
∫ 2π

0

∫ π

0

K (θ ) sin θ dθ dφ (61)

Again assuming free space we find

Pr = 30 I 2
0

∫ π

0

[F(θ )]2 sin θ dθ W (62)
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Using this result, expressions for the directivity and radiation resistance can now

be found. From Eq. (42), and using (60) and (62), the directivity in free space is

D(θ ) =
4π K (θ )

Pr
=

2[F(θ )]2

∫ π

0
[F(θ )]2 sin θ dθ

(63)

whose maximum value is

Dmax =
2 [F(θ )]2

max
∫ π

0
[F(θ )]2 sin θ dθ

(64)

Finally, the radiation resistance will be

Rrad =
2Pr

I 2
0

= 60

∫ π

0

[F(θ )]2 sin θ dθ (65)

EXAMPLE 14.2

Write the specific pattern function, and evaluate the beamwidth, directivity, and radi-

ation resistance of a half-wave dipole.

Solution. The term “half-wave” refers to the overall length, in which 2ℓ = λ/2, or

ℓ = λ/4. Therefore, kℓ = (2π/λ)(λ/4) = π/2, which is now substituted into Eq.

(59) to obtain:

F(θ ) =
cos

(
π
2

cos θ
)

sin θ
(66)

The magnitude of this function is plotted as the dashed curve in Figure 14.8a. Its

maxima (equal to 1) occur at θ = π/2, 3π/2, whereas zeros occur at θ = 0 and π .

Beamwidth is found by evaluating the solutions of

cos
(

π
2

cos θ
)

sin θ
=

1
√

2

Numerically, it is found that the two angles on either side of the maximum at θ = 90◦

that satisfy the above equation are θ1/2 = 51◦ and 129◦. The half-power beamwidth

is thus 129◦ − 51◦ = 78◦.

Directivity and radiation resistance are then found using (64) and (65), in which the

integral of [F(θ )]2 can be performed numerically. The results are Dmax = 1.64 (or

2.15 dB), and Rrad = 73 ohms.

D14.4. Evaluate the percentage of the maximum power density that is found

in the direction θ = 45◦ for dipole antennas of overall length (a) λ/4, (b) λ/2,

(c) λ.

Ans. 45.7%; 38.6%; 3.7%
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In the half-wave dipole, the standing wave current amplitude maximizes at the

feed point, and the antenna is said to be operated on resonance. As a result, the driving

point impedance, one-quarter wavelength in front of the open ends, would in principle
be purely real 4 and equal to the 73-
 radiation resistance, assuming that the antenna

is otherwise lossless. This is the primary motivation for using half-wave dipoles, in

that they provide a fairly close impedance match to conventional transmission lines

(whose characteristic impedances are on the same order).

Actually, because the antenna is essentially an unfolded transmission line, the

half-wave dipole does not behave as an ideal quarter-wave transmission line section, as

we might suspect considering the discussions in Section 14.1. An appreciable reactive

part of the input impedance will likely be present, but the half-wavelength dimension

is very close to the length at which the reactance goes to zero. Methods of evaluating

the reactance are beyond the scope of our treatment, but are considered in detail in

Ref. 1. For a thin lossless dipole of length exactly λ/2, the input impedance would be

Z in = 73 + j X , where X is in the vicinity of 40 
. The input reactance is extremely

sensitive to the antenna length and can be reduced to zero by a very slight reduction

in the overall length below λ/2, leaving the real part essentially unaffected. Similar

behavior is seen in dipoles having lengths that are integer multiples of λ/2, but in

these, radiation resistances are considerably higher, thus yielding a poorer impedance

match. At dipole lengths between half-wavelength multiples, input reactances can

be much higher (in the vicinity of j600 
) and can become sensitive to the wire

thickness, in addition to the length. In practice, when connecting a transmission line

feed, the input reactance can be zeroed by length reduction or by using matching

techniques such as those discussed in Chapter 10.

Plots of directivity and radiation resistance as functions of antenna length are

shown in Figure 14.9. Directivity increases modestly with length, whereas radiation

resistance reaches a local maximum at a length between 3λ/4 andλ. At greater lengths,

additional peaks in Rrad occur at higher levels, but performance is compromised by

the presence of sidelobes. Again, half-wave dipoles are typically used because single-

lobe behavior is assured over a broad spectral bandwidth, whereas radiation resistance

(73 
) is close to the impedance of standard transmission lines that are used to feed

the antenna.

As a final exercise in wire antennas, we consider the operation of a monopole
antenna. This is one-half a dipole plus a perfectly conducting plane, as shown in Figure

14.10a. The image principle discussed in Section 5.5 provides the image shown in

Figure 14.10b, so that the monopole and its image form a dipole. Therefore, all field

equations that pertain to the dipole apply directly to the upper half-space. The Poynting

vector is therefore also the same above the plane, but the integration to find the total

power radiated is performed only through the hemisphere that surrounds the upper

half-space. So the radiated power and the radiation resistance for the monopole are

half the corresponding values for the dipole. As an example, a quarter-wave monopole

4Think of a half-rotation (λ/4) around the Smith chart from the open circuit point, toward the

generator, where, with loss present, the end position would be somewhere on the negative real axis.
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Figure 14.9 Plots of directivity (black) and radiation resistance (red) as

functions of overall antenna length, expressed in wavelengths.

(presenting a half-wave dipole when including the image) yields a radiation resistance

of Rrad = 36.5 
.

Monopole antennas may be driven by a coaxial cable below the plane, having

its center conductor connected to the antenna through a small hole, and having its

outer conductor connected to the plane. If the region below the plane is inaccessible

or inconvenient, the coax may be laid on top of the plane and its outer conductor

connected to it. Examples of this type of antenna include AM broadcasting towers

and citizens’ band antennas.

IMonopole

IImage

I
Half of a

two-wire line

Perfectly conducting plane

(a) (b)

Figure 14.10 (a) An ideal monopole is always associated with a perfectly

conducting plane. (b) The monopole plus its image form a dipole.
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D14.5. The monopole antenna of Figure 14.10a has a length d/2 = 0.080 m

and may be assumed to carry a triangular current distribution for which the

feed current I0 is 16.0 A at a frequency of 375 MHz in free space. At point P
(r = 400 m, θ = 60◦, φ = 45◦) find (a) Hφs , (b) Eθs , and (c) the amplitude of

Pr .

Ans. j1.7 mA/m; j0.65 V/m; 1.1 mW/m2

14.5 ARRAYS OF TWO ELEMENTS

We next address the problem of establishing better control of the directional prop-

erties of antenna radiation. Although some control of directivity is achieved through

adjustment of the length of a wire antenna, these results only appear as changes in

the E-plane pattern. The H -plane pattern always remains a circle (no φ variation), as

long as a single vertical wire antenna is used. By using multiple elements in an array,

significant improvement in directivity as determined in both E and H planes can be

achieved. Our objective in this section is to lay the groundwork for the analysis of

arrays by considering the simple case of using two elements. The resulting methods

are readily extendable to multiple element configurations.

The basic configuration is shown in Figure 14.11. Here, we have our original wire

antenna with its feed at the origin, and oriented along the z axis. A second identical

antenna, parallel to the first, is positioned at location d on the x axis. The two carry

the same current amplitude, I0 (leading to far-field amplitude E0), but we allow the

second antenna current to exhibit a constant phase difference, ξ , from that of the first.

The far-field observation point, P , lies at spherical coordinates, (r, θ, φ). From this

point, the antennas appear close enough together so that (1) the radial lines, r and

x

d
s

P
ar

ax

r1

f

I0

I0
rq

ejx

Figure 14.11 The original z-directed wire

antenna with its center at the origin is now

joined by a second parallel antenna, crossing

the x axis at distance d. The second antenna

carries the same current amplitude as the first,

but with a constant phase shift, ξ . Fields are

observed at point P.
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d f

r

P

S

r1

Figure 14.12 Top view of the arrangement

of Figure 14.11 (looking down onto the x-y

plane). In the far-field approximation, the red

lines are essentially parallel, and r1
.= r − s.

r1, are essentially parallel, and (2) the electric field directions at P are essentially the

same (along aθ ). Using Eq. (57), we may therefore write the total field at P , with the

understanding that the presence of the second antenna on the x axis will introduce a

φ dependence in the field that was previously not present:

Eθ P (r, θ, φ) = E0 F(θ )

[
e− jkr

r
+

e jξ e− jkr1

r1

]

(67)

Next, we may express the distance to P from the second antenna, r1, in terms of the

distance to the first antenna, r (also the spherical coordinate radius), by noting that in

the far-field approximation we have

r1
.= r − s

where s is one leg of the right triangle formed by drawing a perpendicular line segment

between the second antenna and the line of radius, r , as shown in Figures 14.11 and

14.12. The length, s, is the projection of the antenna separation, d , onto the radial

line, r , and is found through

s = d ax · ar = d sin θ cos φ (68)

Therefore,

r1
.= r − d sin θ cos φ (69)

In the far-field, the distance, d sin θ cos φ, is very small compared to r , which

allows us to neglect the difference between r and r1 in the magnitude terms in (67)

(so that 1/r1
.= 1/r ). As we know from the dipole studies, the difference cannot be

neglected in the phase terms in (67) because phase is very sensitive to slight changes

in r . With these considerations in mind, Eq. (67) becomes

Eθ P (r, θ, φ) =
E0 F(θ )

r
[

e− jkr + e jξ e− jk(r−d sin θ cos φ)
]

(70)
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which simplifies to

Eθ P (r, θ, φ) =
E0 F(θ )

r
e− jkr [

1 + e jψ]

(71)

where

ψ = ξ + kd sin θ cos φ (72)

ψ is the net phase difference between the two antenna fields that is observed at

P(r, θ, φ). Equation (71) can be further simplified by factoring out the term e jψ/2 to

obtain

Eθ P (r, θ, φ) =
2E0 F(θ )

r
e− jkr e jψ/2 cos(ψ/2) (73)

from which we may determine the field amplitude through

|Eθ P (r, θ, φ)| =
√

Eθ P E∗
θ P =

2E0

r
|F(θ )|| cos(ψ/2)| (74)

Equation (74) demonstrates the important principle of pattern multiplication that

applies to arrays of identical antennas. Specifically, the total field magnitude consists

of the product of the pattern function magnitude, or element factor for the individual

antennas, |F(θ )|, and the normalized array factor magnitude, given by | cos(ψ/2)|.
The array factor is often denoted by

A(θ, φ) = cos(ψ/2) = cos
[

1
2

(ξ + kd sin θ cos φ)
]

(75)

Equation (74) then becomes

|Eθ P (r, θ, φ)| =
2E0

r
|F(θ ) | |A(θ, φ)| (76)

This principle can be extended to arrays of multiple elements by appropriately modi-

fying the array factor, as we will find. The underlying assumption is that the individual

array elements are essentially uncoupled; that is, they induce negligible currents in

each other. With appreciable coupling, the problem is far more complicated, and

pattern multiplication cannot be used.

In the field pattern expressed in (76), the E plane (or θ dependence) is primarily

determined by the individual elements, or by |F(θ )|. It is in the H plane where the

effect of the array is the strongest. In fact, the main reason for using an array of this

configuration is to enable control of the H -plane pattern. In the H plane (θ = π/2),
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Eqs. (75) and (76) give the field dependence on φ as

Eθ P (r, π/2, φ) ∝ A(π/2, φ) = cos
[

1
2

(ξ + kd cos φ)
]

(77)

The H -plane pattern depends on the choices of the relative current phase, ξ , and the

element spacing, d .

EXAMPLE 14.3

Investigate the H -plane pattern when the currents are in phase (ξ = 0).

Solution. With ξ = 0, Eq. (77) becomes

A(π/2, φ) = cos

[
kd
2

cos φ

]

= cos

[
πd
λ

cos φ

]

This reaches a maximum at φ = π/2 and 3π/2, or along the direction that is normal

to the plane of the antennas (the y axis). This occurs regardless of the choice of d ,

and the array is thus referred to as a broadside array. Now, by choosing d = λ/2,

we obtain A = cos[(π/2) cos φ], which becomes zero at φ = 0 and π (along the x
axis), and we have single main beams along the positive and negative y axis. When

d is increased beyond λ/2, additional maxima (sidelobes) appear as φ is varied, but

zeros still occur along the x axis if d is set to odd multiples of λ/2.

The broadside array of the previous example can be regarded as the simplest case.

More interesting behavior occurs when a nonzero phase difference exists between the

two currents, and adjustments can be performed in the phase and element spacing.

EXAMPLE 14.4

Determine the necessary conditions to establish an endfi e array, in which the maxi-

mum radiation is directed along the x axis.

Solution. Setting φ = 0 or π in Eq. (77) and requiring the equation to achieve a

maximum results in the condition:

A = cos

[
ξ

2
±

πd
λ

]

= ±1

or

ξ

2
±

πd
λ

= mπ

where m is an integer that includes 0, and where the plus sign in the bracket applies

for φ = 0, and the minus sign for φ = π . One case of practical interest occurs when

m = 0, d = λ/4, and ξ = −π/2, which satisfies the above condition when the

positive sign is chosen. Equation (77) now becomes

A(π/2, φ) = cos
[π

4
(cos φ − 1)

]

This function maximizes at φ = 0, and reaches zero at φ = π . We have thus created

an array that radiates a single main lobe along the positive x axis. The way this
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works can be understood by realizing that the phase lag in current in the element

at x = d just compensates for the phase lag that arises from the propagation delay

between the element at the origin and the one at x = d . The second element radiation

is therefore precisely in phase with the radiation from the first element. The two fields,

therefore, constructively interfere and propagate together in the forward x direction.

In the reverse direction, radiation from the antenna at x = d arrives at the origin to

find itself π radians out of phase with the radiation from the x = 0 element. The

two fields therefore destructively interfere, and no radiation occurs in the negative x
direction.

D14.6. In the broadside configuration of Example 14.3, the element spacing

is changed to d = λ. Determine (a) the ratio of the emitted intensities in the

φ = 0 and φ = 90◦ directions in the H plane, (b) the directions (values of φ)

of the main beams in the H-plane pattern, and (c) the locations (values of φ) of

the zeros in the H -plane pattern.

Ans. 1; (0, ±90◦, 180◦); (±45◦, ±135◦)

D14.7. In the endfire configuration of Example 14.4, determine the directions

(values of φ) for the main beams in the H plane if the wavelength is shortened

from λ = 4d to (a) λ = 3d , (b) λ = 2d , and (c) λ = d .

Ans. ±41.4◦; ±45.0◦; ±75.5◦

14.6 UNIFORM LINEAR ARRAYS

We next expand our treatment to arrays of more than two elements. By doing this,

more options are given to the designer that enable improvement of the directivity

and possibly an increase in the bandwidth of the antenna, for example, As might

be imagined, a full treatment of this subject would require an entire book. Here, we

consider only the case of the uniform linear array to exemplify the analysis methods

and to present some of the key results.

The uniform linear array configuration is shown in Figure 14.13. The array is

linear because the elements are arranged along a straight line (the x axis in this

case). The array is uniform because all elements are identical, have equal spacing, d ,

and carry the same current amplitude, I0, and the phase progression in current from

element to element is given by a constant value, ξ . The normalized array factor for

the two-element array can be expressed using (71) as:

|A(θ, φ)| = |A2(θ, φ)| = | cos (ψ/2) | =
1

2

∣
∣1 + e jψ ∣

∣ (78)

where the subscript 2 is applied to A to indicate that the function applies to two

elements. The array factor for a linear array of n elements as depicted in Figure 14.13
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I0

d

I0 e jx I0 e j2x I0 e j3x I0 e j4x I0 e j(n–1)x

P(r,f)

x

...

fr

Figure 14.13 H -plane diagram of a

uniform linear array of n dipoles, arranged

along x, and with individual dipoles oriented

along z (out of the page). All elements have

equal spacing, d, and carry equal current

amplitudes, I 0. Current phase shift ξ occurs

between adjacent elements. Fields are

evaluated at far-zone point, P, from which

the dipoles appear to be grouped at the

origin.

is a direct extension of (78), and becomes

|An(θ, φ)| = |An(ψ)| =
1

n
∣
∣1 + e jψ + e j2ψ + e j3ψ + e4ψ + . . . + e j(n−1)ψ

∣
∣

(79)

With the elements arranged along the x axis as shown in Figure 14.13, we have

ψ = ξ + kd sin θ cos φ, as before. The geometric progression that comprises Eq.

(79) can be expressed in closed form to give

|An(ψ)| =
1

n

∣
∣1 − e jnψ

∣
∣

∣
∣1 − e jψ

∣
∣

=
1

n

∣
∣e jnψ/2

(

e− jnψ/2 − e jnψ/2
)∣
∣

∣
∣e jψ/2

(

e− jψ/2 − e jψ/2
)∣
∣

(80)

In the far right side of Eq. (80), we recognize the Euler identities for the sine function

in both numerator and denominator, leading finally to

|An(ψ)| =
1

n
|sin(nψ/2)|
|sin(ψ/2)|

(81)

The electric field in the far zone for an array of n dipoles can now be written in terms

of An by extending the result in Eq. (76). Writing |An(ψ)| = |An(θ, φ)|, we have

|Eθ P (r, θ, φ)| =
nE0

r
|F(θ ) | |An(θ, φ)| (82)

demonstrating again the principle of pattern multiplication, in which we now have a

new array function that pertains to the linear array.
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Figure 14.14 |An(ψ )| as evaluated from Eq. (81) over the range −2π < ψ < 2π for cases in which the

number of elements, n, is (a) 4, and (b) 8.

Plots of Eq. (81) are shown in Figure 14.14 for the cases in which n = 4 and

n = 8. Note that the functions always maximize to unity when ψ = 2mπ , where m is

an integer that includes zero. These principal maxima corrrespond to the main beams

of the array pattern. The effect of increasing the number of elements is to narrow the

main lobes and to bring in more secondary maxima (sidelobes).

To see how the array pattern is shaped, it is necessary to interpret the array

function, Eq. (81), with regard to angular variation in the H plane. In this plane

(where θ = π/2), we have ψ = ξ + kd cos φ. Then, knowing that φ varies from 0 to

2π radians, cos φ varies between ±1, and we can see that ψ will be within the range

ξ − kd ≤ ψ ≤ ξ + kd (83)

Choices of the current phasing, ξ , and the antenna spacing, d , determine the range of

ψ values that will appear in the actual array pattern. This could lead, in some cases,

to a fairly narrow range in ψ that may or may not include a principal maximum. The

current phase determines the central value of ψ and the antenna spacing determines

the maximum variation of ψ that occurs about the central value as the azimuth angle

φ is varied.

As discussed in Section 14.5, a broadside array has main beams that occur normal

to the array plane (at φ = π/2, 3π/2). The condition for this is that the principal

maximum, ψ = 0, will occur at these angles. We therefore write

ψ = 0 = ξ + kd cos(π/2) = ξ

and so we would set ξ = 0 to obtain a broadside array. In this case, (83) gives −kd <

ψ < kd. The central value of ψ is thus zero, and so the principal maximum there is

included in the pattern. In the H plane, and with ξ = 0, we thus have ψ = kd cos φ.

The ψ = 0 point will always occur at φ = π/2 and 3π/2, and this will be true

regardless of the choice of element spacing d . The effect of increasing d is to enlarge

the range of ψ that results when φ varies over its range of 0 to 2π . Therefore, for a

given number of elements, the main beam will get narrower, but more sidelobes will

be present in the pattern when the element spacing is increased.
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An endfi e array requires a principal maximum to occur along the x axis. In the

H plane, we may therefore write

ψ = 0 = ξ + kd cos(0) = ξ + kd

or ξ = −kd to obtain endfire operation with a maximum occurring along the positive

x axis. This may or may not result in a main beam occurring along the negative x
axis as well.

EXAMPLE 14.5

For arrays of 4 and 8 elements, select the current phase and element spacing that will

give unidirectional endfi e operation, in which the main beam exists in the φ = 0

direction, whereas no radiation occurs in the direction of φ = π , nor in the broadside

directions (φ = ±π/2).

Solution. We want ψ = 0 when φ = 0. Therefore, from ψ = ξ + kd cos φ, we

would require that 0 = ξ +kd, or that ξ = −kd. Using 4 or 8 elements, we find either

from Eq. (81) or from Figure 14.14 that zeros will occur when ψ = ±π/2 and ±π .

Therefore, if we choose ξ = −π/2 and d = λ/4, we obtain ψ = −π/2 at φ = π/2,

3π/2, and ψ = −π at φ = π . We thus have ψ = −(π/2)(1 − cos φ). Polar plots of

the resulting array functions are shown in Figure 14.15a and b. Again, the move from

4 to 8 elements has the effect of decreasing the main beamwidth, while increasing the

sidelobe count from 1 to 3, in this case. If an odd number of elements is used with the

above choices in phasing and spacing, a small sidelobe will be present in the φ = π

direction.

In general, we may choose current phasing and element spacing to establish the

main beam in any direction. Choosing the ψ = 0 principal maximum, we may write

ψ = 0 = ξ + kd cos φmax ⇒ cos φmax = −
ξ

kd
so that the main beam direction can be changed by varying the current phasing.

y

x

y

x

(a) (b)

Figure 14.15 H -plane plots of (a) 4-element and (b)

8-element arrays having element spacing of d = λ/4, and

current phasing ξ = −π/2.
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D14.8. In an endfire linear dipole array in which ξ = −kd, what minimum

element spacing d in wavelengths results in bi-directional operation, in which

equal intensities occur in the H plane at φ = 0 and φ = π?

Ans. d = λ/2

D14.9. For a linear dipole array in which the element spacing is d = λ/4,

what current phase ξ will result in a main beam in the direction of a) φ = 30◦;

b) φ = 45◦.

Ans. −π
√

3/4; −π
√

2/4

14.7 ANTENNAS AS RECEIVERS

We next turn to the other fundamental purpose of an antenna, which is its use as

a means to detect, or receive, radiation that originates from a distant source. We

will approach this problem through study of a transmit-receive antenna system. This

is composed of two antennas, along with their supporting electronics, that play the

interchangeable roles of transmitter and detector.

Figure 14.16 shows an example of a transmit-receive arrangement, in which the

two coupled antennas together comprise a linear two-port network. Voltage V1 and

current I1 on the antenna at the left affect the voltage and current (V2 and I2) on

the antenna at the right—and vice-versa. This coupling is quantified through trans-

impedance parameters, Z12 and Z21. The governing equations take the form

V1 = Z11 I1 + Z12 I2 (84a)

V2 = Z21 I1 + Z22 I2 (84b)

Z11 and Z22 are the input impedances to antennas 1 and 2 when either antenna is

isolated and is used as a transmitter, or equivalently, if the two antennas are sufficiently

far away from each other. The real parts of Z11 and Z22 will be the associated radiation

I1

Z11

V1

I2

Z22

V2 

+

–
Z21 Z12

+

–

Figure 14.16 A pair of coupled antennas,

demonstrating Eqs. (84a) and (84b).
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resistances, provided ohmic losses in all conductors and all losses to surrounding

objects are reduced to zero. We will assume this, in addition to far-zone operation, to

be true here. The trans-impedances, Z12 and Z21, depend on the spacing and relative

orientation between the antennas, as well as on the characteristics of the surrounding

medium. A critical property of the transimpedances in a linear medium is that they

are equal. This property is the embodiment of the reciprocity theorem. Stated simply,

Z12 = Z21 (85)

Further insights can be found by inverting (84a) and (84b), and invoking the admit-

tance parameters, Yi j :

I1 = Y11V1 + Y12V2 (86a)

I2 = Y21V1 + Y22V2 (86b)

where, again, the reciprocity theorem tells us that Y12 = Y21.

Now, suppose that the terminals of antenna 2 are shorted, so that V2 = 0. In this

case, Eq. (86b) gives I ′
2 = Y21V ′

1, where the single prime denotes the condition of a

shorted antenna 2. Instead, we could short antenna 1, resulting in I ′′
1 = Y12V ′′

2 (with

the double prime indicating conditions with antenna 1 shorted). Because reciprocity

holds, it follows that

V ′′
2

I ′′
1

=
V ′

1

I ′
2

(87)

Equation (87) applies regardless of the relative positioning and orientation of the

two antennas. We know that in a given direction, each antenna will transmit a power

density whose value is determined by the antenna radiation pattern. Furthermore, we

would expect to see the current that is set up on the receiving antenna depend on that

antenna’s orientation; that is, there is a reception pattern that the receiving antenna

presents to the incoming signal. Now, for a fixed relative orientation between the two

antennas, with antenna 1 as the transmitter, and antenna 2 shorted, a certain ratio

V ′
1/I ′

2 will be obtained. This ratio will depend on the relative orientation, which in

turn will depend on the radiation pattern of antenna 1 and on the reception pattern of

antenna 2. If roles are reversed such that the transmitter now becomes the receiver,

and with antenna 1 shorted, a ratio V ′′
2 /I ′′

1 will be obtained that by Eq. (87) is the same

as before. The conclusion we must come to is that the extent to which the receiving

antenna accepts power will be determined by its radiation pattern. This means, for

example, that the main beam direction in the radiation pattern of the receiving antenna

corresponds to the direction from which it is most sensitive to incoming signals. The
radiation and receiving patterns of any antenna are the same.

We next consider a more general transmission case, in which the receiving antenna

is to deliver power to a load. Antenna 1 (Figure 14.16) serves as the transmitter, while

antenna 2 is the receiver, at which the load is attached. A primary assumption is that the

antennas are far enough away from each other so that only forward coupling (through

Z21) will be appreciable. The large separation distance means that the induced current
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I1

V1

IL

V1

IL = –I2

V2 = VL

+

–

+

–
VL

+
–

+
–

+
–

ZL

I1
I2

Z11 Z22

Z21I1 ZL

Figure 14.17 Transmitting and receiving antennas,

and their equivalent circuits.

I2 is likely to be much less than I1. Reverse coupling (through Z12) would involve

transmission of the received signal in antenna 2 back to antenna 1; specifically, the

induced current I2 further induces a (now very weak) additional current I ′
1 on antenna

1; that antenna would then carry a net current of I1 + I ′
1, where I ′

1 << I1. We

therefore assume that the product Z12 I2 can be neglected, under which Eq. (84a) gives

V1 = Z11 I1. A load impedance, ZL , is connected across the terminals of antenna 2,

as shown in the upper part of Figure 14.17. V2 is the voltage across this load. Current

IL = −I2 now flows through the load. Taking this current as positive, Eq. (84b)

becomes

V2 = VL = Z21 I1 − Z22 IL (88)

This is just the Kirchoff voltage law equation for the right-hand equivalent circuit

shown in the lower part of Figure 14.17. The term Z21 I1 is interpreted as the source

voltage for this circuit, originating from antenna 1. Using (88), along with VL = ZL IL ,

leads to

IL =
Z21 I1

Z22 + ZL
(89)

The time-average power dissipated by ZL is now

PL =
1

2
Re

{

VL I ∗
L
}

=
1

2
|IL |2 Re {ZL} =

1

2
|I1|2

∣
∣
∣
∣

Z21

Z22 + ZL

∣
∣
∣
∣

2

Re {ZL} (90)

The maximum power transferred to the load occurs when the load impedance is

conjugate-matched to the driving point impedance, or ZL = Z∗
22. Making this
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substitution in (90), and using the fact that Z22 + Z∗
22 = 2R22 gives

PL =
1

2
|I1|2

∣
∣
∣
∣

Z21

2R22

∣
∣
∣
∣

2

Re {Z22} =
|I1|2 |Z21|2

8R22

(91)

The time-average power transmitted by antenna 1 is

Pr =
1

2
Re

{

V1 I ∗
1

}

=
1

2
R11 |I1|2 (92)

By comparing the above result with Eq. (65), R11 is interpreted as the radiation

resistance of the transmitting antenna if (1) there are no resistive losses, and (2) the

current amplitude at the driving point is the maximum amplitude, I0. As we found

earlier, the latter will occur in a dipole if the overall antenna length is an integer

multiple of a half-wavelength. Using (91) and (92), we write the ratio of the received

and transmitted powers:

PL

Pr
=

|Z21|2

4R11 R22

(93)

At this stage, more understanding is needed of the transimpedance, Z21 (or Z12).

This quantity will depend on the distance and relative orientations of the two antennas,

in addition to other parameters. Figure 14.18 shows two dipole antennas, separated

q1

q2

Ei

r

a

Figure 14.18 A transmit-receive

antenna pair, showing relative orientation

angles for the case in which the antennas lie

in the same plane (in which case the φ

coordinates are not necessary). Incident

electric field, E i , from antenna 1 is shown

arriving at antenna 2, and presenting angle

α to the antenna 2 axis. The field is

perpendicular to the distance line r , and

thus α = 90◦ − θ2. Far-zone operation is

assumed, so that the two antennas appear

as point objects to each other.
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by radial distance, r , and with relative orientations that are specified by values of θ , as

measured with respect to each antenna axis.5 With antenna 1 serving as the transmitter

and antenna 2 serving as the receiver, the radiation pattern of antenna 1 is given as

a function of θ1 and φ1, while the receiving pattern of antenna 2 (equivalent to its
radiation pattern) is given as a function of θ2 and φ2.

A convenient way to express the received power in an antenna is through its

effective area, denoted Ae(θ, φ), and expressed in m2. Refer to Figure 14.18, and

consider the average power density at the receiver (antenna 2) position, originating

from the transmitter (antenna 1). As per Eqs. (25) and (26), this will be the magnitude

of the Poynting vector at that location, Sr (r, θ1, φ1) in W/m2, where a dependence on

φ is now necessary to describe all possible relative orientations. The effective area

of the receiving antenna is defined such that when the power density is multiplied by

the effective area, the power dissipated by a matched load at the receiving antenna is

obtained. With antenna 2 as the receiver, we write

PL2 = Sr1(r, θ1, φ1) × Ae2(θ2, φ2) [W] (94)

But now, using Eqs. (34) and (38), we may write the power density in terms of the

directivity of antenna 1:

Sr1(r, θ1, φ1) =
Pr1

4πr2
D1(θ1, φ1) (95)

Combining Eqs. (94) and (95), we obtain the ratio of the power received by antenna

2 to the power radiated by antenna 1:

PL2

Pr1

=
Ae2(θ2, φ2) D1(θ1, φ1)

4πr2
=

|Z21|2

4R11 R22

(96)

where the second equality repeats Eq. (93). We can solve (96) to find

|Z21|2 =
R11 R22 Ae2(θ2, φ2) D1(θ1, φ1)

πr2
(97a)

We next note that if roles are reversed, in which antenna 2 transmits to antenna 1, we

would find

|Z12|2 =
R11 R22 Ae1(θ1, φ1) D2(θ2, φ2)

πr2
(97b)

5One way to express the relative orientations is to define the z axis along the radial distance line, r . Then

angles θi and φi (i = 1, 2) are used locally to describe the orientations of the antenna axes, in which the

origins of the two spherical coordinate systems are located at each antenna feed. The φ coordinate

would thus be the angle of rotation about the r axis. For example, in Figure 14.18, with both antennas

in the plane of the page, both φ coordinates could be assigned values of zero. With antenna 2 rotated

about r such that it is normal to the page, φ2 would be 90◦, and the antennas would be cross-polarized.
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The reciprocity theorem states that Z12 = Z21. By equating Eqs. (97a) and (97b),

it therefore follows that

D1(θ1, φ1)

Ae1(θ1, φ1)
=

D2(θ2, φ2)

Ae2(θ2, φ2)
= Constant (98)

That is, the ratio of directivity to effective area for any antenna is a universal con-

stant, independent of the antenna type or the direction in which these parameters are

evaluated. To evaluate the constant, we only need to look at one case.

EXAMPLE 14.6

Find the effective area of a Hertzian dipole, and determine the general relation between

the directivity and effective area of any antenna.

Solution. With the Hertzian dipole as the receiving antenna, and having length d ,

its load voltage, VL , will depend on the electric field that it intercepts from antenna 1.

Specifically, we find the projection of the transmitting antenna field along the length

of receiving antenna. This projected field, when multiplied by the length of antenna 2,

gives the input voltage to the receiving antenna equivalent circuit. Referring to Figure

14.18, the projection angle is α, and thus the voltage that drives the Hertzian dipole

will be

Vin = Ei cos α × d = Ei d sin θ2

The equivalent circuit for the Hertzian dipole is now the same as that of the receiving

antenna as shown in Figure 14.17, except that we replace the source voltage, I1 Z21,

with Vin as given above. Assuming a conjugate-matched load (ZL = Z∗
22), the current

through the load is now

IL =
Ei d sin θ2

Z22 + ZL
=

Ei d sin θ2

2R22

The power delivered to the matched load is then

PL2 =
1

2
Re

{

VL I ∗
L
}

=
1

2
R22 |IL |2 =

(Ei d)2 sin2 θ2

8R22

(99)

For the Hertzian dipole, R22 is the radiation resistance. This was previously found to

be (Eq. (30))

R22 = Rrad = 80π2

(
d
λ

)2

Substituting this into (99), we find

PL2 =
1

640

(
Ei λ sin θ2

π

)2

[Watts] (100)

The average power density that is incident on the receiving antenna is now

Sr1(r, θ1, φ1) =
Ei (r, θ1, φ1)2

2η0

=
E2

i
240π

[Watts/m2] (101)
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Using (100) and (101), the effective area of the Hertzian is

Ae2(θ2) =
PL2

Sr1

=
3

8π
λ2 sin2(θ2) [m2] (102)

The directivity for the Hertzian dipole, derived in Example 14.1, is

D2(θ2) =
3

2
sin2(θ2) (103)

Comparing Eqs. (102) and (103), we find the relation that we are looking for: the

effective area and directivity for any antenna are related through

D(θ, φ) =
4π

λ2
Ae(θ, φ) (104)

We can now return to Eq. (96) and use Eq. (104) to rewrite the ratio of the power

delivered to the receiving antenna load to the total power radiated by the transmitting

antenna: this yields an expression that involves the simple product of the effective

areas, known as the Friis transmission formula:

PL2

Pr1

=
Ae2(θ2, φ2) D1(θ1, φ1)

4πr2
=

Ae1(θ1, φ1)Ae2(θ2, φ2)

λ2r2
(105)

The result can also be expressed in terms of the directivities:

PL2

Pr1

=
λ2

(4πr )2
D1(θ1, φ1)D2(θ2, φ2) (106)

These results provide an effective summary of what was discussed in this section,

by way of giving us a very useful design tool for a free space communication link.

Again, Eq. (105) assumes lossless antennas in the far zones of each other and gives

the power dissipated by a load that is conjugate matched to the receiving antenna

impedance.

D14.10. Given: an antenna having a maximum directivity of 6 dB and op-

erating at wavelength, λ = 1 m. What is the maximum effective area of the

antenna?

Ans. 1/π m2

D14.11. The power of 1 mW is dissipated by the matched load of a receiving

antenna of a 1-m2 effective area. This antenna is positioned at the center of the

main beam of the transmitting antenna, located 1.0 km away. What total power

is radiated by the transmitter if its directivity is (a) 10dB, (b) 7dB?

Ans. 4π kW; 8π kW
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CHAPTER 14 PROBLEMS

14.1 A short dipole-carrying current I0 cos ωt in the az direction is located at the

origin in free space. (a) If k = 1 rad/m, r = 2 m, θ = 45◦, φ = 0, and

t = 0, give a unit vector in rectangular components that shows the

instantaneous direction of E. (b) What fraction of the total average power is

radiated in the belt, 80◦ < θ < 100◦?

14.2 Prepare a curve, r vs. θ in polar coordinates, showing the locus in the φ = 0

plane where (a) the radiation field |Eθs | is one-half of its value at r = 104

m, θ = π/2; (b) average radiated power density <Sr> is one-half its value

at r = 104 m, θ = π/2.

14.3 Two short antennas at the origin in free space carry identical currents of

5 cos ωt A, one in the az direction, and one in the ay direction. Let λ = 2π

m and d = 0.1 m. Find Es at the distant point where (a) (x = 0, y = 1000,

z = 0); (b) (0, 0, 1000); (c) (1000, 0, 0). (d) Find E at (1000, 0, 0) at t = 0.

(e) Find |E| at (1000, 0, 0) at t = 0.

14.4 Write the Hertzian dipole electric field whose components are given in Eqs.

(15) and (16) in the near zone in free space where kr << 1. In this case,

only a single term in each of the two equations survives, and the phases, δr
and δθ , simplify to a single value. Construct the resulting electric field

vector and compare your result to the static dipole result (Eq. (36) in

Chapter 4). What relation must exist between the static dipole charge, Q,

and the current amplitude, I0, so that the two results are identical?

14.5 Consider the term in Eq. (14) (or in Eq. (10)) that gives the 1/r2

dependence in the Hertzian dipole magnetic field. Assuming this term

dominates and that kr << 1, show that the resulting magnetic field is the

same as that found by applying the Biot–Savart law (Eq. (2), Chapter 7) to a
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current element of differential length d , oriented along the z axis, and

centered at the origin.

14.6 Evaluate the time-average Poynting vector, <S>=
(

1
2

)

Re
{

Es ×H∗
s
}

for

the Hertzian dipole, assuming the general case that involves the field

components as given by Eqs. (10), (13a), and (13b). Compare your result to

the far-zone case, Eq. (26).

14.7 A short current element has d = 0.03λ. Calculate the radiation resistance

that is obtained for each of the following current distributions: (a) uniform,

I0; (b) linear, I (z) = I0(0.5d − |z|)/0.5d; (c) step, I0 for 0 < |z| < 0.25d
and 0.5I0 for 0.25d < |z| < 0.5d .

14.8 Evaluate the time-average Poynting vector, <S>= (1/2)Re
{

Es ×H∗
s
}

for

the magnetic dipole antenna in the far zone, in which all terms of order 1/r2

and 1/r4 are neglected in Eqs. (48), (49), and (50). Compare your result to

the far-zone power density of the Hertzian dipole, Eq. (26). In this

comparison, and assuming equal current amplitudes, what relation between

loop radius, a, and dipole length, d , would result in equal radiated powers

from the two devices?

14.9 A dipole antenna in free space has a linear current distribution with zero

current at each end, and with peak current I0 at the enter. If the length d is

0.02λ, what value of I0 is required to (a) provide a radiation-field amplitude

of 100 mV/m at a distance of 1 mi, at θ = 90◦; (b) radiate a total power of

1 W?

14.10 Show that the chord length in the E-plane plot of Figure 14.4 is equal to

b sin θ , where b is the circle diameter.

14.11 A monopole antenna extends vertically over a perfectly conducting plane,

and has a linear current distribution. If the length of the antenna is 0.01λ,

what value of I0 is required to (a) provide a radiation-field amplitude of

100 mV/m at a distance of 1 mi, at θ = 90◦; (b) radiate a total power of 1

W? Assume free space above the plane.

14.12 Find the zeros in θ for the E-plane pattern of a dipole antenna for which (a)

ℓ = λ; (b) 2ℓ = 1.3λ. Use Figure 14.8 as a guide.

14.13 The radiation field of a certain short vertical current element is

Eθs = (20/r ) sin θ e− j10πr V/m if it is located at the origin in free space.

(a) Find Eθs at P(r = 100, θ = 90◦, φ = 30◦). (b) Find Eθs at

P(100, 90◦, 30◦) if the vertical element is located at A(0.1, 90◦, 90◦).

(c) Find Eθs at P(100, 90◦, 30◦) if identical vertical elements are located at

A(0.1, 90◦, 90◦) and B(0.1, 90◦, 270◦).

14.14 For a dipole antenna of overall length 2ℓ = λ, evaluate the maximum

directivity in decibels, and the half-power beamwidth.

14.15 For a dipole antenna of overall length 2ℓ = 1.3λ, determine the locations in

θ and the peak intensity of the sidelobes, expressed as a fraction of the main
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lobe intensity. Express your result as the sidelobe level in decibels, given by

Ss [dB] = 10 log10(Sr,main/Sr,sidelobe). Again, use Figure 14.8 as a guide.

14.16 For a dipole antenna of overall length, 2ℓ = 1.5λ, (a) evaluate the locations

in θ at which the zeros and maxima in the E-plane pattern occur;

(b) determine the sidelobe level, as per the definition in Problem 14.14;

(c) determine the maximum directivity.

14.17 Consider a lossless half-wave dipole in free space, with radiation resistance,

Rrad = 73 ohms, and maximum directivity Dmax = 1.64. If the antenna

carries a 1-A current amplitude, (a) how much total power (in watts) is

radiated? (b) How much power is intercepted by a 1-m2 aperture situated at

distance r = 1 km away? The aperture is on the equatorial plane and

squarely faces the antenna. Assume uniform power density over the

aperture.

14.18 Repeat Problem 14.17, but with a full-wave antenna (2ℓ = λ). Numerical

integrals may be necessary.

14.19 Design a two-element dipole array that will radiate equal intensities in the

φ = 0, π/2, π , and 3π/2 directions in the H plane. Specify the smallest

relative current phasing, ξ , and the smallest element spacing, d.

14.20 A two-element dipole array is configured to provide zero radiation in the

broadside (φ = ±90◦) and endfire (φ = 0, 180◦) directions, but with

maxima occurring at angles in between. Consider such a set-up with ψ = π

at φ = 0 and ψ = −3π at φ = π , with both values determined in the

H -plane. a) Verify that these values give zero broadside and endfire

radiation. b) Determine the required relative current phase, ξ . b) Determine

the required element spacing, d . c) Determine the values of φ at which

maxima in the radiation pattern occur.

14.21 In the two-element endfire array of Example 14.4, consider the effect of

varying the operating frequency, f , away from the original design

frequency, f0, while maintaining the original current phasing, ξ = −π/2.

Determine the values of φ at which the maxima occur when the frequency is

changed to (a) f = 1.5 f0; (b) f = 2 f0.

14.22 Revisit Problem 14.21, but with the current phase allowed to vary with

frequency (this will automatically occur if the phase difference is

established by a simple time delay between the feed currents). Now, the

current phase difference will be ξ ′ = ξ f/ f0, where f0 is the original

(design) frequency. Under this condition, radiation will maximize in the

φ = 0 direction regardless of frequency (show this). Backward radiation

(along φ = π ) will develop, however, as the frequency is tuned away from

f0. Derive an expression for the front-to-back ratio, defined as the ratio of

the radiation intensities at φ = 0 and φ = π , expressed in decibels. Express

this result as a function of the frequency ratio f/ f0. Evaluate the

front-to-back ratio for (a) f = 1.5 f0; (b) f = 2 f0 and; (c) f = 0.75 f0.
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14.23 A turnstile antenna consists of two crossed dipole antennas, positioned in

this case in the xy plane. The dipoles are identical, lie along the x and y
axes, and are both fed at the origin. Assume that equal currents are supplied

to each antenna and that a zero phase reference is applied to the x-directed

antenna. Determine the relative phase, ξ , of the y-directed antenna so that

the net radiated electric field as measured on the positive z axis is (a) left

circularly polarized; (b) linearly polarized along the 45◦ axis between x
and y.

14.24 Consider a linear endfire array, designed for maximum radiation intensity at

φ = 0, using ξ and d values as suggested in Example 14.5. Determine an

expression for the front-to-back ratio (defined in Problem 14.22) as a

function of the number of elements, n, if n is an odd number.

14.25 A six-element linear dipole array has element spacing d = λ/2. (a) Select

the appropriate current phasing, ξ , to achieve maximum radiation along

φ = ±60◦. (b) With the phase set as in part (a), evaluate the intensities

(relative to the maximum) in the broadside and endfire directions.

14.26 In a linear endfire array of n elements, a choice of current phasing that

improves the directivity is given by the Hansen–Woodyard condition:

ξ = ±

(
2πd
λ

+
π

n

)

where the plus or minus sign choices give maximum radiation along

φ = 180◦ and 0◦, respectively. Applying this phasing may not necessarily

lead to unidirectional endfire operation (zero backward radiation), but it will

do so with the proper choice of element spacing, d . (a) Determine this

required spacing as a function of n and λ. (b) Show that the spacing as

found in part (a) approaches λ/4 for a large number of elements. (c) Show

that an even number of elements is required.

14.27 Consider an n-element broadside linear array. Increasing the number of

elements has the effect of narrowing the main beam. Demonstrate this by

evaluating the separation in φ between the zeros on either side of the

principal maximum at φ = 90◦. Show that for large n this separation is

approximated by �φ
.
= 2λ/L , where L .

= nd is the overall length of the

array.

14.28 A large ground-based transmitter radiates 10 kW and communicates with a

mobile receiving station that dissipates 1mW on the matched load of its

antenna. The receiver (not having moved) now transmits back to the ground

station. If the mobile unit radiates 100 W, what power is received (at a

matched load) by the ground station?

14.29 Signals are transmitted at a 1-m carrier wavelength between two identical

half-wave dipole antennas spaced by 1 km. The antennas are oriented such

that they are exactly parallel to each other. (a) If the transmitting antenna
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radiates 100 watts, how much power is dissipated by a matched load at the

receiving antenna? (b) Suppose the receiving antenna is rotated by 45◦

while the two antennas remain in the same plane. What is the received

power in this case?

14.30 A half-wave dipole antenna is known to have a maximum effective area,

given as Amax. (a) Write the maximum directivity of this antenna in terms of

Amax and wavelength λ. (b) Express the current amplitude, I0, needed to

radiate total power, Pr , in terms of Pr , Amax, and λ. (c) At what values of θ

and φ will the antenna effective area be equal to Amax?



AA P P E N D I X

Vector Analysis

A.1 GENERAL CURVILINEAR COORDINATES

Let us consider a general orthogonal coordinate system in which a point is located

by the intersection of three mutually perpendicular surfaces (of unspecified form or

shape),

u = constant

ν = constant

w = constant

where u, ν, and w are the variables of the coordinate system. If each variable is

increased by a differential amount and three more mutually perpendicular surfaces

are drawn corresponding to these new values, a differential volume is formed which

approximates a rectangular parallelepiped. Because u, ν, and w need not be measures

of length, such as, the angle variables of the cylindrical and spherical coordinate

systems, each must be multiplied by a general function of u, ν, and w in order to

obtain the differential sides of the parallelepiped. Thus we define the scale factors h1,

h2, and h3 each as a function of the three variables u, ν, and w and write the lengths

of the sides of the differential volume as

d L1 = h1du
d L2 = h2dν

d L3 = h3dw
In the three coordinate systems discussed in Chapter 1, it is apparent that the

variables and scale factors are

Rectangular : u = x ν = y w = z
h1 = 1 h2 = 1 h3 = 1

Cylindrical : u = ρ ν = φ w = z
h1 = 1 h2 = ρ h3 = 1

Spherical : u = r ν = θ w = φ

h1 = 1 h2 = r h3 = r sin θ

(A.1)
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The choice of u, ν, and w has been made so that au × aν = aw in all cases. More

involved expressions for h1, h2, and h3 are to be expected in other less familiar

coordinate systems.1

A.2 DIVERGENCE, GRADIENT, AND CURL IN
GENERAL CURVILINEAR COORDINATES

If the method used to develop divergence in Sections 3.4 and 3.5 is applied to the

general curvilinear coordinate system, the flux of the vector D passing through the

surface of the parallelepiped whose unit normal is au is

Du0d L2d L3 +
1

2

∂

∂u
(Dud L2d L3)du

or

Du0h2h3dν dw +
1

2

∂

∂u
(Duh2h3dν dw)du

and for the opposite face it is

−Du0h2h3dν dw +
1

2

∂

∂u
(Duh2h3dν dw)du

giving a total for these two faces of

∂

∂u
(Duh2h3dν dw)du

Because u, ν, and w are independent variables, this last expression may be written as

∂

∂u
(h2h3 Du)du dν dw

and the other two corresponding expressions obtained by a simple permutation of the

subscripts and of u, ν, and w . Thus the total flux leaving the differential volume is
[

∂

∂u
(h2h3 Du) +

∂

∂v
(h3h1 Dν) +

∂

∂w
(h1h2 Dw )

]

du dν dw

and the divergence of D is found by dividing by the differential volume

∇ ·D =
1

h1h2h3

[

∂

∂u
(h2h3 Du) +

∂

∂ν
(h3h1 Dν) +

∂

∂w
(h1h2 Dw )

]

(A.2)

The components of the gradient of a scalar V may be obtained (following the

methods of Section 4.6) by expressing the total differential of V,

dV =
∂V
∂u

du +
∂V
∂ν

dν +
∂V
∂w

dw

1 The variables and scale factors are given for nine orthogonal coordinate systems on pp. 50–59

in J. A. Stratton, Electromagnetic Theory. New York: McGraw-Hill, 1941. Each system is also

described briefly.
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in terms of the component differential lengths, h1du, h2dν, and h3dw ,

dV =
1

h1

∂V
∂u

h1du +
1

h2

∂V
∂ν

h2dν +
1

h3

∂V
∂w

h3dw

Then, because

dL = h1duau + h2dνaν + h3dwaw and dV = ∇V · dL

we see that

∇V =
1

h1

∂V
∂u

au +
1

h2

∂V
∂ν

aν +
1

h3

∂V
∂w

aw (A.3)

The components of the curl of a vectorH are obtained by considering a differential

path first in a u = constant surface and finding the circulation of H about that path,

as discussed for rectangular coordinates in Section 7.3. The contribution along the

segment in the aν direction is

Hν0h2dν −
1

2

∂

∂w
(Hνh2dν)dw

and that from the oppositely directed segment is

−Hv0h2dν −
1

2

∂

∂w
(Hνh2dν)dw

The sum of these two parts is

−
∂

∂w
(Hνh2dν)dw

or

−
∂

∂w
(h2 Hν)dν dw

and the sum of the contributions from the other two sides of the path is

∂

∂ν
(h3 Hw )dν dw

Adding these two terms and dividing the sum by the enclosed area, h2h3dν dw , we

see that the au component of curl H is

(∇ ×H)u =
1

h2h3

[

∂

∂ν
(h3 Hw ) −

∂

∂w
(h2 Hν)

]

and the other two components may be obtained by cyclic permutation. The result is

expressible as a determinant,

∇ ×H =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

au

h2h3

aν

h3h1

aw

h1h2

∂

∂u
∂

∂ν

∂

∂w

h1 Hu h2 Hν h3 Hw

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(A.4)
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The Laplacian of a scalar is found by using (A.2) and (A.3):

∇2V = ∇ · ∇V =
1

h1h2h3

[

∂

∂u

(

h2h3

h1

∂ν

∂u

)

+
∂

∂ν

(

h3h1

h2

∂V
∂ν

)

+
∂

∂w

(

h1h2

h3

∂V
∂w

)]

(A.5)

Equations (A.2) to (A.5) may be used to find the divergence, gradient, curl, and

Laplacian in any orthogonal coordinate system for which h1, h2, and h3 are known.

Expressions for ∇ ·D, ∇V , ∇ × H, and ∇2V are given in rectangular, circular

cylindrical, and spherical coordinate systems inside the back cover.

A.3 VECTOR IDENTITIES

The vector identities that follow may be proved by expansion in rectangular (or general

curvilinear) coordinates. The first two identities involve the scalar and vector triple

products, the next three are concerned with operations on sums, the following three

apply to operations when the argument is multiplied by a scalar function, the next

three apply to operations on scalar or vector products, and the last four concern the

second-order operations.

(A× B) ·C ≡ (B× C) ·A ≡ (C× A) ·B (A.6)

A× (B× C) ≡ (A ·C)B− (A ·B)C (A.7)

∇ · (A+ B) ≡ ∇ ·A+ ∇ ·B (A.8)

∇(V + W ) ≡ ∇V + ∇W (A.9)

∇ × (A+ B) ≡ ∇ × A+ ∇ × B (A.10)

∇ · (VA) ≡ A · ∇V + V ∇ ·A (A.11)

∇(V W ) ≡ V ∇W + W∇V (A.12)

∇ × (VA) ≡ ∇V × A+ V ∇ × A (A.13)

∇ · (A× B) ≡ B · ∇ × A− A · ∇ × B (A.14)

∇(A ·B) ≡ (A · ∇)B+ (B · ∇)A+ A× (∇ × B)

+B× (∇ × A) (A.15)

∇ × (A× B) ≡ A∇ ·B− B∇ ·A+ (B · ∇)A− (A · ∇)B (A.16)

∇ · ∇V ≡ ∇2V (A.17)

∇ · ∇ × A ≡ 0 (A.18)

∇ × ∇V ≡ 0 (A.19)

∇ × ∇ × A ≡ ∇(∇ ·A) − ∇2A (A.20)
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Units

We describe first the International System (abbreviated SI, for Système International

d’Unités), which is used in this book and is now standard in electrical engineering

and much of physics. It has also been officially adopted as the international system

of units by many countries, including the United States.1

The fundamental unit of length is the meter, which was defined in the lat-

ter part of the nineteenth century as the distance between two marks on a certain

platinum-iridium bar. The definition was improved in 1960 by relating the meter to

the wavelength of the radiation emitted by the rare gas isotope krypton 86 under

certain specified conditions. This so-called krypton meter was accurate to four parts

per billion, a value leading to negligible uncertainties in constructing skyscrapers or

building highways, but capable of causing an error greater than one meter in deter-

mining the distance to the moon. The meter was redefined in 1983 in terms of the

velocity of light. At that time the velocity of light was specified to be an auxiliary

constant with an exact value of 299,792,458 meters per second. As a result, the latest

definition of the meter is the distance light travels in a vacuum in 1/299,792,458

of a second. If greater accuracy is achieved in measuring c, that value will remain

299,792,458 m/s, but the length of the meter will change.

It is evident that our definition of the meter is expressed in terms of the second,

the fundamental unit of time. The second is defined as 9,192,631,770 periods of

the transition frequency between the hyperfine levels F = 4, m F = 0, and F = 3,

m F = 0 of the ground state 2s1/2 of the atom of cesium 133, unperturbed by external

1 The International System of Units was adopted by the Eleventh General Conference on Weights and

Measures in Paris in 1960, and it was officially adopted for scientific usage by the National Bureau of

Standards in 1964. It is a metric system, which interestingly enough is the only system which has ever

received specific sanction from Congress. This occurred first in 1966 and then again in 1975 with the

Metric Conversion Act, which provides for “voluntary conversion” to the metric system. No specific

time was specified, however, and we can assume that it will still be a few years before the bathroom

scale reads mass in kilograms and Miss America is a 90–60–90.

557
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fields. This definition of the second, complex though it may be, permits time to be

measured with an accuracy better than one part in 1013.

The standard mass of one kilogram is defined as the mass of an international

standard in the form of a platinum-iridium cylinder at the International Bureau of

Weights and Measures at Sèvres, France.

The unit of temperature is the kelvin, defined by placing the triple-point temper-

ature of water at 273.16 kelvins.

A fifth unit is the candela, defined as the luminous intensity of an omnidirectional

radiator at the freezing temperature of platinum (2042 K) having an area of 1/600,000

square meter and under a pressure of 101,325 newtons per square meter.

The last of the fundamental units is the ampere. Before explicitly defining the

ampere, we must first define the newton. It is defined in terms of the other fundamental

units from Newton’s third law as the force required to produce an acceleration of

one meter per second per second on a one-kilogram mass. We now may define the

ampere as that constant current, flowing in opposite directions in two straight parallel

conductors of infinite length and negligible cross section, separated one meter in

vacuum, that produces a repulsive force of 2×10−7 newton per meter length between

the two conductors. The force between the two parallel conductors is known to be

F = µ0

I 2

2πd
and thus

2 × 10−7 = µ0

1

2π
or

µ0 = 4π × 10−7 (kg · m/A2 · s2, or H/m)

We thus find that our definition of the ampere has been formulated in such a way as

to assign an exact, simple, numerical value to the permeability of free space.

Returning to the International System, the units in which the other electric and

magnetic quantities are measured are given in the body of the text at the time each

quantity is defined, and all of them can be related to the basic units already defined.

For example, our work with the plane wave in Chapter 11 shows that the velocity

with which an electromagnetic wave propagates in free space is

c =
1

√
µ0ǫ0

and thus

ǫ0 =
1

µ0c2
=

1

4π10−7c2
= 8.854 187 817 × 10−12 F/m

It is evident that the numerical value of ǫ0 depends upon the defined value of the

velocity of light in vacuum, 299,792,458 m/s.

The units are also given in Table B.1 for easy reference. They are listed in the

same order in which they are defined in the text.
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Table B.1 Names and units of the electric and magnetic quantities in the International

System (in the order in which they appear in the text)

Symbol Name Unit Abbreviation

ν Velocity meter/second m/s

F Force newton N

Q Charge coulomb C

r, R Distance meter m

ǫ0, ǫ Permittivity farad/meter F/m

E Electric field intensity volt/meter V/m

ρν Volume charge density coulomb/meter3 C/m3

ν Volume meter3 m3

ρL Linear charge density coulomb/meter C/m

ρS Surface charge density coulomb/meter2 C/m2

� Electric flux coulomb C

D Electric flux density coulomb/meter2 C/m2

S Area meter2 m2

W Work, energy joule J

L Length meter m

V Potential volt V

p Dipole moment coulomb-meter C·m
I Current ampere A

J Current density ampere/meter2 A/m2

µe, µh Mobility meter2/volt-second m2/V·s
e Electronic charge coulomb C

σ Conductivity siemens/meter S/m

R Resistance ohm �

P Polarization coulomb/meter2 C/m2

χe,m Susceptibility

C Capacitance farad F

Rs Sheet resistance ohm per square �

H Magnetic field intensity ampere/meter A/m

K Surface current density ampere/meter A/m

B Magnetic flux density tesla (or weber/meter2) T (or Wb/m2)

µ0, µ Permeability henry/meter H/m

	 Magnetic flux weber Wb

Vm Magnetic scalar potential ampere A

A Vector magnetic potential weber/meter Wb/m

T Torque newton-meter N·m
m Magnetic moment ampere-meter2 A·m2

M Magnetization ampere/meter A/m

R Reluctance ampere-turn/weber A·t/Wb

L Inductance henry H

M Mutual inductance henry H

(Continued)
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Table B.1 (Continued)

Symbol Name Unit Abbreviation

ω Radian frequency radian/second rad/s

c Velocity of light meter/second m/s

λ Wavelength meter m

η Intrinsic impedance ohm �

k Wave number meter−1 m−1

α Attenuation constant neper/meter Np/m

β Phase constant radian/meter rad/m

f Frequency hertz Hz

S Poynting vector watt/meter2 W/m2

P Power watt W

δ Skin depth meter m

Ŵ Reflection coefficient

s Standing wave ratio

γ Propagation constant meter−1 m−1

G Conductance siemen S

Z Impedance ohm �

Y Admittance siemen S

Q Quality factor

Finally, other systems of units have been used in electricity and magnetism. In the

electrostatic system of units (esu), Coulomb’s law is written for free space,

F =
Q1 Q2

R2
(esu)

The permittivity of free space is assigned the value of unity. The gram and centimeter

are the fundamental units of mass and distance, and the esu system is therefore a cgs

system. Units bearing the prefix stat- belong to the electrostatic system of units.

In a similar manner, the electromagnetic system of units (emu) is based on

Coulomb’s law for magnetic poles, and the permeability of free space is unity. The

prefix ab- identifies emu units. When electric quantities are expressed in esu units,

magnetic quantities are expressed in emu units, and both appear in the same equa-

tion (such as Maxwell’s curl equations), the velocity of light appears explicitly. This

follows from noting that in esu ǫ0 = 1, but µ0ǫ0 = 1/c2, and therefore µ0 = 1/c2,

and in emu µ0 = 1, and hence ǫ0 = 1/c2. Thus, in this intermixed system known as

the Gaussian system of units,

∇ ×H = 4πJ+
1

c
∂D
∂t

(Gaussian)

Other systems include the factor 4π explicitly in Coulomb’s law, and it then does

not appear in Maxwell’s equations. When this is done, the system is said to be rational-

ized. Hence the Gaussian system is an unrationalized cgs system (when rationalized

it is known as the Heaviside–Lorentz system), and the International System we have

used throughout this book is a rationalized mks system.
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Table B.2 Conversion of International to Gaussian and other units

(use c = 2.997 924 58 × 108)

Quantity 1 mks unit = Gaussian units = Other units

d 1 m 102 cm 39.37 in.

F 1 N 105 dyne 0.2248 lb f
W 1 J 107 erg 0.7376 ft-lb f
Q 1 C 10c statC 0.1 abC

ρν 1 C/m3 10−5c statC/cm3 10−7 abC/cm3

D 1 C/m2 4π10−3c (esu) 4π10−5 (emu)

E 1 V/m 104/c statV/cm 106 abV/cm

V 1 V 106/c statV 108 abV

I 1 A 0.1 abA 10c statA

H 1 A/m 4π10−3 oersted 0.4πc (esu)

Vm 1 A·t 0.4π gilbert 40πc (esu)

B 1 T 104 gauss 100/c (esu)

	 1 Wb 108 maxwell 106/c (esu)

A 1 Wb/m 106 maxwell/cm

R 1 � 109 ab� 105/c2 stat�

L 1 H 109 abH 105/c2 statH

C 1 F 10−5c2 statF 10−9 abF

σ 1 S/m 10−11 abS/cm 10−7c2 statS/cm

µ 1 H/m 107/4π (emu) 103/4πc2 (esu)

ǫ 1 F/m 4π10−7c2 (esu) 4π10−11 (emu)

Table B.2 gives the conversion factors between the more important units of the

International System (or rationalized mks system) and the Gaussian system, and

several other assorted units.

Table B.3 lists the prefixes used with any of the SI units, their abbreviations,

and the power of ten each represents. Those checked are widely used. Both the

prefixes and their abbreviations are written without hyphens, and therefore 10−6 F =
1 microfarad = 1µF = 1000 nanofarads = 1000 nF, and so forth.

Table B.3 Standard prefixes used with SI units

Prefi Abbrev. Meaning Prefi Abbrev. Meaning

atto- a- 10−18 deka- da- 101

femto- f- 10−15 hecto- h- 102

pico- p- 10−12 kilo- k- 103

nano- n- 10−9 mega- M- 106

micro- µ- 10−6 giga- G- 109

milli- m- 10−3 tera- T- 1012

centi- c- 10−2 peta- P- 1015

deci- d- 10−1 exa- E- 1018



C A P P E N D I X

Material Constants

Table C.1 lists typical values of the relative permittivity ǫ′
r or dielectric constant for

common insulating and dielectric materials, along with representative values for the

loss tangent. The values should only be considered representative for each mate-

rial, and they apply to normal temperature and humidity conditions and to very low

audio frequencies. Most of them have been taken from Reference Data for Radio
Engineers.1 The Standard Handbook for Electrical Engineers,2 and von Hippel,3

and these volumes may be referred to for further information on these and other

materials.

Table C.2 gives the conductivity for a number of metallic conductors, for a

few insulating materials, and for several other materials of general interest. The

values have been taken from the references listed previously, and they apply at

zero frequency and at room temperature. The listing is in the order of decreasing

conductivity.

Some representative values of the relative permeability for various diamagnetic,

paramagnetic, ferrimagnetic, and ferromagnetic materials are listed in Table C.3.

They have been extracted from the references listed previously, and the data for the

ferromagnetic materials is only valid for very low magnetic flux densities. Maximum

permeabilities may be an order of magnitude higher.

Values are given in Table C.4 for the charge and rest mass of an electron, the

permittivity and permeability of free space, and the velocity of light.4

1 International Telephone and Telegraph Co., Inc.: Reference Data for Radio Engineers, 7th ed.,

Howard W. Sams & Co., Indianapolis, IN, 1985.
2 See References for Chapter 5.
3 von Hippel, A. R. Dielectric Materials and Applications. Cambridge, Mass. and New York: The

Technology Press of the Massachusetts Institute of Technology and John Wiley & Sons, 1954.
4 Cohen, E. R., and B. N. Taylor. The 1986 Adjustment of the Fundamental Physical Constants.
Elmsford, N.Y.: Pergamon Press, 1986.
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Table C.1 ǫ′
r and ǫ′′/ǫ′

Material ǫ
′
r ǫ

′′/ǫ′

Air 1.0005

Alcohol, ethyl 25 0.1

Aluminum oxide 8.8 0.000 6

Amber 2.7 0.002

Bakelite 4.74 0.022

Barium titanate 1200 0.013

Carbon dioxide 1.001

Ferrite (NiZn) 12.4 0.000 25

Germanium 16

Glass 4–7 0.002

Ice 4.2 0.05

Mica 5.4 0.000 6

Neoprene 6.6 0.011

Nylon 3.5 0.02

Paper 3 0.008

Plexiglas 3.45 0.03

Polyethylene 2.26 0.000 2

Polypropylene 2.25 0.000 3

Polystyrene 2.56 0.000 05

Porcelain (dry process) 6 0.014

Pyranol 4.4 0.000 5

Pyrex glass 4 0.000 6

Quartz (fused) 3.8 0.000 75

Rubber 2.5–3 0.002

Silica or SiO2 (fused) 3.8 0.000 75

Silicon 11.8

Snow 3.3 0.5

Sodium chloride 5.9 0.000 1

Soil (dry) 2.8 0.05

Steatite 5.8 0.003

Styrofoam 1.03 0.000 1

Teflon 2.1 0.000 3

Titanium dioxide 100 0.001 5

Water (distilled) 80 0.04

Water (sea) 4

Water (dehydrated) 1 0

Wood (dry) 1.5–4 0.01



564 ENGINEERING ELECTROMAGNETICS

Table C.2 σ

Material σ, S/m Material σ, S/m

Silver 6.17 × 107 Nichrome 0.1 × 107

Copper 5.80 × 107 Graphite 7 × 104

Gold 4.10 × 107 Silicon 2300

Aluminum 3.82 × 107 Ferrite (typical) 100

Tungsten 1.82 × 107 Water (sea) 5

Zinc 1.67 × 107 Limestone 10−2

Brass 1.5 × 107 Clay 5 × 10−3

Nickel 1.45 × 107 Water (fresh) 10−3

Iron 1.03 × 107 Water (distilled) 10−4

Phosphor bronze 1 × 107 Soil (sandy) 10−5

Solder 0.7 × 107 Granite 10−6

Carbon steel 0.6 × 107 Marble 10−8

German silver 0.3 × 107 Bakelite 10−9

Manganin 0.227 × 107 Porcelain (dry process) 10−10

Constantan 0.226 × 107 Diamond 2 × 10−13

Germanium 0.22 × 107 Polystyrene 10−16

Stainless steel 0.11 × 107 Quartz 10−17

Table C.3 µr

Material µr Material µr

Bismuth 0.999 998 6 Powdered iron 100

Paraffin 0.999 999 42 Machine steel 300

Wood 0.999 999 5 Ferrite (typical) 1000

Silver 0.999 999 81 Permalloy 45 2500

Aluminum 1.000 000 65 Transformer iron 3000

Beryllium 1.000 000 79 Silicon iron 3500

Nickel chloride 1.000 04 Iron (pure) 4000

Manganese sulfate 1.000 1 Mumetal 20 000

Nickel 50 Sendust 30 000

Cast iron 60 Supermalloy 100 000

Cobalt 60

Table C.4 Physical constants

Quantity Value

Electron charge e = (1.602 177 33 ± 0.000 000 46) × 10−19 C

Electron mass m = (9.109 389 7 ± 0.000 005 4) × 10−31 kg

Permittivity of free space ǫ0 = 8.854 187 817 × 10−12 F/m

Permeability of free space µ0 = 4π10−7 H/m

Velocity of light c = 2.997 924 58 × 108 m/s
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The Uniqueness
Theorem

Let us assume that we have two solutions of Laplace’s equation, V1 and V2, both

general functions of the coordinates used. Therefore

∇2V1 = 0

and

∇2V2 = 0

from which

∇2(V1 − V2) = 0

Each solution must also satisfy the boundary conditions, and if we represent the

given potential values on the boundaries by Vb, then the value of V1 on the boundary

V1b and the value of V2 on the boundary V2b must both be identical to Vb,

V1b = V2b = Vb

or

V1b − V2b = 0

In Section 4.8, Eq. (43), we made use of a vector identity,

∇ · (VD) ≡ V (∇ ·D) + D · (∇V )

which holds for any scalar V and any vector D. For the present application we shall

select V1 − V2 as the scalar and ∇(V1 − V2) as the vector, giving

∇ · [(V1 − V2)∇(V1 − V2)] ≡ (V1 − V2)[∇ · ∇(V1 − V2)]

+ ∇(V1 − V2) · ∇(V1 − V2)
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which we shall integrate throughout the volume enclosed by the boundary surfaces

specified:
∫

vol

∇ · [(V1 − V2)∇(V1 − V2)] dν

≡

∫

vol

(V1 − V2)[∇ · ∇(V1 − V2)] dν +

∫

vol

[∇(V1 − V2)]2 dν (D.1)

The divergence theorem allows us to replace the volume integral on the left side of

the equation with the closed surface integral over the surface surrounding the volume.

This surface consists of the boundaries already specified on which V1b = V2b, and

therefore
∫

vol

∇ · [(V1 − V2)∇(V1 − V2)] dν =

∮

S
[(V1b − V2b)∇(V1b − V2b)] · dS = 0

One of the factors of the first integral on the right side of (D.1) is ∇ · ∇(V1 − V2),

or ∇2(V1 −V2), which is zero by hypothesis, and therefore that integral is zero. Hence

the remaining volume integral must be zero:
∫

vol

[∇(V1 − V2)]2 dν = 0

There are two reasons why an integral may be zero: either the integrand (the

quantity under the integral sign) is everywhere zero, or the integrand is positive in

some regions and negative in others, and the contributions cancel algebraically. In this

case the first reason must hold because [∇(V1 − V2)]2 cannot be negative. Therefore

[∇(V1 − V2)]2 = 0

and

∇(V1 − V2) = 0

Finally, if the gradient of V1 −V2 is everywhere zero, then V1 −V2 cannot change

with any coordinates, and

V1 − V2 = constant

If we can show that this constant is zero, we shall have accomplished our proof. The

constant is easily evaluated by considering a point on the boundary. Here V1 − V2 =

V1b − V2b = 0, and we see that the constant is indeed zero, and therefore

V1 = V2

giving two identical solutions.

The uniqueness theorem also applies to Poisson’s equation, for if ∇2V1 = −ρν/ǫ

and ∇2V2 = −ρν/ǫ, then ∇2(V1−V2) = 0 as before. Boundary conditions still require

that V1b − V2b = 0, and the proof is identical from this point.

This constitutes the proof of the uniqueness theorem. Viewed as the answer to a

question, “How do two solutions of Laplace’s or Poisson’s equation compare if they

both satisfy the same boundary conditions?” the uniqueness theorem should please

us by its ensurance that the answers are identical. Once we can find any method of

solving Laplace’s or Poisson’s equation subject to given boundary conditions, we

have solved our problem once and for all. No other method can ever give a different

answer.
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Origins of the Complex
Permittivity

As we learned in Chapter 5, a dielectric can be modeled as an arrangement of atoms

and molecules in free space, which can be polarized by an electric field. The field

forces positive and negative bound charges to separate against their Coulomb attrac-

tive forces, thus producing an array of microscopic dipoles. The molecules can be

arranged in an ordered and predictable manner (such as in a crystal) or may exhibit

random positioning and orientation, as would occur in an amorphous material or a

liquid. The molecules may or may not exhibit permanent dipole moments (existing

before the field is applied), and if they do, they will usually have random orienta-

tions throughout the material volume. As discussed in Section 5.7, the displacement of

charges in a regular manner, as induced by an electric field, gives rise to a macroscopic

polarization, P, defined as the dipole moment per unit volume:

P = lim
�ν→0

1

�ν

N�ν
∑

i=1

pi (E.1)

where N is the number of dipoles per unit volume and pi is the dipole moment of the

ith atom or molecule, found through

pi = Qidi (E.2)

Qi is the positive one of the two bound charges composing dipole i , and di is the

distance between charges, expressed as a vector from the negative to the positive

charge. Again, borrowing from Section 5.7, the electric field and the polarization are

related through

P = ǫ0χeE (E.3)

where the electric susceptibility, χe, forms the more interesting part of the dielectric

constant:

ǫr = 1 + χe (E.4)
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Therefore, to understand the nature of ǫr , we need to understand χe, which in turn

means that we need to explore the behavior of the polarization, P.

Here, we consider the added complications of how the dipoles respond to a time-

harmonic field that propagates as a wave through the material. The result of applying

such a forcing function is that oscillating dipole moments are set up, and these in turn
establish a polarization wave that propagates through the material. The effect is to

produce a polarization function,P(z, t), having the same functional form as the driving

field, E(z, t). The molecules themselves do not move through the material, but their

oscillating dipole moments collectively exhibit wave motion, just as waves in pools of

water are formed by the up and down motion of the water. From here, the description

of the process gets complicated and in many ways beyond the scope of our present

discussion. We can form a basic qualitative understanding, however, by considering

the classical description of the process, which is that the dipoles, once oscillating,

behave as microscopic antennas, re-radiating fields that in turn co-propagate with

the applied field. Depending on the frequency, there will be some phase difference

between the incident field and the radiated field at a given dipole location. This

results in a net field (formed through the superposition of the two) that now interacts

with the next dipole. Radiation from this dipole adds to the previous field as before,

and the process repeats from dipole to dipole. The accumulated phase shifts at each

location are manifested as a net slowing down of the phase velocity of the resultant

wave. Attenuation of the field may also occur which, in this classical model, can be

accounted for by partial phase cancellation between incident and radiated fields.

For our classical description, we use the Lorentz model, in which the medium

is considered as an ensemble of identical fixed electron oscillators in free space. The

Coulomb binding forces on the electrons are modeled by springs that attach the elec-

trons to the positive nuclei. We consider electrons for simplicity, but similar models

can be used for any bound charged particle. Figure E.1 shows a single oscillator,

located at position z in the material, and oriented along x . A uniform plane wave,

assumed to be linearly polarized along x , propagates through the material in the z
direction. The electric field in the wave displaces the electron of the oscillator in the

x direction through a distance represented by the vector d; a dipole moment is thus

established,

p(z, t) = −ed(z, t) (E.5)

Figure E.1 Atomic dipole model, with the Coulomb force

between positive and negative charge modeled by that of a

spring having spring constant ks . An applied electric field

displaces the electron through distance d, resulting in dipole

moment p = −ed.
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where the electron charge, e, is treated as a positive quantity. The applied force is

Fa(z, t) = −eE(z, t) (E.6)

We need to remember that E(z, t) at a given oscillator location is the net field, com-

posed of the original applied field plus the radiated fields from all other oscillators.

The relative phasing between oscillators is precisely determined by the spatial and

temporal behavior of E(z, t).
The restoring force on the electron, Fr , is that produced by the spring which is

assumed to obey Hooke’s law:

Fr (z, t) = −ksd(z, t) (E.7)

where ks is the spring constant (not to be confused with the propagation constant). If

the field is turned off, the electron is released and will oscillate about the nucleus at

the resonant frequency, given by

ω0 =
√

ks/m (E.8)

where m is the mass of the electron. The oscillation, however, will be damped since

the electron will experience forces and collisions from neighboring oscillators. We

model these as a velocity-dependent damping force:

Fd (z, t) = −mγdv(z, t) (E.9)

where v(z, t) is the electron velocity. Associated with this damping is the dephasing
process among the electron oscillators in the system. Their relative phasing, once

fixed by the applied sinusoidal field, is destroyed through collisions and dies away

exponentially until a state of totally random phase exists between oscillators. The 1/e
point in this process occurs at the dephasing time of the system, which is inversely

proportional to the damping coefficient, γd (in fact it is 2/γd ). We are, of course,

driving this damped resonant system with an electric field at frequency ω. We can

therefore expect the response of the oscillators, measured through the magnitude of

d, to be frequency-dependent in much the same way as an RLC circuit is when driven

by a sinusoidal voltage.

We can now use Newton’s second law and write down the forces acting on the

single oscillator of Figure E.1. To simplify the process a little we can use the complex

form of the electric field:

Ec = E0e− jkze jωt (E.10)

Defining a as the acceleration vector of the electron, we have

ma = Fa + Fr + Fd

or

m
∂2dc

∂t2
+ mγd

∂dc

∂t
+ ksdc = −eEc (E.11)

Note that since we are driving the system with the complex field, Ec, we anticipate a

displacement wave, dc, of the form

dc = d0e− jkze− jωt (E.12)
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With the waves in this form, time differentiation produces a factor of jω. Consequently

(E.11) can be simplified and rewritten in phasor form:

−ω2ds + jωγdds + ω2
0ds = −

e
m
Es (E.13)

where (E.4) has been used. We now solve (E.13) for ds , obtaining

ds =
−(e/m)Es

(

ω2
0 − ω2

)

+ jωγd
(E.14)

The dipole moment associated with displacement ds is

ps = −eds (E.15)

The polarization of the medium is then found, assuming that all dipoles are identical.

Eq. (E.1) thus becomes

Ps = Nps

which, when using (E.14) and (E.15), becomes

Ps =
Ne2/m

(

ω2
0 − ω2

)

+ jωγd
Es (E.16)

Now, using (E.3) we identify the susceptibility associated with the resonance as

χres =
Ne2

ǫ0m
1

(

ω2
0 − ω2

)

+ jωγd
= χ ′

res − jχ ′′
res (E.17)

The real and imaginary parts of the permittivity are now found through the real

and imaginary parts of χres: Knowing that

ǫ = ǫ0(1 + χres) = ǫ′ − jǫ′′

we find

ǫ′ = ǫ0(1 + χ ′
res) (E.18)

and

ǫ′′ = ǫ0χ
′′
res (E.19)

The preceding expressions can now be used in Eqs. (44) and (45) in Chapter 11 to

evaluate the attenuation coefficient, α, and phase constant, β, for the plane wave as it

propagates through our resonant medium.

The real and imaginary parts of χres as functions of frequency are shown in

Figure E.2 for the special case in which ω
.= ω0. Eq. (E.17) in this instance becomes

χres
.= −

Ne2

ǫ0mω0γd

(

j + δn

1 + δ2
n

)

(E.20)

where the normalized detuning parameter, δn , is

2

γd
(ω − ω0) (E.21)
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res

res

Figure E.2 Plots of the real and imaginary parts of the

resonant susceptibility, χres, as given by Eq. (E.20). The

full-width at half-maximum of the imaginary part, χ ′′
res, is

equal to the damping coefficient, γd.

Key features to note in Figure E.2 include the symmetric χ ′′
e function, whose full-

width at its half-maximum amplitude is γd . Near the resonant frequency, where χ ′′
res

maximizes, wave attenuation maximizes as seen from Eq. (44), Chapter 11. Addi-

tionally, we see that away from resonance, attenuation is relatively weak, and the

material becomes transparent. As Figure E.2 shows, there is still significant variation

of χ ′
res with frequency away from resonance, which leads to a frequency-dependent

refractive index; this is expressed approximately as

n .=
√

1 + χ ′
res (away from resonance) (E.22)

This frequency-dependent n, arising from the material resonance, leads to phase and

group velocities that also depend on frequency. Thus, group dispersion, leading to

pulse-broadening effects as discussed in Chapter 12, can be directly attributable to

material resonances.

Somewhat surprisingly, the classical “spring model” described here can provide

very accurate predictions on dielectric constant behavior with frequency (particularly

off-resonance) and can be used to a certain extent to model absorption properties. The

model is insufficient, however, when attempting to describe the more salient features

of materials; specifically, it assumes that the oscillating electron can assume any one

of a continuum of energy states, when, in fact, energy states in any atomic system are

quantized. As a result, the important effects arising from transitions between discrete

energy levels, such as spontaneous and stimulated absorption and emission, are not

included in our classical spring system. Quantum mechanical models must be used



572 ENGINEERING ELECTROMAGNETICS

Figure E.3 Idealized sketches of ensembles of polar molecules

under conditions of (a) random orientation of the dipole moments,

and (b) dipole moments aligned under the influence of an applied

electric field. Conditions in (b) are greatly exaggerated, since

typically only a very small percentage of the dipoles align

themselves with the field. But still enough alignment occurs to

produce measurable changes in the material properties.

to fully describe the medium polarization properties, but the results of such studies

often reduce to those of the spring model when field amplitudes are very low.

Another way that a dielectric can respond to an electric field is through the

orientation of molecules that possess permanent dipole moments. In such cases, the

molecules must be free to move or rotate, and so the material is typically a liquid

or a gas. Figure E.3 shows an arrangement of polar molecules in a liquid (such as

water) in which there is no applied field (Figure E.3a) and where an electric field

is present (Figure E.3b). Applying the field causes the dipole moments, previously

having random orientations, to line up, and so a net material polarization, P, results.

Associated with this, of course, is a susceptibility function, χe, through which P
relates to E.

Some interesting developments occur when the applied field is time-harmonic.

With field periodically reversing direction, the dipoles are forced to follow, but they do

so against their natural propensity to randomize, owing to thermal motion. Thermal

motion thus acts as a “restoring” force, effectively opposing the applied field. We can

also think of the thermal effects as viscous forces that introduce some difficulty in

“pushing” the dipoles back and forth. One might expect (correctly) that polarizations

of greater amplitude in each direction can be attained at lower frequencies, because

enough time is given during each cycle for the dipoles to achieve complete alignment.

The polarization amplitude will weaken as the frequency increases because there is

no longer enough time for complete alignment during each cycle. This is the basic

description of the dipole relaxation mechanism for the complex permittivity. There

is no resonant frequency associated with the process.
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The complex susceptibility associated with dipole relaxation is essentially that

of an “overdamped” oscillator, and is given by

χrel =
N p2/ǫ0

3kB T (1 + jωτ )
(E.23)

where p is the permanent dipole moment magnitude of each molecule, kB is

Boltzmann’s constant, and T is the temperature in degees Kelvin. τ is the thermal

randomization time, defined as the time for the polarization, P, to relax to 1/e of

its original value when the field is turned off. χrel is complex, and so it will possess

absorptive and dispersive components (imaginary and real parts) as we found in the

resonant case. The form of Eq. (E.23) is identical to that of the response of a series

RC circuit driven by a sinusoidal voltage (where τ becomes RC).

Microwave absorption in water occurs through the relaxation mechanism in polar

water molecules, and is the primary means by which microwave cooking is done, as

discussed in Chapter 11. Frequencies near 2.5 GHz are typically used, since these

provide the optimum penetration depth. The peak water absorption arising from dipole

relaxation occurs at much higher frequencies, however.

A given material may possess more than one resonance and may have a dipole

relaxation response as well. In such cases, the net susceptibility is found in frequency

domain by the direct sum of all component susceptibilities. In general, we may write:

χe = χrel +
n

∑

i=1

χ i
res (E.24)

where χ i
res is the susceptibility associated with the i th resonant frequency, and n is

the number of resonances in the material. The reader is referred to the references for

Chapter 11 for further reading on resonance and relaxation effects in dielectrics.
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Answers to
Odd-Numbered
Problems

Chapter 1

1.1 (a) 0.92ax + 0.36ay + 0.4az
(b) 48.6 (c) −580.5ax + 3193ay − 2902az

1.3 (7.8, −7.8, 3.9)

1.5 (a) 48ax + 36ay + 18az
(b) −0.26ax + 0.39ay + 0.88az
(c) 0.59ax + 0.20ay − 0.78az
(d) 100 = 16x2 y2 + 4x4 + 16x2 + 16 + 9z4

1.7 (a) (1) the plane z = 0, with |x | < 2, |y| < 2;
(2) the plane y = 0 with |x | < 2, |z| < 2; (3) the
plane x = 0, with |y| < 2, |z| < 2; (4) the plane
x = π/2, with |y| < 2, |z| < 2 (b) the plane
2z = y, with |x | < 2, |y| < 2, |z| < 1
(c) the plane y = 0, with |x | < 2, |z| < 2

1.9 (a) 0.6ax + 0.8ay (b) 53◦ (c) 26

1.11 (a) (−0.3, 0.3, 0.4) (b) 0.05 (c) 0.12 (d) 78◦

1.13 (a) (0.93, 1.86, 2.79) (b) (9.07, −7.86, 2.21)
(c) (0.02, 0.25, 0.26)

1.15 (a) (0.08, 0.41, 0.91) (b) (0.30, 0.81, 0.50)
(c) 30.3 (d) 32.0

1.17 (a) (0.664, −0.379, 0.645)
(b) (−0.550, 0.832, 0.077)
(c) (0.168, 0.915, 0.367)

1.19 (a) (1/ρ)aρ (b) 0.5aρ , or 0.41ax + 0.29ay
1.21 (a) −6.66aρ − 2.77aφ + 9az

(b) −0.59aρ + 0.21aφ − 0.78az
(c) −0.90aρ − 0.44az

1.23 (a) 6.28 (b) 20.7 (c) 22.4 (d) 3.21

1.25 (a) 1.10ar + 2.21aφ (b) 2.47 (c) 0.45ar + 0.89aφ

1.27 (a) 2.91 (b) 12.61 (c) 17.49 (d) 2.53

1.29 (a) 0.59ar + 0.38aθ − 0.72aφ

(b) 0.80ar − 0.22aθ − 0.55aφ

(c) 0.66ar + 0.39aθ − 0.64aφ

Chapter 2

2.1 (10/
√

6, −10/
√

6)

2.3 21.5ax µN

2.5 (a) 4.58ax − 0.15ay + 5.51az
(b) −6.89 or −22.11

2.7 159.7aρ + 27.4aφ − 49.4az
2.9 (a) (x +1) = 0.56 [(x +1)2 + (y −1)2 + (z −3)2]1.5

(b) 1.69 or 0.31

2.11 (a) −1.63 µC
(b) −30.11ax − 180.63ay − 150.53az
(c) −183.12aρ − 150.53az (d) −237.1

2.13 (a) 82.1 pC (b) 4.24 cm

2.15 (a) 3.35 pC (b) 124 µC/m3

2.17 (a) 57.5ay − 28.8az V/m (b) 23ay − 46az
2.19 (a) 7.2ax + 14.4ay kV/m

(b) 4.9ax + 9.8ay + 4.9az kV/m

2.21 126ay µN/m

2.23 (a) 8.1 kV/m (b) −8.1 kV/m

2.25 −3.9ax − 12.4ay − 2.5az V/m

574
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2.27 (a) y2 − x2 = 4xy − 19 (b) 0.99ax + 0.12ay

2.29 (a) 12.2 (b) −0.87ax − 0.50ay
(c) y = (1/5) ln cos 5x + 0.13

Chapter 3

3.1 (a) F̄ = [Q1 Q2/4πǫ0 R2] because ar
(b) Same as part (a)

(c) 0

(d) Force will become attractive!

3.3 (a) 0.25 nC (b) 9.45 pC

3.5 360 nC

3.7 (a) 4.0 × 10−9 nC (b) 3.2 × 10−4 nC/m2

3.9 (a) 164 pC (b) 130 nC/m2 (c) 32.5 nC/m2

3.11 D = 0 (ρ < 1 mm);

Dρ = 10−15

2π2ρ
[sin(2000πρ) + 2π [1 −

103ρ cos(2000πρ)]]C/m2 (1 mm < ρ < 1.5 mm);

Dρ = 2.5×10−15

πρ
C/m2 (ρ > 1.5 mm)

3.13 (a) Dr (r < 2) = 0; Dr (r = 3) = 8.9 ×
10−9 C/m2; Dr (r = 5) = 6.4 × 10−10 C/m2

(b) ρs0 = −(4/9) × 10−9 C/m2

3.15 (a) [(8π L)/3][ρ3
1 − 10−9] µC where ρ1

is in meters (b) 4(ρ3
1 − 10−9)/(3ρ1)µC/m2

where ρ1 is in meters

(c) Dρ (0.8 mm) = 0; Dρ (1.6 mm) = 3.6 ×
10−6µC/m2; Dρ (2.4 mm) = 3.9 × 10−6 µC/m2

3.17 (a) 0.1028 C (b) 12.83 (c) 0.1026 C

3.19 113 nC

3.21 (a) 8.96 (b) 71.67 (c) −2

3.23 (b) ρv0 = 3Q/(4πa3) (0 < r < a);

Dr = Qr/4πa3) and ∇ · D = 3Q/(4πa3)

(0 < r < a); Dr = Q/(4πr2) and

∇ ·D = 0 (r > a)

3.25 (a) 17.50 C/m3 (b) 5ar C/m2 (c) 320π C

(d) 320π C

3.27 (a) 1.20 mC/m3 (b) 0 (c) −32µC/m2

3.29 (a) 3.47 C (b) 3.47 C

3.31 −3.91 C

Chapter 4

4.1 (a) −12 nJ (b) 24 nJ (c) −36 nJ (d) −44.9 nJ

(e) −41.8 nJ

4.3 (a) 3.1 µJ (b) 3.1 µJ

4.5 (a) 2 (b) −2

4.7 (a) 90 (b) 82

4.9 (a) 8.14 V (b) 1.36 V

4.11 1.98 kV

4.13 576 pJ

4.15 −68.4 V

4.17 (a) −3.026 V (b) −9.678 V

4.19 .081 V

4.21 (a) −15.0 V (b) 15.0 V

(c) 7.1ax + 22.8ay − 71.1az V/m

(d) 75.0 V/m

(e) −0.095ax − 0.304ay + 0.948az
( f ) 62.8ax + 202ay − 629az pC/m2

4.23 (a) −48ρ−4 V/m (b) −673 pC/m3 (c) −1.96 nC

4.25 (a) Vp = 279.9 V, Ep = −179.9aρ − 75.0aφ V/m,

Dp = −1.59aρ − .664aφ nC/m2, ρvp =

−443 pC/m3 (b) −5.56 nC

4.27 (a) 5.78 V (b) 25.2 V/m (c) 5.76 V

4.29 1.31 V

4.31 (a) 387 pJ (b) 207 pJ

4.33 (a) (5 × 10−6)/(4πr2)ar C/m2

(b) 2.81 J (c) 4.45 pF

4.35 (a) 0.779 µJ (b) 1.59 µJ

Chapter 5

5.1 (a) −1.23 MA (b) 0 (c) 0, as expected

5.3 (a) 77.4 A (b) 53.0ar A/m2

5.5 (a) −178.0 A (b) 0 (c) 0

5.7 (a) mass flux density in (kg/m2 − s) and mass

density in (kg/m3) (b) −550 g/m3 − s

5.9 (a) 0.28 mm (b) 6.0 × 107 A/m2

5.11 (a) E = [(9.55)/ρl)]aρ V/m, V = (4.88)/ l V and

R = (1.63)/ l �, where l is the cylinder length

(not given) (b) 14.64/ l W

5.13 (a) 0.147 V (b) 0.144 V

5.15 (a) (ρ + 1)z2 cos φ = 2

(b) ρ = 0.10,E(.10, .2π, 1.5) = −18.2aρ +

145aφ − 26.7az V/m (c) 1.32 nC/m2

5.17 (a) D(z = 0) = −(100ǫ0x)/(x2 + 4)az C/m2

(c) −0.92 nC

5.19 (a) At 0 V: 2x2 y − z = 0. At 60 V:

2x2 y − z = 6/z (b) 1.04 nC/m2

(c) −[0.60ax + 0.68ay + 0.43az]

5.21 (a) 1.20 kV (b) Ep = 723ax − 18.9ay V/m
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5.23 (a) 289.5 V (b) z/[(x − 1)2 + y2 + z2]1.5 −
z/[(x + 1)2 + y2 + z2]1.5 = 0.222

5.25 (a) 4.7 × 10−5 S/m (b) 1.1 × 10−3 S/m
(c) 1.2 × 10−2 S/m

5.27 (a) 6.26 pC/m2 (b) 1.000176

5.29 (a) E = [(144.9)/ρ]aρ V/m, D =
(3.28aρ )/ρ nC/m2 (b) Vab = 192 V, χe = 1.56

(c) [(5.0 × 10−29)/ρ]aρ C · m

5.31 (a) 80 V/m (b) −60ay − 30az V/m (c) 67.1 V/m

(d) 104.4 V/m (e) 40.0◦ ( f ) 2.12 nC/m2 (g) 2.97
nC/m2 (h) 2.12ax − 2.66ay − 1.33az nC/m2

(i) 1.70ax − 2.13ay − 1.06az nC/m2 ( j) 54.5◦

5.33 125ax + 175ay V/m

5.35 (a) E2 = E1 (b) WE1 = 45.1 µJ, WE2 = 338 µJ

Chapter 6

6.1 b/a = exp(2πd/W )

6.3 barium titanate

6.5 451 pF

6.7 (a) 3.05 nF (b) 5.21 nF (c) 6.32 nF (d) 9.83 nF

6.9 (a) 143 pF (b) 101 pF

6.11 (a) 53.3 pF (b) 41.7 pF

6.13 K1 = 23.0, ρL = 8.87 nC/m, a = 13.8 m,
C = 35.5 pF

6.15 (a) 47.3 nC/m2 (b) −15.8 nC/m2 (c) 24.3 pF/m

6.17 Exact value: 57 pF/m

6.19 Exact value: 11ǫ0 F/m

6.21 (b) C ≈ 110 pF/m (c) Result would not change.

6.23 (a) 3.64 nC/m (b) 206 mA

6.25 (a) −8 V (b) 8ax − 8ay − 24az V/m

(c) −4xz(z2 + 3y2) C/m3

(d) xy2z3 = −4 (e) y2 − 2x2 = 2 and
3x2 − z2 = 2 ( f ) No

6.27 f (x, y) = −4e2x + 3x2, V (x, y) = 3(x2 − y2)

6.29 (b) A = 112.5, B = −12.5 or
A = −12.5, B = 112.5

6.31 (a) −106 pC/m3 (b) ±0.399 pC/m2 (depending on
which side of the surface is considered)

6.33 (a) yes, yes, yes, no (b) At the 100 V surface, no
for all. At the 0 V surfaces, yes, except for V1 + 3.
(c) Only V2 is

6.35 (a) 33.33 V (b) [(100)/3]az + 50ay V/m

6.37 (a) 1.01 cm (b) 22.8 kV/m (c) 3.15

6.39 (a) (−2.00 × 104)φ + 3.78 × 103 V
(b) [(2.00 × 104)/ρ]aφ V/m

(c) (2.00 × 104ǫ0/ρ)aφ C/m2

(d) [(2.00 × 104)/ρ] C/m2

(e) 84.7 nC

( f ) V (φ) = 28.7φ + 194.9 V, E = −(28.7)/ρaφ

V/m, D = −(28.7ǫ0)/ρaφ C/m2, ρs = (28.7ǫ0)/

ρ C/m2, Qb = 122 pC (g) 471 pF

6.41 (a) 12.5 mm (b) 26.7 kV/m
(c) 4.23 (with given ρs = 1.0 µC/m2)

6.43 (a) αA = 26.57◦, αB = 56.31◦ (b) 23.3 V

6.45 (a) 833.3r−.4 V (b) 833.3r−.4 V

Chapter 7

7.1 (a) −294ax + 196ay µA/m
(b) −127ax + 382ay µA/m
(c) −421ax + 578ay µA/m

7.3 (a)

H =
I

2πρ

[

1 −
a

√

ρ2 + a2

]

aφ A/m

(b) 1/
√

3

7.5

|H| =
I

2π

[

(

2

y2 + 2y + 5
−

2

y2 − 2y + 5

)2

+
(

(y − 1)

y2 − 2y + 5
−

(y + 1)

y2 + 2y + 5

)2
]1/2

7.7 (a) H = I/(2π2z)(ax − ay) A/m
(b) 0

7.9 −1.50ay A/m

7.11 2.0 A/m, 933 mA/m, 360 mA/m, 0

7.13 (e) Hz(a < ρ < b) = kb; Hz(ρ > b) = 0

7.15 (a) 45e−150ρaz kA/m2

(b) 12.6[1 − (1 + 150ρ0)e−150ρ0 ] A
(c) 2.00

ρ
[1 − (1 + 150ρ)e−150ρ ] A/m

7.17 (a) 2.2 × 10−1aφ A/m (just inside), 2.3 ×
10−2aφ A/m (just outside)

(b) 3.4 × 10−1aφ A/m

(c) 1.3 × 10−1aφ A/m (d) −1.3 × 10−1az A/m

7.19 (a) K = −Iar /2πr A/m (θ = π/2)
(b) J = Iar /[2πr2(1 − 1/

√
2)] A/m2(θ < π/4)

(c) H = Iaφ/[2πr sin θ ] A/m (π/4 < θ < π/2)

(d) H = I (1 − cos θ )aφ/[2πr sin θ (1 − 1/
√

2)]
A/m (θ < π/4)

7.21 (a) I = 2πba3/3 A (b) Hin = bρ2/3aφ A/m

(c) Hout = ba3/3ρ aφ A/m

7.23 (a) 60ρaz A/m2 (b) 40π A (c) 40π A

7.25 (a) −259 A (b) −259 A

7.27 (a) 2(x + 2y)/z3ax + 1/z2az A/m
(b) same as part (a) (c) 1/8 A
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7.29 (a) 1.59 × 107az A/m2 (b) 7.96 × 106ρaφ A/m,

10ρaφ Wb/m2 (c) as expected (d) 1/(πρ)aφ A/m,

µ0/(πρ)aφ Wb/m2 (e) as expected

7.31 (a) 0.392 µWb (b) 1.49 µWb (c) 27 µWb

7.35 (a) −40φ A (2 < ρ < 4), 0 (ρ > 4)

(b) 40µ0 ln(3/ρ)az Wb/m

7.37 [120 − (400/π )φ] A (0 < φ < 2π)

7.39 (a) −30ay A/m (b) 30y − 6 A

(c) −30µ0ay Wb/m2 (d) µ0(30x − 3)az Wb/m

7.41 (a) −100ρ/µ0aφ A/m, −100ρaφ Wb/m2

(b) − 200
µ0

az A/m2 (c) −500 MA (d) −500 MA

7.43

Az =
µ0 I
96π

[(

ρ2

a2
− 25

)

+ 98 ln

(

5a
ρ

)

]

Wb/m

Chapter 8

8.1 (a) (.90, 0, −.135) (b) 3 × 105ax − 9 × 104az m/s

(c) 1.5 × 10−5 J

8.3 (a) .70ax + .70ay − .12az (b) 7.25 fJ

8.5 (a) −18ax nN (b) 19.8az nN (c) 36ax nN

8.7 (a) −35.2ay nN/m (b) 0 (c) 0

8.9 4π × 10−5 N/m

8.13 (a) −1.8 × 10−4ay N · m

(b) −1.8 × 10−4ay N · m

(c) −1.5 × 10−5ay N · m

8.15 (6 × 10−6)[b − 2 tan−1(b/2)]ay N · m

8.17 	w/w = 	m/m = 1.3 × 10−6

8.19 (a) 77.6yaz kA/m (b) 5.15 × 10−6 H/m

(c) 4.1 (d) 241yaz kA/m (e) 77.6ax kA/m2

( f ) 241ax kA/m2 (g) 318ax kA/m2

8.21 (Use χm = .003) (a) 47.7 A/m (b) 6.0 A/m

(c) 0.288 A/m

8.23 (a) 637 A/m, 1.91 × 10−3 Wb/m2, 884 A/m

(b) 478 A/m, 2.39 × 10−3 Wb/m2, 1.42 × 103 A/m

(c) 382 A/m, 3.82 × 10−3 Wb/m2, 2.66 × 103 A/m

8.25 (a) 1.91/ρ A/m (0 < ρ < ∞)

(b) (2.4 × 10−6/ρ)aφ T (ρ < .01),

(1.4 × 10−5/ρ)aφ T (.01 < ρ < .02),

(2.4 × 10−6/ρ)aφ T (ρ > .02) (ρ in meters)

8.27 (a) −4.83ax − 7.24ay + 9.66az A/m

(b) 54.83ax − 22.76ay + 10.34az A/m

(c) 54.83ax − 22.76ay + 10.34az A/m

(d) −1.93ax − 2.90ay + 3.86az A/m

(e) 102◦ ( f ) 95◦

8.29 10.5 mA

8.31 (a) 2.8 × 10−4 Wb (b) 2.1 × 10−4 Wb

(c) ≈ 2.5 × 10−4 Wb

8.33 (a) 23.9/ρ A/m (b) 3.0 × 10−4/ρ Wb/m2

(c) 5.0 × 10−7 Wb

(d) 23.9/ρ A/m, 6.0 × 10−4/ρ Wb/m2, 1.0 × 10−6

Wb (e) 1.5 × 10−6 Wb

8.35 (a) 20/(πr sin θ )aφ A/m (b) 1.35 × 10−4 J

8.37 0.17 µH

8.39 (a) (1/2)wdµ0 K 2
0 J/m (b) µ0d/w H/m

(c) 
 = µ0d K0 Wb

8.41 (a) 33 µH (b) 24 µH

8.43 (b)

L int =
2WH

I 2

=
µ0

8π

[

d4 − 4a2c2 + 3c4 + 4c4 ln(a/c)

(a2 − c2)2

]

H/m

Chapter 9

9.1 (a) − 5.33 sin 120π t V (b) 21.3 sin(120π t) mA

9.3 (a) − 1.13 × 105[cos(3 × 108t − 1)

− cos(3 × 108t)] V (b) 0

9.5 (a) −4.32 V (b) −0.293 V

9.7 (a) (−1.44)/(9.1 + 39.6t) A

(b) −1.44[ 1
61.9 − 39.6t + 1

9.1 + 39.6t ] A

9.9 2.9 × 103[cos(1.5 × 108t − 0.13x) −

cos(1.5 × 108t)] W

9.11 (a)
(

10
ρ

)

cos(105t)aρ A/m2 (b) 8π cos(105t) A

(c) −0.8π sin(105t) A (d) 0.1

9.13 (a) D = 1.33 × 10−13 sin(1.5 × 108t −

bx)ay C/m2,E = 3.0 × 10−3 sin(1.5 ×

108t − bx)ay V/m

(b) B = (2.0)b × 10−11 sin(1.5 × 108t − bx)azT,

H = (4.0 × 10−6)b sin(1.5 × 108t − bx)az A/m

(c) 4.0 × 10−6b2 cos(1.5 × 108t − bx)ay A/m2

(d)
√

5.0 m−1

9.15 B = 6 × 10−5 cos(1010t − βx)azT,D =
−(2β × 10−10) cos(1010t − βx)ay C/m2,

E = −1.67β cos(1010t − βx)ayV/m, β =
±600 rad/m

9.17 a = 66 m−1

9.21 (a) π × 109sec−1

(b) 500
ρ

sin(10π z) sin(ωt)aρ V/m
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9.23 (a) EN1 = 10 cos(109t)azV/m Et1 =
(30ax + 20ay) cos(109t) V/m

DN1 = 200 cos(109t)az pC/m2 Dt1 =
(600ax + 400ay) cos(109t) pC/m2

(b) JN1 = 40 cos(109t)az mA/m2 Jt1 =
(120ax + 80ay) cos(109t) mA/m2

(c) Et2 = (30ax + 20ay) cos(109t) V/m Dt2 =
(300ax + 200ay) cos(109t) pC/m2

Jt2 = (30ax + 20ay) cos(109t) mA/m2

(d) EN2 = 20.3 cos(109t + 5.6◦)azV/m DN2 =

203 cos(109t + 5.6◦)az pC/m2 JN2 =

20.3 cos(109t + 5.6◦)az mA/m2

9.25 (b) B =
(

t − z
c
)

ay T H = 1
µ0

(

t − z
c
)

ay A/m

E = (ct − z)ax V/m D = ǫ0(ct − z)ax C/m2

Chapter 10

10.1 γ = 0.094 + j2.25
α = 0.094 Np/m
β = 2.25 rad/m
λ = 2.8 m
Z0 = 93.6 − j3.64 �

10.3 (a) 96 pF/m (b) 1.44 × 108 m/s
(c) 3.5 rad/m (d) Ŵ = −0.09, s = 1.2

10.5 (a) 83.3 nH/m, 33.3 pF/m (b) 65 cm

10.7 7.9 mW

10.9 (a) λ/8 (b) λ/8 + mλ/2

10.11 (a) V 2
0 /RL (b) RL V 2

0 /(Rℓ +

RL )2 (c) V 2
0 /RL (d) (V 2

0 /RL ) exp(−2ℓ
√

RG)

10.13 (a) 6.28 × 108 rad/s (b) 4 cos(ωt − π z)A
(c) 0.287 � 1.28 rad (d) 57.5exp[ j(π z + 1.28)] V
(e) 257.5 � 36◦ V

10.15 (a) 104 V (b) 52.6 − j123 V

10.17 P25 = 2.28 W, P100 = 1.16 W

10.19 16.5 W

10.21 (a) s = 2.62 (b) ZL = 1.04 × 103 +

j69.8 � (c) zmax = −7.2 mm

10.23 (a) 0.037λ or 0.74 m (b) 2.61 (c) 2.61
(d) 0.463λ or 9.26 m

10.25 (a) 495 + j290 � (b) j98 �

10.27 (a) 2.6 (b) 11 − j7.0 mS (c) 0.213λ

10.29 47.8 + j49.3 �

10.31 (a) 3.8 cm (b)14.2 cm

10.33 (a) d1 = 7.6 cm, d = 17.3 cm (b) d1 =

1.8 cm, d = 6.9 cm

10.35 (a) 39.6 cm (b) 24 pF

10.37 VL = (1/3)V0 (l/v < t < ∞) and is zero for
t < l/ν. IB = (V0/100) A for 0 < t < 2l/v and
is (V0/75) for t > 2l/v

10.39
l
ν

< t <
5l
4ν

: V1 = 0.44 V0

3l
ν

< t <
13l
4ν

: V2 = −0.15 V0

5l
ν

< t <
21l
4ν

: V3 = 0.049 V0

7l
ν

< t <
29l
4ν

: V4 = −0.017 V0

Voltages in between these times are zero.

10.41

0 < t <
l

2v
: VL = 0

l
2ν

< t <
3l
2ν

: VL =
V0

2

t >
3l
2ν

: VL = V0

10.43

0 < t < 2l/ν : VRL = V0/2

t > 2l/ν : VRL = 3V0/4

0 < t < l/ν : VRg = 0, IB = 0

t > l/ν : VRg = V0/4, IB = 3V0/4Z0

Chapter 11

11.3 (a) 0.33 rad/m (b) 18.9 m
(c) −3.76 × 103az V/m

11.5 (a) ω = 3π × 108 sec−1, λ = 2 m,
and β = π rad/m (b) − 8.5ax − 9.9ay A/m
(c) 9.08 kV/m

11.7 β = 25m−1, η = 278.5 �, λ = 25 cm,
v p = 1.01 × 108 m/s, ǫR = 4.01, µR = 2.19,

and H(x, y, z, t) = 2 cos(8π × 108t − 25x)ay +
5 sin(8π × 108t − 25x)az A/m

11.9 (a) β = 0.4π rad/m, λ = 5 m, v p = 5 × 107 m/s,

and η = 251 � (b) −403 cos(2π × 107t) V/m
(c) 1.61 cos(2π × 10−7t) A/m

11.11 (a) 0.74 kV/m (b) −3.0 A/m

11.13 µ = 2.28 × 10−6 H/m, ǫ′ = 1.07 × 10−11 F/m,
and ǫ′′ = 2.90 × 10−12 F/m

11.15 (a) λ = 3 cm, α = 0 (b) λ = 2.95 cm,
α = 9.24 × 10−2 Np/m (c) λ = 1.33 cm,
α = 335 Np/m

11.17 〈Sz〉(z = 0) = 315az W/m2, 〈Sz〉(z = 0.6) =

248az W/m2
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11.19 (a) ω = 4 × 108 rad/s (b) H(ρ, z, t) =
(4.0/ρ) cos(4 × 108t − 4z)aφ A/m

(c)〈S〉 = (2.0 × 10−3/ρ2) cos2(4 × 108t − 4z)az
W/m2 (d) P = 5.7 kW

11.21 (a) Hφ1(ρ) = (54.5/ρ)(104ρ2 − 1) A/m

(.01 < ρ < .012), Hφ2(ρ) = (24/ρ) A/m

(ρ > .012), Hφ = 0 (ρ < .01m)

(b) E = 1.09az V/m

(c) 〈S〉 = −(59.4/ρ)(104ρ2 − 1)aρ W/m2

(.01 < ρ < .012 m), −(26/ρ)aρW/m2

(ρ > 0.12 m)

11.23 (a) 1.4 × 10−3�/m (b) 4.1 × 10−2 �/m

(c) 4.1 × 10−1�/m

11.25 f = 1 GHz, σ = 1.1 × 105 S/m

11.27 (a) 4.7 × 10−8 (b) 3.2 × 103 (c) 3.2 × 103

11.29 (a) Hs = (E0/η0)(ay − jax )e− jβz

(b) 〈S〉 = (E2
0/η0)az W/m2 (assuming E0 is real)

11.31 (a) L = 14.6 λ (b) Left

11.33 (a) Hs = (1/η)[−18e jφax + 15ay]e− jβz A/m

(b) 〈S〉 = 275 Re {(1/η∗)} W/m2

Chapter 12

12.1 0.01%

12.3 0.056 and 17.9

12.5 (a) 4.7 × 108 Hz (b) 691 + j177 � (c) −1.7 cm

12.7 (a) s1 = 1.96, s2 = 2, s3 = 1 (b) −0.81 m

12.9 (a) 6.25 × 10−2 (b) 0.938 (c) 1.67

12.11 641 + j501 �

12.13 Reflected wave: left circular polarization; power

fraction = 0.09. Transmitted wave: right circular

polarization; power fraction = 0.91

12.15 (a) 2.55 (b) 2.14 (c) 0.845

12.17 2.41

12.19 (a) d1 = d2 = d3 = 0 or d1 = d3 = 0, d2 = λ/2

(b) d1 = d2 = d3 = λ/4

12.21 (a) Reflected power: 15%. Transmitted power:

85% (b) Reflected wave: s-polarized.

Transmitted wave: Right elliptically polarized.

12.23 n0 = (n1/n2)

√

n2
1 − n2

2

12.25 0.76(−1.19 dB)

12.27 2

12.29 4.3 km

Chapter 13

13.1 (a) 1.14 mm (b) 1.14 mm (c) 1.47 mm

13.3 14.2 pF/m, 0.786 µH/m, 0, 0.023 �/m

13.5 (a) 1.23 (b) 1.99 (c) 1.33

13.7 (a) 2.8 (b) 5.85 × 10−2

13.9 (a) 4.9 (b) 1.33

13.11 9

13.13 9

13.15 1.5 ns

13.17 (a) 12.8 GHz (b) Yes

13.19 (a) 2.5 GHz < f < 3.75 GHz (air-filled)

(b) 3.75 GHs < f < 4.5 GHz (air-filled)

13.21 a = 1.1 cm, b = 0.90 cm

13.25 72 cm

13.27 3.32

13.29 (a) θmin = sin−1(n3/n1) (b) v p,max = c/n3

13.31 greater than

Chapter 14

14.1 (a) −0.284ax − 0.959az (b) 0.258

14.3 (a) − j(1.5 × 10−2)e− j1000az V/m

(b) − j(1.5 × 10−2)e− j1000ay V/m

(c) − j(1.5 × 10−2)(ay + az) V/m

(d) −(1.24 × 10−2)(ay + az) V/m

(e) 1.75 × 10−2 V/m

14.7 (a) 0.711 � (b) 0.178 � (c) 0.400 �

14.9 (a) 85.4 A (b) 5.03 A

14.11 (a) 85.4 A (b) 7.1 A

14.13 (a) 0.2e− j1000π V/m (b) 0.2e− j1000π e j0.5π V/m

(c) 0

14.15 Primary maxima: θ = ±90◦, relative magnitude

1.00. Secondary maxima: θ = ±33.8◦ and

θ = ±146.2◦, relative magnitude 0.186.

Ss = 7.3 dB

14.17 (a) 36.5 W (b) 4.8 µW

14.19 ξ = 0, d = λ

14.21 (a) ±48.2◦ (b) ±60◦

14.23 (a) +π/2 (b) 0

14.25 (a) ξ = −π/2 (b) 5.6% of maximum (12.6 dB

down)

14.29 (a) 1.7µW (b) 672 nW
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A

Absolute potential, 83

Acceptors, 127

Addition of vectors, 2, 31

Airspace, 422

Ampere, 110, 558, 559

magnetic field intensity

and, 181

magnetic flux density and,

207

one per volt (1 S), 116

one weber-turn per (H), 264

surface current density and,

183

Ampère’s circuital law

described, 188–195

in determining spatial rate

of change of H, 196

differential applications,

201

Maxwell’s equations from,

202

in point form, 218–219, 514

and Stokes’ theorem, 206

Ampère’s law for the current

element, 180–188

“Ampere-turns,” 255, 256

Amperian current, 248

Angular dispersion, 439

Anisotropic materials, 116

Anisotropic medium, 400

Antennas, 511

definition of, 453

dipole, 511–517, 523–524,

525

Hertzian dipole, 511–517,

546–547

magnetic dipole, 523–524

monopole, 531–533

as receivers, 541–547

specifications, 518–522

thin-wire, 525–533

two-element arrays,

533–537

uniform linear arrays,

537–541

Antiferromagnetic materials,

246–247

Antireflective coatings, 423,

435

Arrays, in antennas

two-element arrays,

533–537

uniform linear arrays,

537–541

Associative law, 2

Attenuation, with propagation

distance, 315

Attenuation coefficient, 315,

376

Average power loss, 392

Axial phase constants, 468

Azimuthal mode number,

497, 501

B

Backward-propagating

wave(s), 315, 324, 369

amplitudes, 374

voltage waves, 309, 350

Beat frequency, 441

Bessel functions, 458, 499

Bidirectional voltage

distribution, 327

Biot-Savart law, 180–188

Boundary conditions

conductors, 119–121

dielectric materials,

133–137

equipotential surfaces, 162

magnetic, 252–254

Bound charges, 127–133,

247–248

Bound current, 248

Bound surface charge density,

134

Bound-volume charge

density, 128

Branch cut, 212

Brewster angle, 436

Broadside array, 536, 539

C

Cancellation, 203

Capacitance

of air-filled transmission

line, 461

of a cone, 167

described, 143–146

examples of, 147–150

of a junction, 171–172

microstrip, 461

numerical example of, for a

cylindrical conductor,

153

580
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partial, 146

p-n junction, 169–172

as ratio of charge on either

conductor to potential

difference, 144

of transmission lines,

303–304

of a two-wire line, 150–154

Capacitors

coaxial, 60

energy stored in, 104, 143

parallel-plate, 39, 145–147,

148, 163, 172, 286

Cathode-ray tube, 83

Characteristic impedance,

308–309

Charge density, 170

Charge-distribution “family,”

39

Charge distributions,

symmetrical, 56–60

Chirped pulse, 446

Chirping effect, 447

Chromatic angular

dispersion, 439

Circular cylindrical

coordinates, 18

Circularly polarized waves,

398, 399, 400

Circular path, 81

Circular polarization, 397,

398

Circular wire, 189

Circulation, 198

Circulation per unit area, 199

Cladding, lower-index, 496

Clockwise flow, 309

Closed circuit, 238–243

Closed line integrals, 199

Closed path, 88, 279

Closed surface, 129

Closed surface integral, 88

Coaxial cable, 191, 222

Coaxial capacitor, 60

Coaxial cylindrical

conductors, 59

Coaxial slotted line, 342

Coaxial transmission line,

192

Coaxial transmission-line

geometry, 456

Commutative law, 2, 9

Complex amplitude, 311–312

Complex instantaneous

voltage, 312

Complex load impedance,

320

Complex permeability, 377

Complex permittivity, 27,

376–377

origins of, 567–573

Components, 7

Component scalars, 7

Component vectors, 5–8

Conducting plane, 124, 125

Conduction band, 114

Conduction current, 109, 286

Conduction electrons, 115

Conductivity, 116, 117, 127

Conductors. See also
Semiconductors

boundary conditions,

119–121

coaxial cylindrical, 59

cylindrical, 153

energy-band structure of,

114

filamentary, 286

good, 387

good, propagation in,

387–394

metallic, 114–119

moving, 282

perfect, 281

properties, 119–121

superconductivity, 116

Conductor-to-free-space

boundary, 121

Conservation principle,

111–112

Conservative property,

86–89

Constants of certain

materials, 562–564

Convection current, 111, 233

Convection current density,

111, 233

Coordinates and coordinate

systems

circular cylindrical, 18

curvilinear, 553–556

cylindrical, 165

polar, 335

rectangular, 3–5, 16, 21,

65, 196

right-handed, 4

spherical, 18–22, 21

Coplanar vectors, 2

Co-propagating waves, 418,

441

Core, high index, 496

Coulomb force, 245

in atomic dipole model,

568

Coulomb’s law, 26–29, 31,

560

Counterclockwise angle, 335,

337

Counterclockwise

direction/movement,

281, 339, 397, 398, 399

Counterclockwise flow, 309,

350, 355
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Counterpropagating waves,

418

Critical angle, 495

Cross product, 11–13

Curl, 195–201, 554–556

Curl meter, 199

Current

Amperian, 248

bound, 248

carriers of, 126–127

conduction, 109, 286

continuity of, 111–113

convection density, 111,

233

described, 110–113

differential element, 215,

232–235, 236–238

direct, 189

displacement, 284–288

displacement density, 285

filamentary, 110, 195

filaments, 191

finite-length filament, 186

forces, 232–235, 236–238

as function of time, 357

Kirchoff’s law, 304

negative, 309

positive, 309

semi-infinite segments, 186

surface, 195

total, 249

and voltage, relation

between, 308

wave directions, 309

Current carriers, 126–127

Current density

convection, 111, 233

described, 110–111

displacement, 285

effect of increment of

charge on, 110

surface, 182

types of, 285

and wave propagation, 392

Current directions in waves,

309

Current filaments, 191

Current per unit area

enclosed, 197

Current reflection diagrams,

350–351, 352

Curvilinear coordinates,

553–556

Curvilinear-square maps,

157–159

Curvilinear squares and

streamlines, 157

Cutoff conditions, 485–486

Cutoff frequency, 465–466,

471

Cutoff wavelength, 471–472,

503

Cylindrical conductor, 153

Cylindrical waveguides, 464

D

Dc-circuit, 89

Decibels (dB), 319

Del operator, 67–69

Dephasing process, 569

Depth of penetration, 389

Diamagnetic materials, 245

Dielectric, 48

Dielectric constant, 131, 461

Dielectric interface, 135

Dielectric materials

boundary conditions for

perfect, 133–137

and electric flux, 50

nature of, 127–133

perfect, 133–137

Dielectric slab waveguides,

436, 464, 490, 495

Differential current element,

215, 232–235, 236–

238

Differential electric dipole,

242

Differential vector magnetic

potential field, 215

Differential volume element

in circular cylindrical

coordinate system, 15

in rectangular coordinates,

5

in spherical coordinate

system, 19, 20

Differential-width line

charge, 39

Dipole

antennas, 511–517,

523–524, 525

differential electric, 242

electric, 95–100

Hertzian, 511–517,

546–547

magnetic, 241, 248,

523–524

point, 100

Dipole moment per unit

volume, 128, 248

Dipole moments, 97, 99, 100,

129, 241

Direct current, 189

Directivity function, 521

Discontinuities, 320–323

Dispersion parameter, 445

Dispersive media

pulse broadening in,

443–447

wave propagation in,

437–443
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Displacement current,

284–288

Displacement current density,

285

Displacement flux, 49

Displacement flux density, 49

Distortionless line, 316

Distributed elements, 301

Distributive law, 9

Divergence, 64–66, 554–556

Divergence theorem, 67–69

Domains, 246

Donor materials, 127

Dot product, 11, 67

Dot products of unit vectors

in cylindrical coordinate

systems, 17

in rectangular coordinate

systems, 17, 21

in spherical coordinate

systems, 21

Drift velocity, 115

E

Earth

fields produced by, 3

magnetic field of, 2

rare elements of, 246

reference points, 84

Effective dielectric constant,

461

Effective impedances, 431

Eigenvalue equations, 495

Electric dipole, 95–100

Electric dipole geometry, 97

Electric field

about an infinite line

charge, 186

component magnitudes,

397

energy expended in

moving, 76–77

torque produced by, 242

in the xy plane of a right

circularly polarized

plane wave, 398

Electric field amplitude

distributions, 494

Electric field configuration,

395

Electric field intensity, 29–33

in a cylindrical region, 117

as functions of distance,

170

and inverse cube law, 100

Electric flux, 50, 143

Electric flux density, 48–51,

53

Electricity, 26

Electric susceptibility, 131

Electromagnetic energy, 389,

453

Electromotive force (emf),

278, 279, 282

Electron-beam current, 233

Electrons

atomic model of,

244–246

charge, 27

conduction, 115

Coulumb forces, 232, 568

forces on, 115

free, 115, 377, 380

orbital, 247, 249

in semiconductors,

126–127, 169

valence, 114, 115

Electron spin, 244–246

Electrostatic field

energy density in, 100–104

of point dipole, 99

Electrostatic field energy,

100–104

Electrostatic potential, 208,

211

Electrostatics, 66–67

Elemental dipole, 511–517

Elliptical polarization, 397

Emf, 278, 279, 282

Enclosed charge, 130

Endfire array, 536, 540

End point, 91

Energy

electromagnetic, 389, 453

in electrostatic field,

100–104

incident, 409, 416

kinetic, 85, 100, 231

magnetic, 266

potential. See also
Potential energy

quantum, 114, 571

spectral, 443–444, 447

stored in capacitors, 104,

143

stored in inductors, 268

stored in transmission

lines, 331

Energy and potential, 75

Energy-band structure,

114

Energy density

in electrostatic field,

100–104

in magnetic field, 262

Envelope frequency, 441

Equipotential surfaces

boundary conditions, 162

circular cylinders, 150

and electric field intensity

and electric flux density,

155–156
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in the potential field of a

point charge, 86

between two conductors,

155

Equivalent line charge, 153

External fields, 137

F

Fabry-Perot interferometer,

421–422

Falloff, 495

Faraday’s law, 277–283, 288,

290

Farads, 144

Ferrimagnetic materials

(ferrites), 247, 377

Ferroelectric materials, 131

Ferromagnetic materials, 246

Field filling factor, 462

Field laws, 217–223

Field maps, 157–159, 186

Fields. See also Electric field;

Magnetic field; Potential

fields; Transmission-line

fields

conservative, 89

current, 186

curvilinear-square map,

158

due to a continuous volume

charge distribution, 33

earth’s, 2, 3

electrostatic, 99, 100–104

equipotential surfaces, 86,

155–156

external, 137

field filling factor, 462

force, 29

instantaneous values, 375,

411

internal, 137

of a line charge, 35–39

magnetic, 185, 192, 262,

278

mode field radius, 504

motional electric field

intensity, 282

moving, 278

nonconservative, 89

parallel-plate capacitor,

454

phasor electric, 371

point charges, 76–77,

84–85, 87

scalar fields, 2

of semi-infinite current

segments, 186

of a sheet of charge, 39–41

spatial configuration, 398

static fields, 26, 88

steady, 217–223

steady magnetic, 206, 209,

214

streamlines and sketches

of, 41–43

two-dimensional, 42

uniform, 77

vector, 2, 8

vector and scalar, 2

Filamentary conductor, 286

Filamentary current, 110, 195

Finite-length current filament,

186

Flux density, 49, 55, 69

Flux linkages, 259, 263, 283

Flux tube, 156

Force field, 29

Forces

on a charge, 29, 81, 180

on closed circuit, 238–243

coercive, 258–259

Coulumb, on electrons,

232, 568

current, 232–238

between differential current

element, 236–238

on differential current

element, 232–235

on electrons, 115

Lorentz equation, 231

on magnetic materials,

261–263

moment of, 239

on moving charges,

230–231

vector, 28

Forward-propagating wave

amplitudes, 374

Free charge, 134

Free-electron charge density,

115, 118

Free electrons, 115, 377,

380

Free space

permeability of, 207

permittivity of, 27

static electric fields in, 26

vector Helmholtz equation

in, 373

wavelength in, 370

wavenumber in, 370

wave propagation in,

367–375

Free-space arrangement, of

microscopic electric

dipoles, 127

Free-space charge

configuration, 51

Free-space propagation, 476

Free-space wavelength, 391,

422, 423, 471, 503

Free-space waves, 511
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Free spectral range, 422

Frequency-dependence, 310,

316, 345, 380, 439, 569,

571

Freshwater lake, 413

Friis transmission formula,

547

G

Gain coefficient, 376

Gamma curves as a function

of incident angles, 438

Gauss, 207

Gaussian intensity spectrum,

444

Gaussian surface

definition of, 53

differential analysis of,

61–62

for infinite uniform line

charge, 58

Gauss’s law

application of, to field of a

point charge, 55

differential volume

element, 61–62

mathematical formulation

of, 52–55

and Maxwell’s first

equation, 66

point form of, 66

symmetrical charge

distribution, 56–60

General wave equations, 306

Good conductor, 387

Good dielectric, 381–383

Gradient, 93, 554–556

Graphical interpretation, 77

Group delay difference, 474

Group velocity, 316

Group velocity dispersion,

442

Group velocity function, 442

H

Half-space, 407, 531

Half-wavelengths, 323, 326,

329, 339, 342, 343, 410,

411, 414, 416, 420, 422,

487, 525, 526, 531, 544

Half-wave matching, 421

Hall effect, 232

Hall voltages, 232, 233

Handedness, 398–399

Heaviside’s condition,

316–317

Helmholtz equation, 376

Henry, 207, 264

Hertzian dipole, 511–517,

546–547

High index core, 496

Hole mobilities, 126

Holes, 126–127

Hooke’s law, 569

Hybrid modes, 466

Hysteresis, 131, 246, 258

Hysteresis loop, 258–259

I

Ideal solenoid, 194

Ideal toroid, 195

Images, 124

Impedance

characteristic, 308–309

complex internal, 328

complex load impedance,

320, 324

effective, 431

input, 419

intrinsic, 374

net series, 313

normalized, 338, 341

normalized load, 335

and slotted line, 323–324

wave, 328, 419

Impedance-matching

methods, 321, 420–421

Impedance transformation,

424

Incident angles, 438

Incident energy, 409, 416

Incident wave power, 321

Incident waves, 407, 471

Incremental closed path, 196

Induced voltage, 283

Inductance

external, 456–457

internal, 267–268, 345,

457–460

mutual, 263–269

self, 264

transmission lines, 209,

303–304

Inductors, 267–268

Infinite conducting plane, 125

Infinite line charge, 38,

80–81, 186

Infinitely long straight

filament, 184, 185

Infinite parallel filaments, 238

Infinite radial planes, 165

Infinite sheet of charge, 39

Infinite uniform line charge,

38, 39, 58

Initially charged lines, 303

Initially charged network, 303

Initially charged transmission

lines, 354–355

Initial voltage wave, 348

In-phase, 325, 326
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Input impedance, 419

Instantaneous field values,

375

Instantaneous power,

316–317

Instantaneous values of the

total field, 411

Insulators, 114

Intensity plots, 504, 505

Interference pattern, 473

Interior paths, 203

Internal fields, 137

Internal inductance, 267

International System (SI), 27,

207, 557, 558, 559, 560,

561

Intrinsic impedance, 374

Inverse cube law, 100

Inverse square law, 85, 100

Isotropic materials, 116

Isotropic radiator, 520–521

K

Kinetic energy, 85, 100, 231

Kirchoff’s current law, 304

Kirchoff’s voltage law, 89,

304

L

Laplace’s equations

for cylindrical coordinates,

165

derivation of, 160–162

examples of the solution

of, 162–168

uniqueness theorem and,

565–566

Laplacian of V, 161

Laplacian of vector, 219

Lbf (pound-force), 3

Leaky wave propagation, 491

Left circular polarization, 398

Left elliptical polarization,

398

Left-handed screw, 398, 399

Lenz’s law, 278, 280, 282

Lever arm, 239

Linear charge density, 36,

153

Linearly polarized wave, 395

Linear polarization, 397, 497

Line charges

cross-section of, 41

density, 102

differential-width, 39

equivalent, 153

field of, 35–39

infinite, 38, 80–81, 186

infinite uniform, 38, 39, 58

potential of, 150

straight, 35

uniform, 55, 87

uniform density, 35, 36, 88

uniform distribution, 57–63

Line integral, 77–79

Lines, 303, 316. See also
Transmission lines

Lorentz force equation, 231

Lossless line, 302

Lossless propagation,

306–310, 315–317

Loss tangent, 377, 381

Lower-index cladding, 496

Low-loss approximation,

315–316, 317

Low-loss propagation,

315–317

Lumped-element model, 303,

305

Lumped elements, 301

M

Macroscopic phenomenon, 33

Magnetic boundary

conditions, 252–254

Magnetic charges, 285

Magnetic circuit, 255–260

Magnetic dipole antenna,

523–524

Magnetic dipole moment, 241

Magnetic dipole moment per

unit volume, 248

Magnetic dipoles, 248

Magnetic energy, 266

Magnetic field, 278

Magnetic field configuration,

395

Magnetic field intensity (H)

caused by a finite-length

current filament, 186

curl of, about an infinitely

long filament, 199

definition of, 210

as a function of radius in an

infinitely long coaxial

transmission line, 192

produced by a differential

current element, 181

spatial rate of change of,

196

streamlines of, about an

infinitely long straight

filament, 185

Magnetic flux, 143, 207–209

Magnetic flux density,

207–209, 281

Magnetic materials

nature of, 244–247

potential energy and forces

on, 261–263

Magnetic moment, 244–246
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Magnetic potentials, scalar

and vector, 210–216

Magnetic susceptibility, 250

Magnetization and

permeability, 247–252

Magnetization curve, 258

Magnetomotive force, 255

Magnitude, 112

Maps

curvilinear-square,

157–159

field, 157–159, 186

Marcuse formula, 504

Material constants, 562–

564

Materials

anisotropic, 116

antiferromagnetic,

246–247

constants of certain,

562–564

diamagnetic, 245

dielectric, 50, 127–133,

133–137

donor, 127

ferrimagnetic (ferrites),

247, 377

ferroelectric, 131

ferromagnetic, 246

isotropic, 116

magnetic, 244–247,

261–263

paramagnetic, 246

superparamagnetic, 247

Maximum voltage amplitude,

326

Maxwell’s equations

and Gauss’s law, 66–67

in integral form, 290–291

in phasor form, 372

in point form, 288–289

in rectangular waveguides,

480–481

Meridional rays, 497

Metallic conductors, 114–119

Method of images, 124–126

Mho, 116

Microstrip line, 461

Microwave oven, 380

Mid-equipotential surface,

153

Midpoint

closed-circuit torque, 241

electric field intensity, 156

thin-wire antennas, 525

Minimum voltage amplitude,

326

Mobility, 115

Modal dispersion, 475, 489

Mode field radius, 504

Mode number, 468

Monopole antennas, 531–533

Motional electric field

intensity, 282

Motional emf, 282

Moving charges, 230–231

Moving magnetic field, 278

Multiple-interfaces, 418, 424

Multiplication of vectors, 3,

9, 65

Multipoles, 100

Multiwave bidirectional

voltage distribution, 327

Mutual inductance, 263–269

N

Negative current, 309

Net phase shift, 470

Net series impedance, 313

Net shunt admittance, 313

Network, 303

Newton’s second law, 569

Newton’s third law, 558

Nonconservative field, 89

Nonpolar molecule, 128

Nonzero α, 377

Nonzero G, 316

Nonzero ∈
′′, 377

Nonzero impedance, 348

Nonzero phase difference,

536

Nonzero R, 316

Nonzero values, 213, 268,

278, 282, 377

Normal incidence, 406–413

Normalized frequency, 502

Normalized impedance, 341

Normalized load and

short-circuited stub, 344

Normalized load impedance,

335

Normalized power spectrum,

444

N-turn solenoid of finite

length, 194

N-turn toroid, 195

N-type semiconductors, 127

Nuclear spin, 244

O

Oblique incidence, 425

Obliquely incident waves,

434–437

Observer, 283

Ohm, 116

Ohm’s law, 291

definition of, 117

in point form, 116
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Omega-beta diagram, 439,

440

One half-wavelength

multiples, 411

Optical fiber, 496–505

Optical fiber waveguides,

465

Optical waveguides, 435

P

Parallelogram law, 2, 78

Parallel-plate capacitor, 39,

145–147, 148, 163, 172,

286

Parallel-plate capacitor field,

454

Parallel-plate guide analysis,

476–479

Parallel-plate transmission

lines, 455

Parallel-plate waveguide,

463, 465

plane wave analysis of,

467–475

plane wave propagation by

oblique reflection, 465

plane wave propagation in

guided mode, 467

plane wave representation

of TM and TEM modes,

466

simplified form of, 463

Parallel polarization, 429

Paramagnetic materials, 246

Partial capacitances, 146

Partial transmission, 491

Penetration depth, 380

Perfect conductor, 281

Perfect dielectrics, 133–137,

378

Permeability

definition of, 250

of free space, 207

and magnetization,

247–252

relative, 250

Permittivity

in anisotropic materials,

400

and capacitance, 263

complex, 27, 376–377,

567–573

of free space, 27

of homogeneous

dielectrics, 144

in isotropic materials, 426

with multiple dielectrics,

148

relative, 109, 127, 131,

132, 147

Perpendicular polarization,

429–430

Phase constant, 310

Phase shift per unit distance,

310

Phase shift per unit time, 310

Phase shifts, 470, 471, 478

Phase velocity, 310, 370

Phasor electric field, 371

Phasor voltage, 312

Planar dielectric waveguides,

490–496

Plane of incidence, 429

Plane wave analysis, 466

Plane wave incidence

geometry, 429

Plane wave model, 467, 478

Plane wave propagation

in general directions,

425–428

in guided mode, 467

Plane wave reflection,

428–429

Plane wave representation of

TM and TEM modes,

466

Plane waves

analysis, 466, 467–475

incidence geometry, 429

propagation, general

directions in, 425–428

propagation by oblique

reflection, 465

propagation in guided

mode, 467

reflection, 428–429

representation of TM and

TEM modes, 466

right circularly polarized,

398

uniform, 368, 426

uniform reflection of,

406–413

P-n junction capacitance,

169–172

Point charges

energy expended in

moving, in an electric

field, 76–77

Gauss’s law and, 55

location of, 31

of a potential field, 84–85,

87

symmetrical distribution

of, 32

Point dipole, 100

Poisson’s equations

derivation of, 160–162

examples of the solution

of, 169–172

uniqueness theorem and,

565–566
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Polar coordinates of Smith

chart, 335

Polarization, 129, 555

angle, 436

circular, 397, 398

elliptical, 397

left circular, 398

left elliptical, 398

linear, 397, 497

parallel, 429

perpendicular, 429–430

p-polarization, 429, 430,

431–432, 433, 436, 471

right circular, 398

right elliptical, 398

s-polarization, 429,

430–432, 433, 436, 471

state, 396

transverse electric (TE),

430

transverse magnetic (TM),

429

wave, 394–401

Polarization angle, 436

Polarization state, 396

Polarized electric field, 368

Polar molecules, 128

Poles, 285

Positive current, 309

Potential

absolute, 83

described, 82–83

differential vector magnetic

field, 215

electrostatic, 208, 211

energy and, 75

as a function of distance,

170

retarded, 292–296

scalar magnetic, 210–216,

255

time-varying, 292

vector magnetic, 210–216,

222

Potential difference, 82–83,

85

Potential energy, 75, 100,

128, 261–263, 265

Potential fields

for a cone, 167

equipotential surfaces of,

92

and inverse square law, 100

of a point charge, 84–85, 87

of a ring of uniform line

charge density, 88

as a scalar field, 75

of a system of charges,

86–89

for two infinite radial

planes with an interior

angle, 165

Potential gradient, 90–94

Power-factor angle, 382

Power loss, 319

Power reflection, 434

Power spectrum, 444

Power transmission and loss

characterization,

316–320

Poynting’s theorem, 384–387

Poynting vector, 385, 425,

443

P-polarization, 429, 430,

431–432, 433, 436, 471

Primary constants, 304

Principle of conservation,

111–112

Prisms, 439

Projection, 10

Propagation. See also
Lossless propagation

free-space, 476

in good conductors,

387–394

low-loss, 315–317

of transmission lines,

302–304

Propagation constant, 313,

376, 425

Propagation distance, 315

P-type semiconductors, 127

Pulse broadening, 443–447

Pulse envelope, 446

Pulse-forming line, 356

Pulse-forming network, 303

Pulse intensity, 443

Pulse spectrum, 443

p waves, 430

Q

Quantum energy, 114, 571

Quarter-wave matching, 330,

423

Quarter-wave plate, 400

Quasi-TEM approximation,

461

R

Radial mode number, 497

Radial path, 81

Radial planes, 165

Radian time frequency, 310,

370

Radiation efficiency of

antenna, 522

Real instantaneous forms of

the electric field, 370

Real-instantaneous voltage,

312, 313, 315, 326

Receivers, antennas as,

541–547
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Reciprocity theorem, 542

Rectangular coordinates

differential volume element

in, 5, 65

incremental closed path in,

196

Rectangular coordinate

systems

described, 3–5

dot products of unit vectors

in, 17, 21

unit vectors of, 5, 6

Rectangular variables, 16

Rectangular waveguides, 464,

479–490

Reflected power, 322

Reflected waves, 407, 408

Reflection coefficient, 321,

409

Reflection coefficient phase,

326

Reflection diagrams, 353, 356

Reflection of uniform plane

waves, 406–413

Reflective phase shift, 470

Refractive index, 421, 440

Refractive index ratio, 439

Relative permeability, 250

Relative permittivity, 109,

127, 131, 132, 147

Reluctance, 256

Resistance, 117, 256

Resistor voltage as a function

of time, 357

Resonant cavity, 477

Resonant frequency, 569

Retardation, 400

Retarded potentials, 292–296

Right circularly polarization,

398

Right circularly polarized

plane wave, 398

Right circularly polarized

wave, 399

Right-handed coordinate

systems, 4

Right-handed screw, 11, 12

Rudolf-Neumann formula,

504

S

Scalar components, 11

Scalar fields, 2

Scalar magnetic potentials,

210–216, 255

Scalar operators, 67

Scalars and vectors, 1–2

Self-inductance, 264

Semiconductors, 114, 115,

126–127

Semi-infinite current

segments, 187

Semi-infinite transmission

lines, 322

Short circuit, 281

Short-circuited stub, 344

Siemens (S), 115

Sink, 65

Sinusoidal steady-state

conditions, 312

Sinusoidal waves, 311–313

Skew rays, 497

Skin depth, 389

Skin effect, 387–394

Skin effect loss, 316

Slotted line, 323

Smith chart

components of, 338

described, 334–345

photographic reduction of,

340

polar coordinates of, 335

Snell’s law, 431, 434,

436–437

Solenoid of finite length, 194

Source, 65

South Pole, 3

Space rate of change, 62

Spatial dimension, 396

Spatial field configuration,

398

Spatial frequency, 310, 370

Spectral energy, 443–444,

447

Spectral intensity, 443

Spectral packets, 439

Spectral power, 439

Spherical coordinates, 20

Spherical coordinate systems,

18–22, 21

Spin, 244–246

S-polarization, 429, 430–432,

433, 436, 471

Standing wave, 313

Standing wave ratio,

413–417

units, 560

voltage, 313, 323–327, 342

Static electric fields, 26

Static fields, 88

Steady magnetic field,

180–223

Steady-magnetic-field laws,

217–223

Steady-state situation, 417

Step index fiber, 496

Stokes’ theorem, 202–206

Straight-line charge, 35

Streamlines

and curvilinear squares,

157

described, 41–42
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equation of, 43

and equipotential surfaces,

122

of the magnetic field

intensity about an

infinitely long straight

filament, 185

Streamline sketch, 42

Superconductivity, 116

Supermagnetic materials, 247

Surface current, 195

Surface current density, 39,

182, 291

Surfaces

area of, 15

boundary, 162

conductor, 39

in cylindrical and

rectangular coordinate

systems, 15

equipotential, 86, 150,

155–156, 162

incremental, 202

mutually perpendicular,

19–20

perpendicular, 15

spherical, 20

Surface waves, 493

Switched voltage source,

303

Symmetrical charge

distributions

examples, 56–60

and Gauss’s law, 52–55

Symmetrical dielectric slab

waveguides, 464, 490,

495

Symmetric slab waveguide,

490, 491, 494

Symmetry and Gauss’s law,

57

T

Teflon, 132, 136, 472, 563

Telegraphist’s equations,

306

TEm0 modes, 486–490

TE modes, 483–485

Temporal half-width, 445

Temporal prism, 444

TE0p modes, 486–490

Tesla, 207

Thin-wire antennas, 525–533

Three-interface problem, 424

Time-averaged power, 317

Time dimension, 396

Time-phase relationship, 382

Time-varying potentials,

292–296

TM modes, 481–483

Torque, 239, 240

Total charge, 33

Total current, 249

Total electric field intensity,

31

Total enclosed charge, 130

Total flux, 53

Total free charge, 130

Total free current, 249

Total intermission, 434–437

Total internal reflection, 434

Total reflection, 434–437

Transform-limited pulse, 447

Transient analysis of

transmission lines,

345–358

Transient phases, 417

Transients, 345

Transmission coefficient, 321,

409

Transmission-line equations,

304–306, 313–315

Transmission-line fields

coaxial (high frequencies),

456–457

coaxial (intermediate

frequencies), 458

coaxial (low frequencies),

460–462

microstrip line (low

frequencies), 460–462

and primary constants,

453–462

two-wire (high

frequencies), 459–460

two-wire (low

frequencies), 460

Transmission-line

propagation, 302–304

Transmission lines

basic circuit, 302

coaxial, geometry of, 456

energy stored in, 331

examples of, 330–334

of finite length, 327–330

finite-length configuration,

and its equivalent circuit,

328

general wave equations for,

306

graphical methods for,

334–345

inductance in, 209,

303–304

infinitely long coaxial,

function of radius as

magnetic field intensity

in, 192

initially charged, 354–355

lossless, terminated by a

matched load, 346

lumped-element model of,

303
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lumped-element model

with losses, 305

matched at both ends, 330

net series impedance in,

313

net shunt admittance in,

313

parallel-plate, geometry of,

455

primary constants of, 304

pulse-forming line, 356

slotted lines, 323

transient analysis of,

345–358

two-wire, geometry of, 459

wave phenomena on, 301

Transmission-line voltage,

310

Transmission-line waves, 454

Transmitted waves, 407, 408

Transverse electric (TE)

mode, 466

Transverse electric (TE)

polarization, 430

Transverse electromagnetic

(TEM) mode, 466, 489

Transverse electromagnetic

(TEM) waves, 368, 454

Transverse magnetic (TM)

mode, 466

Transverse magnetic (TM)

polarization, 429

Transverse phase constants,

468

Transverse phase shift, 470,

478

Transverse plane, 368

Transverse resonance, 469,

470, 501

Two-dimensional fields, 42

Two-dimensional plot, 348

Two-dimensional problems

capacitance, estimation of,

154–159

coordinate systems, 18

planar dielectric

waveguides, 490

plane wave propagation,

426

Two-dimensional

transmission-line

drawings, 350

Two-interface problem, 418

Two-wire transmission lines,

459

U

Unbounded region,

Maxwell’s equations for,

291

Uncurling, 222

Unidirectional endfire

operation, 540

Uniform current density, 117

Uniform electric field, 77

Uniform field, 77

Uniform linear arrays,

537–541

Uniform line charge density,

35, 36, 88

Uniform plane waves, 368,

406–413, 426

Uniform surface current

density, 183

Uniqueness theorem, 162,

565–566

Units and conversions,

557–561

Unit vectors, 5, 6

Upward-propagating waves,

465, 467, 469

V

Vacuum, 26

Valence band, 114

Valance electrons, 114, 115

Vector, 1–2

Vector addition, 2, 31

Vector algebra, 2–3

Vector components, 11

Vector components and unit

vectors, 5–8

Vector fields, 2, 8

Vector force, 28

Vector Helmholtz equation,

373

Vector identities, 554–556

Vector Laplacian, 371

Vector magnetic potentials,

210–216, 222

Vector multiplication, 3,

9, 65

Vector operator, 67–69

Vector product, 11, 12

Vector surface, 9

Velocity

drift, 115

group, 316

group dispersion, 442

group function, 442

phase, 310, 370

wave, 307

Vertices of triangle, 11

Volt, 83

Voltage

complex instantaneous,

312

Hall, 232

Kirchoff’s law of, 89

phasor, 312

real instantaneous forms

of, 310



INDEX 593

relation between current

and, 308

simple dc-circuit, 89

sinusoidal, 309–310

transmission-line, 310

Voltage division, 348

Voltage reflection diagrams,

348–349, 352, 355

Voltage standing wave ratio

(VSWR), 313, 323–327,

342

Voltage wave, 354

Voltage wave reflection, 320

Volume charge density, 33,

197

W

Wave dispersion, 439

Wave equation, 476–479

Wavefront, 302

Waveguide dispersion, 478

Waveguide mode, 465–466

Waveguide operation,

463–466

Waveguides

cylindrical, 464

described, 453

dielectric slab, 436, 464,

490, 495

optical, 435

optical fiber, 465

parallel-plate, 463, 465

planar dielectric, 490–496

rectangular, 464, 479–490

symmetric dielectric slab,

464, 490, 495

symmetric slab, 491, 495

Wave impedance, 328, 419

Wavelength(s), 310–311, 370

free-space, 391, 422, 423,

471, 503

half-, 323, 326, 329, 339,

342, 343, 410, 411, 414,

416, 420, 422, 487, 525,

526, 531, 544

Wavenumber, 370

Wave phenomena, 301

Wave polarization, 394–401

Wave propagation

and current density, 392

in dielectrics, 375–383

in dispersive media,

437–146

in free space, 367–375

linearly polarized plane,

395

Wave reflection

at discontinuities, 320–323

from multiple interfaces,

417–425

Waves, 309

Wavevectors, 426, 429, 430,

465, 467, 468, 473, 482,

491

Wave velocity, 307

ω − β diagram, 440, 442,

444, 447

Weak-guidance condition,

497

Weakly guiding step index

fiber intensity plots, 504,

505

Webers, 214

Work

Ampère’s law of, 188

conservation property of,

86

differential, 76

direction of, 76

in electrostatic fields, 80

on equipotential surfaces,

85

in moving a charge, 77–79,

81–82, 100, 143

total, 9

virtual, 263
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