
1

Understanding Continuous Time Signals with
MATLAB

Aidan Sharpe & Elise Heim

Abstract—In addition to detailing some important properties
of continuous time signals, this lab also highlights some of the
strengths of using MATLAB as a visualization and computation
tool for understanding these signals. Some core topics include
different fundamental continuous time signals, how signals with
different properties interact when added, and the relationship
between signals expressed with code and with equations.

I. OBJECTIVES

Through lecture, several fundamental continuous-time sig-
nals were studied. The relationship between these signals and
their geometry and calculus was analyzed. Now, it is time
to understand this relationship by modeling such signals so
that they can be visually understood. This opens the door to
simulating both fundamental and complex signals, as well as
their interactions. The primary objective of this lab was to
gain this pragmatic understanding, and to be able to apply it
in conjunction with prior knowledge of signals.

II. INTRODUCTION

Continuous-time signals are as their name suggests: a signal
that is defined for all time. Discrete-time signals only have
integer values of time. This makes these signals much easier
to process. The primary method used in this lab for handling
continuous-time signals consists of a process called sampling.
This can be done by modeling them as discrete-time signals.
Modeling these signals in this way can allow for a more
concrete visual understanding of continuous time signals.

III. BACKGROUND

A few basic continuous-time signals utilized in this lab
include the unit step and ramp functions. The unit step is
defined as a function wherein the value is equal to 0 when
time is less than 0, and 1 when time is greater than 0. It looks
similar to a step, as its name suggests. The appearance of the
ramp function also coincides with its nature. This function is 0
when time is less than 0, and it linearly increases with a user-
defined slope when time is greater than 0. These fundamental
continuous-time signals can be advanced or delayed, as well
as compressed or stretched. They can also be easily modeled
by setting specific values of time as integers. By having a
great understanding of basic signals, similar principles can be
applied to more complex signals.

IV. RESULTS & DISCUSSION

First, the unit step signal was copied and modified into the
ramp signal. This modification is seen in listing 1. Specifically,
the y value was redefined from 1 to a being based on the time,
t, advance, ad, and slope, m.

1 if t(i) >= -ad,
2 y(i) = (t(i) + ad)*m;
3 end

Listing 1. Unit Step to Ramp Function

After adding the ramp signal, several elementary operations
were applied to scale and shift both the ramp and unit step
signals. In doing so, their behaviors under these operations
could be visualized without the need for rigorous manual
computation. Simple examples of this can be seen in figures
1 and 2. At a glance, the shape and position of the signal can
be seen and interpreted.

Fig. 1. Scaled, advanced unit step response

Fig. 2. Scaled, advanced ramp response

After evaluating quite simple operations on the ramp and
unit step, a combination of them was analyzed. The signal
defining this combination is seen in equation 1. The signal,
y(t) is comprised of 3 differently scaled and advanced ramp



2

signals and a scaled and advanced unit step. As seen in figure
3, the result is much more complex than any of the previously
analyzed signals.

y(t) = 3r(t+ 3)− 6r(t+ 1) + 3r(t)− 3u(t− 3) (1)

Looking back at figure 3, it is apparent that the signal
described by y(t) is of finite duration from t = −3 to t = 3.
Therefore, it should be noted that it is possible to combine
infinite support signals to yield a finite support one.

Fig. 3. The sum of several ramps and unit steps

With this basic understanding, doing the reverse—
interpreting code as a combination of signals—was attempted.
Given the script shown in listing 2. It is known that any call
to the ramp function will translate to some ar(t − α), and
any call to the ustep function will result in some au(t−α).
Knowing this, the script from listing 2 was translated to the
signal seen in equation 2.

1 clear all;
2 clf;
3 t = -5:0.01:5;
4 y1 = ramp(t,2,2.5);
5 y2 = ramp(t,-5,0);
6 y3 = ramp(t,3,-2);
7 y4 = ustep(t,-4);
8 y = y1 + y2 + y3 + y4;
9 plot(t,y,’k’);

10 axis([-10 10 -2 6]);
11 grid

Listing 2. Provided MATLAB script

x(t) = 2r(t+ 2.5)− 5r(t) + 3r(t− 2) + u(t− 4) (2)

Fig. 4. Plot from provided MATLAB script

After piecing together the continuous time signal, x(t), for
the plot shown in figure 4, the even and odd components were
found. While this can be done arithmetically, we employed
the use of a function, evenodd, which returns both the even
and odd components of a continuous time signal. Seen in
figure 5, the even component is shown in blue, while the odd
component is shown in orange.

Fig. 5. The even (blue) and odd (orange) components of x(t)

Sometimes, in real world scenarios, signals must be altered
from their original form to suit specific circumstances. For
example, in order for an acoustic signal that is 3.3 minutes long
to be played on a radio station for a 3-minute-long segment,
the signal cannot be used exactly as it is. Now, the radio station
could simply cut off the extra 0.3 seconds from the end of the
signal. However, if this were to be a song, it may cut off in the
middle of a word. For this reason, it may be better to speed up
the signal by compressing the data. By scaling the signal by
a factor of 10/11 (0.90909. . . ), the signal can be shortened in
order to fit in the allotted time. This will shorten the signal’s
period.

The period of some signals can be easily shown by modeling
them. The function of x(t) as shown in 3 is comprised of
two cosine functions summed together. This function is in fact
periodic, as it repeats itself at a regular time interval of every
6 seconds.

x(t) = cos(πt) + cos(2πt/3)) (3)

From the equation alone, it may not be intuitive to discern
its period. Without already knowing how a cosine works, it
may not be obvious whether the signal was periodic or not in
the first place. However, visually modeling the equation yields
an almost obvious period, as demonstrated in figure 6.

The cosine is a periodic function. It is probably the most im-
portant periodic function, and arguably the periodic function,
since it is the basic building block of all periodic functions.
Even when a cosine function is stretched and summed with
another stretched cosine function, the result is importantly still
periodic. For this reason, with a little bit of calculus trickery,
every periodic function can be expressed by the sum of cosines
of differing frequency and amplitude.

V. CONCLUSION

This lab has shown how modeling signals can be beneficial
to understanding them. Basic continuous-time signals such as



3

Fig. 6. The sum of two cosines

ramps and unit steps can be stretched, compressed, advanced,
delayed, and summed or subtracted from each other. These
alterations to the signal can be better understood by modeling
them.

One thing that was very nice about having visual represen-
tations of the signals was how easy it was to find the period
of a periodic signal. Finding the period was as easy as taking
the difference between the time of two peaks.

Overall, using MATLAB has several advantages, since it
reduces the amount of manual computation required and also
makes signals more intuitive with a visual model. Having the
skills to create these models quickly will prove invaluable in
the long run.


