\documentclass{article} \title{Power Electronics Homework 1} \author{Aidan Sharpe} \usepackage{circuitikz} \usepackage{amsmath} \usepackage{listings} \begin{document} \maketitle \date{} \section{Initial Circuit} \begin{center} \begin{circuitikz}[american voltages] \draw (0,0) to [short] (1,0) to [empty diode, l=$D_1$] (3,0) to [open, v=$V_d$] (3,-2) (3,0) to [short, american inductor, l=$L_1$, i=$i_L$] (6,0) to [short, american resistor, l_=$R_1$, v^=$V_R$] (6,-2) to [short] (0,-2) (0,0) to [vsourcesin, v_=$V_s$] (0,-2); \end{circuitikz} \end{center} $$V_s(t) = 110 \sqrt{2} \cos(2\pi f t)$$ $$f = 60 \text{[Hz]}$$ $$L_1 = 20 \text{[mH]}$$ $$R_1 = 10 [\Omega]$$ \section{Diode is "On"} \begin{center} \begin{circuitikz}[american voltages] \draw (0,0) to [closing switch] (3,0) to [open, v=$V_d$] (3,-2) (3,0) to [short, american inductor, l=$L_1$, i=$i_L$] (6,0) to [short, american resistor, l_=$R_1$, v^=$V_R$] (6,-2) to [short] (0,-2) (0,0) to [vsourcesin, v_=$V_s$] (0,-2); \end{circuitikz} \end{center} $$V_d(t) = V_s(t) = V_L(t) + V_R(t)$$ $$V_L(t) = L_1 {d \over dt}i_L(t)$$ $$V_R(t) = R_1 i_L(t)$$ $$110 \sqrt{2} \cos(120\pi t) = 10 i_L(t) + 0.02 {d\over dt}i_L(t)$$ Apply Laplace Transform: $$10 I_L(s) + 0.02 s I_L(s) + i_L(0) = {110 \sqrt{2} s \over 14400 \pi^2 + s^2}$$ Solve for $I_L(s)$: $$I_L(s) (10 + 0.02 s) = {110 \sqrt{2} s \over 14400 \pi^2 + s^2}$$ $$I_L(s) = \frac{110\,\sqrt{2}\,s}{\left(\frac{s}{50}+10\right)\,\left(s^2+14400\,\pi ^2\right)}$$ Apply Inverse Laplace Transform: $$i_L(t) = \frac{6875\,\sqrt{2}\,\cos\left(120\,\pi \,t\right)+1650\,\pi \,\sqrt{2}\,\sin\left(120\,\pi \,t\right)}{36\,\pi ^2+625}-\frac{6875\,\sqrt{2}\,{\mathrm{e}}^{-500\,t}}{36\,\pi ^2+625}$$ $$V_R = \frac{10\,\left(6875\,\sqrt{2}\,\cos\left(120\,\pi \,t\right)+1650\,\pi \,\sqrt{2}\,\sin\left(120\,\pi \,t\right)\right)}{36\,\pi ^2+625}-\frac{68750\,\sqrt{2}\,{\mathrm{e}}^{-500\,t}}{36\,\pi ^2+625}$$ \section{Diode Is "Off"} \begin{center} \begin{circuitikz}[american voltages] \draw (0,0) to [opening switch] (3,0) to [open, v=$V_d$] (3,-2) (3,0) to [short, american inductor, l=$L_1$, i=$i_L$] (6,0) to [short, american resistor, l_=$R_1$, v^=$V_R$] (6,-2) to [short] (0,-2) (0,0) to [vsourcesin, v_=$V_s$] (0,-2); \end{circuitikz} \end{center} \section{LTSpice} \begin{figure}[h] \includegraphics[width=\textwidth]{simulation.png} \end{figure} \section{MATLAB} \begin{lstlisting}[language=MATLAB] syms s t R_1 = 10; L_1 = 0.02; v_s = 110*sqrt(2)*cos(120*pi*t); V_s = laplace(v_s); I_L = V_s / (R_1 + s*L_1); i_L = ilaplace(I_L); v_o = i_L * R_1 \end{lstlisting} \section{Large Inductor} As the inductor gets proportionally larger than the resistor, the amplitude of the output voltage decreases and the phase shift increases. \section{Large Resistor} As the resistor gets proportionally larger than the inductor, the amplitude of the output approaches the amplitude of the input and the phase shift goes to zero. \end{document}