Creating and Editing Python Files

Installing a Text Editor

A text editor is a type of program that (unsurprisingly) lets you edit text. Code
is just text after all, so picking a good text editor is important to making writing
code easier. There are plenty of good (and just as many bad) options available,
so feel free to do some research. Personally, I use Vim and Neovim, which have
a steep learning curve, but run really fast and allow for efficient edits. For the
purposes of this exercise, however, I recommend Visual Studio Code (VS Code).

To install VS Code, first open the Microsoft Store and search for visual studio
code. Select the one called “Visual Studio Code”. You should not install the
Insiders edition or Visual Studio Community 2022.

» 2 - Bx
-
Visual Studio Code Free
34% Apps Developer tools

Visual Studio Community Free P Code Writer =
2022 <_I> 42 Apps Productivty
4

i

P Type here to search

Open VS Code
Open VS Code, and click File—Open Folder.

8 gOomBm - o

) Chinese Shares Fall A. & 0 a)

Then, create and open a folder for your Python example files. This will be the
folder we work in for all exercises. I recommend that you use a separate folder
for your lab-related Python files, maybe even a separate folder for each lab.
Once you click “Select Folder” you may get a pop-up asking you if you trust this
folder. It’s your folder, so you can trust it no problem.

) Open Folder
€ v 4 E Shape > Desktop > Search Deskeop

Organize = Newfolder

Name Date modified
Quick access.

B0 Desktop
& Downlosds

5] Documents

Python Examples /22 4PM

= Pictures
b Music
B Videos

@ Onedrive

[This PC

& Network
<

Folder: | Python Examples

Select Folder Cancel

& 12°F Partiydoudy A & T)

Creating Your First Python File

Hover over the “Explorer” panel, and click the “New File” button.
Call the file “examplel.py” or something similar. It is important to
make sure the file ends with .py, so it is recognized as a Python file.

O python Examples oo -

Welcome X

Visual Studio Code

Editing e

Start

Learn the Fundamentals

oUTLNE
TIMELINE

12°F Partly cloudy [ER =R

You should get a pop-up in the bottom right corner asking you if you want to
install the Python extension. Go ahead and click the “Install” button to install
the extension. This extension will add special tools to aid you in developing and
running Python. Once it is done installing, close the tab, and switch to the tab
for the Python file you previously created.

amples 8 goDs8m -

examplet.py X

ension & X

ndations
ouTLNE

TIMELINE

Bi Tempstorise A & £)

Writing a Python Program in a File

Copy the code from the image below to create a simple “hello world” program.
This program defines the main() function that, when called, prints the text
“Hello, world!” to the console. Then on line 5, we call the main() function.
Once you are done copying, click the play button in the upper-right corner. The
output from your code will show up in the terminal at the bottom of your screen.

O python Examples a8 i =l

nain()

TERMINAL PORTS Blpton +v [@ -~ ~ X

Exampl s/Sharpe/AppData/Local /Microsoft/Wi

Examples>

ouTLNE
TIMELINE

< 12°F Mostly clear

The import Statement

Make a new file called “import_ example.py” and copy the code from the image
below. Again, click the play button to run your code. Notice that “Hello world!”
was printed to the console even though we did not call the main() function
directly from import_example.py. This was done because the import keyword
both loads and runs the file being imported.

[E=]

printf{"Hello,

TERMINAL PORTS Blpton +v [@ -~ ~ X

Examples> & C:/Users/Sharpe/AppData/Local /Microsoft/wi

ouTLNE
TIMELINE

O Type here to search i %) 12°F Mostly clear

To fix this behavior, so we have to call the main() function explicitly from files
that import examplel.py, we can add the following code to our original file:

8 [E=]

TERMINAL PORTS Blpton +~ [& -~ ~

Examples> & C:/Users/Sharpe/AppData/Local /Microsoft/wi

Examples>

ouTLNE
TIMELINE

O Type here to search & i Bt Tempsto rise

Please note that __name__ and "__main__" have a double underscore before
and after. These double underscore are special Python attributes called “dunder

attributes”. The __name__ attribute is set by whichever file is doing the importing.
In the example above, import_example.py was importing examplel.py. When
the file is run directly, the __name__ attribute is set to "__main__". In this way,
we can actually create different behavior depending on whether or not the file
is being run directly or being imported by another file. This can be a super
helpful tool when debugging your code, so you will often see if __name__ ==
"__main__": in files that are meant to be executed directly.

Installing Libraries

For your labs, we will be using several libraries to make doing DSP-specific tasks
easier and faster. These libraries are numpy, scipy, matplotlib, and sympy. To
install them, we use pip—the package installer for Python. In the terminal at
the bottom of your screen type the command:

pip install numpy scipy matlotlib sympy

and hit the “enter” key to execute it. Wait for the packages to install, and you’re
done!

[E=]

@ample1.py

example.py

Bvthon +v [0 @ - ~ X

Users/sharpe/AppData/Local /Microsoft/ui

s> pip insta natplot1

ouTLNE
TIMELINE

11 k8)

FEl O Type here to search = = - & 12°F Mostly clear

If you get an error message saying that the pip command doesn’t exist, try the
command:

python -m pip install numpy scipy matplotlib sympy

Creating Your First Plot

To make a plot in Python, we will start by making a new file called
plot_example.py. We will use two libraries to make our plot: numpy for
array creation and manipulation and matplotlib for drawing the plot. To
use the libraries, we import them. To make using the libraries easer, we can
give them aliases. It is standard to use np as the alias for numpy and plt for
matplotlib.pyplot. This reduces the amount of typing we have to do while
writing the program without losing any meaning or clarity. To make an alias we
use the as keyword as shown below:

8 [E=]
EXPLORER

 PYTHON EXAMPLES

TERMINAL PORTS Eeton +v @ @ -~ ~ X

2kfragpe\LocalCache\local -packages\Python: ripts’ which is not on PATH.
[¢ is di 'y to PATH or, if you prefer to his warning, use

ouTLNE
TIMELINE

Now that we can use the libraries in our code, we will actually make our plot. We
start by defining our time (horizontal) axis as 100 evenly spaced points between
-1 and 1 using the function np.linspace(-1, 1, 100). I chose to plot a cosine,
so we will need a frequency of oscillation. We can define our frequency with a
variable and convert it to angular frequency and store that in another variable.
The numpy library has special functions like np.cos() that return a new array
containing the cosine of every element in the input array. We can then plot the
signal-vs-time using the plt.plot(horiz, vert) function. This will create a
line graph, but since we have 100 points, it will appear as a smooth curve. To
actually show the graph, we need to call another function plt.show(). This
function shows the current figure in a window, so we can see it. Copy the code
shown below, and run it to see the plot.

e

PYTHON EXAMPLES

ouTLNE
TIMELINE

P Type here to search

Sampling

In digital systems, we do not have access to continuous functions. Instead, we
only have samples. To create a time axis that uses a set sampling period T
instead of a set number of points, we can use the np.arange(lower_bound,
upper_bound, T_s) function. We typically use the plt.stem() function instead
of the plt.plot () function to better show the individual samples. As an exercise,
try to re-write the original example plot using the minimum sampling frequency
that does not result in aliasing. Hint: what is the relationship between sampling
frequency and sampling period?

Closing

Now we have a text editor and all the libraries we will need for the course
installed. We also learned how to create and run Python files, and how to use
the import keyword. Finally, we learned a little bit about using the numpy and
matplotlib libraries. For the official documentation for each of the libraries see
the table below:

Library Name Doc Website

Numpy numpy.org
Scipy scipy.org
Matplotlib matlotlib.org
Sympy Sympy.org

https://numpy.org/doc/stable/
https://docs.scipy.org/doc/scipy/
https://matplotlib.org/stable/
https://docs.sympy.org/latest/index.html

	Creating and Editing Python Files
	Installing a Text Editor
	Open VS Code
	Creating Your First Python File
	Writing a Python Program in a File
	The import Statement
	Installing Libraries
	Creating Your First Plot
	Sampling
	Closing

