# Chapter 2 - Systems A *system*, $S$, takes in an input signal, $x(t)$, and outputs a signal, $y(t)$. $$x(t) \rightarrow \boxed{S} \rightarrow y(t)$$ $$y(t) = S[x(t)]$$ ## Simple System Properties #### Linear Systems $S$ is said to be linear if it satisfies both hoogeneity and superposition. #### Homogeneity Scaling an input by a factor, $a$, scales the output by the same factor. $$ay(t) = S[ax(t)]$$ #### Superposition Adding two inputs lead to the corresponding outputs being added. If $$y_1(t) = S[x_1(t)]$$ $$y_2(t) = S[x_2(t)]$$ Then $$y_1(t) + y_2(t) = S[x_1(t) + x_2(t)]$$ #### Time Invariance $S$ is said to be time-invariant if delaying or advancing the input gives the same delay or advance in the output. $$y(t - \alpha) = S[x(t - \alpha)]$$ #### Causality $S$ is said to be causal if the output does not depend on any future inputs. Theoretically, noncausal systems cannot be realized. #### Signal Boundedness $x(t)$ is said to be bounded if $\lvert x(t) \rvert \le B_x \lt \infty$ Bounded example: $$x(t) = e^{-t} u(t)$$ Unbounded example: $$x(t) = e^t u(t)$$ #### Bounded-Input, Bounded-Output Stability $S$ is said to be bounded-input, bounded-output (BIBO) stable if every bounded input gives rise to a bounded output. Fact: The system is BIBO unstable if just one bounded input gives rise to an unbounded output. Every bounded $x(t)$ gives rise to a bounded $y(t)$. ### Example 2.1 $$y(t) = S[x(t)] = x^2(t)$$ ##### Homogeneity: $$S[ax(t)] = [ax(t)]^2 = a^2x^2(t)$$ $$ay(t) = ax^2(t)$$ Since $S[ax(t)] \ne ay(t)$, $S$ is not homogeneous, and therefore not linear. ##### Time invariance: $$S[x(t-\alpha)] = [x(t-\alpha)]^2 = x^2(t-\alpha) =y(t-\alpha)$$ Since $S[x(t-\alpha)] = y(t-\alpha)$, $S$ is causal ##### BIBO stability: $$\lvert x(t) \rvert \le B_x \lt \infty$$ $$\lvert y(t) \rvert = \lvert x^2(t) \rvert \le B_x^2 \lt \infty$$ ### Example 2.2 $$y(t) = S[x(t)] = \cos(x(t))$$ ##### Homogeneity: $$S[ax(t)] = \cos(ax(t))$$ $$ay(t) = a\cos(x(t))$$ Since $S[ax(t)] \ne ay(t)$, $S$ is not homogeneous and therefore not linear. ##### Time invariance: $$S[x(t-\alpha)] = \cos(x(t-\alpha)) = y(t-\alpha)$$ ##### BIBO stability: $$\lvert x(t) \rvert \le B_x \lt \infty$$ $$\lvert y(t) \rvert \le 1$$ ### Example 2.3 $$y(t) = S[x(t)] = \lvert x(t) \rvert$$ ##### Homogeneity: $$S[ax(t)] = \lvert ax(t) \rvert$$ $$ay(t) = a \lvert x(t) \rvert$$ Since $\lvert a \rvert \ne a$, $S$ is not homogeneous and therefore not linear. ##### Time invariance: $$S[x(t-\alpha)] = \lvert x(t-\alpha)\rvert$$ $$y(t-\alpha) = \lvert x(t-\alpha)\rvert$$ Since $S[x(t-\alpha)] = y(t-\alpha)$, $S$ is time invariant. ##### BIBO stability $$\lvert x(t) \rvert \le B_x \lt \infty$$ $$\lvert y(t) \rvert = \lvert x(t) \rvert \le B_x \lt \infty$$ ### Example 2.4 $$y(t) = S[x(t)] = mx(t) + b$$ ##### Homogeneity: $$S[ax(t)] = max(t) + b$$ $$ay(t) = amx(t) + ab$$ ##### Superposition: $$y_1(t) = mx_1(t) + b$$ $$y_2(t) = mx_2(t) + b$$ $$y_1(t) + y_2(t) = m(x_1(t) + x_2(t)) + 2b$$ For $b=0$, $S$ is linear, otherwise, neither homogeneity nor superposition are satisfied. ##### Time invariance: $$S[x(t-\alpha)] = mx(t-\alpha) + b$$ $$y(t-\alpha) = mx(t-\alpha) + b$$ Since $y(t-\alpha) = x(t-\alpha)$, $S$ is time invariant. ##### BIBO stability $$\lvert y(t) \rvert = \lvert mx(t) + b \rvert \le \lvert m \rvert \lvert x(t) \rvert + \lvert b \rvert \le \lvert m \rvert B_x \lt \infty$$ ### Example 2.5 $$y(t) = S[x(t)] = tx(t+3)$$ ##### Homogeneity: $$S[ax(t)] = atx(t+3)$$ $$ay(t) = atx(t+3)$$ ##### Superposition: $$y_1(t) = tx_1(t+3)$$ $$y_2(t) = tx_2(t+3)$$ $$S[x_1(t) + x_2(t)] = t[x_1(t+3) + x_2(t+3)]$$ $$y_1 + y_2 = tx_1(t+3) + tx_2(t+3)$$ Since both homogeneity and superposition are satisfied, $S$ is a linear system. ##### Time invariance: $$S[x(t-\alpha)] = tx(t+3-\alpha)$$ $$y(t-\alpha) = (t-\alpha)\cdot x (t+3-\alpha)$$ Not time invariant. ##### Causality: No ##### BIBO stability: $$\lvert y(t) \rvert = \lvert tx(t+3) \rvert = \lvert t \rvert \lvert x(t+3)\rvert$$ Since $\lvert t \rvert$ is not bounded, ther is no $B_y$ such that: $$\lvert y(t) \rvert \le B_y \lt \infty$$ ### Example 2.6 - Expansion $$y(t) = S[x(t)] = x({t \over 10})$$ ##### Homogeneity $$S[ax(t)] = ax({t \over 10}) = ay(t)$$ ##### Superposition $$y_1(t) = x_1({t \over 10})$$ $$y_2(t) = x_2({t \over 10})$$ $$S[x_1(t) + x_2(t)] = x_1({t \over 10}) + x_2({t \over 10})$$ ##### Time Invariance $$S[x(t - \alpha)] = x({t \over 10} - \alpha)$$ $$y(t - \alpha) = x({t - \alpha \over 10})$$ ##### Causal $$y(-10) = x(-1)$$ ##### BIBO Stability Expansion affects input space, not output space ### Example 2.7 $$y(t) = S[x(t)] = {1 \over T} \int\limits_{t-T}^t x(\tau)d\tau + B$$ ##### Homogeneity $$S[ax(t)] = {1 \over T} \int\limits_{t-T}^t ax(\tau)d\tau + B$$ $$ay(t) = {a \over T} \int\limits_{t-T}^t x(\tau)d\tau + B$$ Not homogeneous unless $B = 0$. ##### Superposition $$y_1(t) = {1 \over T} \int\limits_{t-T}^t x_1(\tau)d\tau + B$$ $$y_2(t) = {1 \over T} \int\limits_{t-T}^t x_2(\tau)d\tau + B$$ $$S[x_1(t) + x_2(t)] = {1 \over T} \int\limits_{t-T}^t [x_1(\tau) + x_2(\tau)]d\tau + B$$ $$y_1(t) + y_2(t) = {1 \over T} \int\limits_{t-T}^t x_1(\tau)d\tau + {1 \over T} \int\limits_{t-T}^t x_2(\tau)d\tau + 2B$$ ##### Time Invariance $$S[x(t - \alpha)] = {1 \over T} \int\limits_{t-T}^t x(\tau - \alpha)d\tau + B$$ Substitute $v = \tau - \alpha$: $$S[x(t - \alpha)] = {1 \over T} \int\limits_{t-T-\alpha}^{t-\alpha} x(v)dv + B$$ $$y(t - \alpha) = {1 \over T} \int\limits_{t-T-\alpha}^{t-\alpha} x(\tau)d\tau + B$$ ##### Causality $y(t)$ depends on $x(t)$ which uses inputs from $t-T$ to $t$, and no future inputs. Therefore, the system is causal. If instead, inputs ranged from $t-T$ to $t+T$, the system would rely on future inputs and would not be causal. ##### BIBO Stability $$\lvert x(t) \rvert \le B_x < \infty$$ $$|y(t)| = \left| {1 \over T} \int\limits_{t-T}^t x(\tau)d\tau + B \right|$$ $$|y(t)| \le \left| {1 \over T} \int\limits_{t-T}^t x(\tau)d\tau \right| + |B|$$ $$|y(t)| \le {1 \over T} \int\limits_{t-T}^t |x(\tau)|d\tau + |B|$$ $$|y(t)| \le {1 \over T} \int\limits_{t-T}^t B_x d\tau + |B|$$ $$|y(t)| \le {1 \over T} \left[\tau B_x\Big|_{t-T}^{t}\right] + |B|$$ $$|y(t)| \le {1 \over T} T B_x + |B|$$ $$|y(t)| \le B_x + |B|$$ ### Example 2.8 - AM $$y(t) = S[m(t)] = m(t)\cos(\omega_c t)$$ ##### Homogeneity $$S[am(t)] = am(t)\cos(\omega_c t) ay(t)$$ ##### Superposition $$y_1(t) = m_1(t)\cos(\omega_c t)$$ $$y_2(t) = m_2(t)\cos(\omega_c t)$$ $$S[m_1(t) + m_2(t)] = [m_1(t) + m_2(t)]\cos(\omega_c t)$$ $$y_1(t) + y_2(t) = [m_1(t) + m_2(t)]\cos(\omega_c t)$$ ##### Time Invariance $$S[m(t-\alpha)] = m(t-\alpha)\cos(\omega_c t)$$ $$y(t - \alpha) = m(t-\alpha)\cos(\omega_c (t -\alpha))$$ ##### Causality Yes ##### BIBO Stability $$|m(t)| \le B_x$$ $$|y(t)| = |m(t)\cos(\omega_c t)| \le |m(t)| \le B_x$$ ### Example 2.9 - FM $$y(t) = S[m(t)] = \cos\left(\omega_c t + \int\limits_{-\infty}^{t} m(\tau) d\tau \right)$$ ##### Homogeneity $$S[am(t)] = \cos\left(\omega_c t + \int\limits_{-\infty}^{t} am(\tau) d\tau \right)$$ $$ay(t) = a\cos\left(\omega_c t + \int\limits_{-\infty}^{t} m(\tau) d\tau \right)$$ ##### Time Invariance $$S[m(t-\alpha)] = \cos\left(\omega_c t + \int\limits_{-\infty}^{t} m(\tau - \alpha) d\tau \right)$$ $$y(t-\alpha) = \cos\left(\omega_c (t - \alpha) + \int\limits_{-\infty}^{t} m(\tau) d\tau \right)$$ ##### BIBO Stability $$|y(t)| \le 1$$ ## Linear, Time-Invariant Systems The implulse response $h(t)$ of an LTI system is the output of the system when $$\delta(t) \rightarrow \boxed{\text{LTI}} \rightarrow h(t)$$ Causal if $h(t) = 0$ for $t<0$. BIBO stable if: $$\int |h(t)|dt < \infty$$ If $h(t)$ has finite supports, it is *always* BIBO stable. If $h(t)$ has infinite support, BIBO stability must be checked. A linear, constant coefficient ODE with input $x(t)$ and output $y(t)$ is LTI under zero initial conditions and when $x(t)$ is a causal input. ### Circuit Application An RLC circuit with no initial voltage across the capacitor and no initial current through the inductor is LTI. #### Without Initial Condition For a capacitor with no initial voltage: $$V(t) = S[I(t)] = {1\over C} \int\limits_0^t I(\tau) d\tau$$ ##### Homogeneity $$S[aI(t)] = {1\over C}\int\limits_0^t aI(\tau) d\tau = {a\over C}\int\limits_0^t I(\tau) d\tau = aV(t)$$ ##### Superposition $$V_1(t) = {1\over C}\int\limits_0^t I_1(\tau) d\tau$$ $$V_2(t) = {1\over C}\int\limits_0^t I_2(\tau) d\tau$$ $$S[I_1(t) + I_2(t)] = {1\over C} \int\limits_0^t [I_1(\tau) + I_2(\tau)]d\tau = V_1(t) + V_2(t)$$ ##### Time Invariance $$S[I(t - \alpha)] = {1\over C}\int\limits_{-\alpha}^{t-\alpha} I(\tau - \alpha) d\tau$$ $$S[I(t - \alpha)] = {1\over C}\int\limits_{-\alpha}^{t-\alpha} I(p) dp$$ If $I(t)$ is causal: $$S[I(t - \alpha)] = {1\over C}\int\limits_{0}^{t-\alpha} I(p) dp$$ $$V(t - \alpha) = {1\over C}\int\limits_0^{t-\alpha} I(\tau) d\tau$$ #### With Initial Condition For a capacitor with initial voltage: $$V(t) = {1\over C} \int\limits_0^t I(\tau) d\tau + V_0$$ ##### Homogeneity $$S[aI(t)] = {1\over C}\int\limits_0^t aI(\tau) d\tau + V_0$$ $$aV(t) = {a\over C}\int\limits_0^t I(\tau) d\tau + aV_0$$ #### Impulse Response $$i(t) = \delta (t), h(t) = V(t) = ?$$ $$h(t) = {1 \over C} \int\limits_0^t \delta (\tau) d\tau = \begin{cases} {1\over C} & t \ge 0 \\ 0 & t < 0 \end{cases}$$ $$h(t) = {1 \over C} u(t)$$ ### Averager $$y(t) = S[x(t)] = {1 \over T} \int\limits_{t-T}^t x(\tau) d\tau$$ #### Impulse response $$h(t) = {1 \over T} \int\limits_{t-T}^t \delta(\tau) d\tau$$ 3 possibilities for impulse response: 1. $0 < T - t$ means that the impulse is to the left of the limits of integration, and $h(t)$ is 0. 1. $T - t \le 0 \le t$ means that the impulse is within the bounds of integration, and $h(t)$ takes on a non-zero value. 1. $t > 0$ means that the impulse is to the right of the bounds of integration, nad $h(t)$ is 0. For the second case, $T - t \le 0 \le t$, gives the response: $$h(t) = \begin{cases} {1 \over T} & 0 \le t \le T \\ 0 & \text{elsewhere} \end{cases} = {1\over T} \left[u(t) - u(t - T)\right]$$ Since $h(t)$ is 0 for $t < 0$, it is a causal signal. ## Convolution $$y(t) = x(t)*h(t) = \int x(\tau) h(t - \tau)d\tau$$ ##### Commutative: $$x(t) * h(t) = \int h(\tau) x(t-\tau)d\tau = h(t) * x(t)$$ #### Case 1: Two finite support wich have the same region of support (domain). $$x(t) = h(t)$$ ##### Step 1: Decide to manipulate $x$ or $h$. $$h(t - \tau) = h(-\tau + t)$$ Since we are looking at $\tau$ as the variable, there is a reflection and an advance by $t$. As $h(t-\tau)$ slides along the real number line, first there will be no overlap between $x(\tau)$ and $h(t - \tau)$. They multiply to 0, so $y(t) = 0$. Then, there will be some overlap, so $y(t)$ becomes: $$y(t) = \int\limits_0^t d\tau = t$$ $h(t-\tau)$ continues to slide and soon there is full overlap, so $y(t) = 1$. ![](Images/OverlapConvolution)