# Chapter 2 ## Maxwell's Equations in Differential Form $$\int \vec{E} \cdot d\vec{s} = \frac{Q_{enc}}{\varepsilon_0} \xleftrightarrow{\text{divergence}} \nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$ $$\int \vec{B} \cdot d\vec{s} = 0 \xleftrightarrow{} \nabla \cdot \vec{B} = 0$$ $$\int \vec{E} \cdot d\vec{l} = -\frac{d}{dt}\vec{B} \xleftrightarrow{\text{stokes}} \nabla \times \vec{E} = -\frac{d}{dt}\vec{B}$$ $$\int \vec{B} \cdot d\vec{l} = \mu_0\left( \vec{J} + \varepsilon_0 \frac{d\vec{E}}{dt}\right) \xleftrightarrow{} \nabla \times \vec{B} = \mu_0 J + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$ Before Maxwell (only true for magnetostatics): $$\nabla \times \vec{B} = \mu_0\vec{J}$$ $$\nabla \cdot (\nabla \times \vec{B}) = \mu_0(\nabla \cdot \vec{J})$$ $$\nabla \cdot \vec{J} = 0$$ For changing magnetic fields: $$\nabla \cdot \vec{J} = -\frac{\partial}{\partial t} \rho_v$$ $$\nabla \cdot \vec{J} + \frac{\partial}{\partial t} \rho_v = 0$$ ### Example 2.1 $$\vec{J} = e^{-x^2}\hat{x}$$ Find the time rate of change of charge densisty at $x=1$: $$\nabla \cdot \vec{J} = -\frac{\partial}{\partial t} \rho_v$$ $$\frac{\partial \rho}{\partial t} = -\nabla \cdot \vec{J} = -\frac{d}{dx}e^{-x^2} = 2xe^{-x^2}$$ $$\therefore 2 e^{-1}$$ ### Example 2.2 For some spherical current density: $$\vec{J} = \frac{J_0 e^{-t/\tau}}{\rho}\hat{\rho}$$ Find the total current that leaves the surface of radius, $t = \tau$: $$I = \int \vec{J} \cdot d\vec{s} = 4\pi a^2 \left(\frac{J_0 e^{-t/\tau}}{a}\right)$$ $$I = 4\pi a J_0 e^{-1}$$ Find $\rho_v(\rho, t)$: $$\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t} = \frac{1}{\rho^2} \frac{\partial}{\partial \rho}(\rho^2 J)$$ Plug in for $J$: $$\nabla \cdot \vec{J} = \frac{1}{\rho^2} \frac{\partial}{\partial \rho}\left(\rho^2 \frac{J_0 e^{-t/\tau}}{\rho}\right) = \frac{J_0}{\rho^2} e^{-t/\tau} = -\frac{\partial}{\partial t} \rho_v$$ Solve for $\rho_v$: $$\rho_v = \int -\frac{J_0}{\rho^2}e^{-t/\tau} dt$$ $$\rho_v = \frac{J_0}{\rho^2} e^{-t/\tau} \tau$$ ## Wave Propagation $$\nabla \times \vec{E} = -\frac{\partial}{\partial t} \vec{B}$$ $$\nabla \times \vec{B} = \mu_0 (\vec{J} + \varepsilon_0 \frac{\partial}{\partial t} \vec{E})$$ $$\nabla \cdot \vec{E} = \frac{\rho_v}{\varepsilon_0}$$ $$\nabla \cdot \vec{B} = 0$$ Take the curl of the first equation: $$\nabla \times (\nabla \times \vec{E}) = -\frac{\partial}{\partial t}(\nabla \times \vec{B})$$ $$\nabla (\nabla \cdot \vec{E}) - \nabla^2\vec{E} = -\frac{\partial}{\partial t}(\nabla \times \vec{B})$$ Substitute the second equation into the one directly above: $$\nabla(\nabla \cdot \vec{E}) - \nabla^2\vec{E} = -\frac{\partial}{\partial t} \left( \mu_0 \vec{J} + \mu_0\varepsilon_0 \frac{\partial}{\partial t}\vec{E} \right)$$ #### Homogenious vector wave for $\vec{E}$-fields Lets say we are considering wave propagation in a source free region ($\rho_v =0$). $$\nabla \cdot \vec{E} = \frac{\rho_v}{\varepsilon_0} =0$$ $$\vec{J} = -\frac{\partial}{\partial t} \rho_v = 0$$ Now we have: $$-\nabla^2\vec{E} = -\mu_0\varepsilon_0 \frac{\partial}{\partial t} \vec{E}$$ $$\therefore \nabla^2\vec{E}-\mu_0\varepsilon_0 \frac{\partial}{\partial t}\vec{E} = 0$$ #### Homogeneous vector wave for $\vec{B}$-fields $$\nabla^2\vec{B} - \mu_0\varepsilon_0 \frac{\partial^2}{\partial t^2}\vec{B} = 0$$ ### Phasor representations In general, all fields and their sources vary as a function of position and time. If the time variations are sinusoidal, with angular frequency, $\omega$, then each of their quantities can be represented by a time independent phasor. $$\vec{E}(x,y,z,t) = \Re\{\vec{E}(x,y,z)e^{j \omega t}\}$$ $$\vec{E}(r,t) = \Re\{\hat{E}(r) e^{j \omega t}\}$$ $$\vec{B}(r,t) = \Re\{\hat{B}(r) e^{j \omega t}\}$$ $\hat{E}$ and $\hat{B}$ are the complex time variations in vector form. ($\hat{E} = \hat{\vec{E}}$) . If $\hat{E}(r) = E_0 e^{j \theta}$, $$\vec{E}(r, t) = \Re\{E_0 e^{j \theta} e^{j \omega t}\} = E_0\cos(\omega t + \theta)$$ Consider a plane wave in the x-direction only ($E_y = E_z = 0$), and does ont vary the x or y direction ($\frac{\partial}{\partial x}\hat{E} = \frac{\partial}{\partial y}\hat{E} = 0$). Assume free space for propagation ($\hat{J} = \hat{\rho}_v = 0$). $$\nabla \times \vec{E} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \hat{E}_x & \hat{E}_y & \hat{E}_z \end{vmatrix} = -j\omega (\hat{B}_x\hat{x} + \hat{B}_y \hat{y} + \hat{B}_z \hat{z}$$ $$\therefore \begin{Bmatrix} -\frac{\partial}{\partial z}\hat{E} = -j\omega\hat{B}_x \\ \frac{\partial}{\partial z}\hat{E} = -j\omega\hat{B}_y \\ 0 = -j\omega\hat{B}_z \end{Bmatrix}$$ Similarly, Ampere's Law: $$\begin{Bmatrix} -\frac{\partial \hat{B}_y}{\partial z} = j\omega\varepsilon_0\mu_0\hat{E}_x \\ \frac{\partial \hat{B}_x}{\partial z} = j\omega\varepsilon_0\mu_0\hat{E}_y \\ 0 = j\omega\varepsilon_0\mu_0\hat{E}_z\end{Bmatrix}$$ Therefore, $B_x$ and $E_y$ are related to each other. $B_x$ acts as the source for generating $E_y$, and $E_y$ acts as the source for generating $B_x$. Solving for $\hat{E}_x$ and $\hat{B}_y$: $$\frac{\partial^2 \hat{E}_x}{\partial z^2} = -j\omega\frac{\partial \hat{B}_y}{\partial z} = -\omega^2\mu_0\varepsilon_0\hat{E}_x$$ $$\therefore \frac{\partial^2}{\partial z^2}\hat{E}_x + \mu_0\varepsilon_0\omega^2\hat{E}_x = 0$$ The general solution: $$\hat{E}_x = \hat{C}_1 e^{-j \beta_0 z} + \hat{C}_2 e^{j \beta_0 z}$$ Where $\hat{C}_1$ and $\hat{C}_2$ are complex. $$\therefore \hat{E}_x = \hat{E}_m^+ e^{-j \beta_0 z} + \hat{E}_m^- e^{j \beta_0 z}$$ Where $E_m^+$ and $E_m^-$ are wave amplitudes (volts per meter). ##### The phase constant: $$\beta_0 = \omega \sqrt{\mu_0 \varepsilon_0} = \frac{2\pi}{\lambda} = \frac{2\pi f}{C}$$ #### Real time form of the solution: $$E_x(z,t) = \Re\{\hat{E}_x e^{j \omega t}\} = \Re\{E_m^+ e^{j(\omega t - \beta_0 z)} + E_m^- e^{j(\omega t + \beta_0 z)}\}$$ $$\therefore E_x(z,t) = E_m^+ \cos(\omega t - \beta_0 z) + E_m^- \cos(\omega t + \beta_0 z)$$ If $E_m^+ = E_m^-$, the magnitude and direction is $E_0$. $$\therefore E_x(z,t) = E_0\cos(\omega t \pm \beta_0 z)$$ Where: $\omega = 2\pi f$ $v_0$ is the phase velocity ##### The phase velocity $$v_0 = \frac{1}{\sqrt{\mu \varepsilon}}$$ In a vacuum: $$v_0 = c$$ #### Also $$\hat{B}_y = \frac{\hat{E}_x}{c}$$ Common $\vec{E}$ and $\vec{B}$ field ratio is: $$\mu_0 \hat{H}_y = \frac{\hat{E}_x}{c}$$ $$\therefore \frac{\hat{E}_x}{\hat{H}_y} = \mu_0 c = \frac{\mu_0}{\sqrt{\mu_0 \varepsilon_0}} = \sqrt{\frac{\mu_0}{\varepsilon_0}} = \eta_0 \approx 120\pi = 377\Omega$$ Where $\eta_0$ is the intrinsic wave impedance. $$\therefore \hat{E}_x = \hat{H}_y \eta_0$$ $$\therefore \hat{H}_y = \frac{\hat{E}_x}{\eta_0}$$ Therefore, both $\vec{H}$ and $\vec{E}$ fields are in phase. In general: $$\hat{H} = \frac{\hat{k}}{\eta_0} \times \hat{E}$$ $$\hat{E} = -\eta_0 \hat{k} \times \hat{H}$$ ### Example 2.3 $$\vec{E} = 50\cos(10^8t + \beta_0 x)\hat{y} \text{[v/m]}$$ $$E_y = E_0\cos(\omega t + \beta x)$$ $E_y$ propagates in the $-\hat{x}$ direction. $$\beta_0 = \omega \sqrt{\mu_0 \varepsilon_0} = \frac{\omega}{c} = \frac{10^8}{3 \times 10^8} = \frac{1}{3}$$ What is the time it takes to travel a distance of $\frac{\lambda}{2}$? $$\omega = 2\pi f = \frac{2\pi}{T}$$ $$T = \frac{2\pi}{\omega}$$ $$\therefore t_{\lambda/2} = \frac{T}{2} = \frac{\pi}{\omega} = \frac{\pi}{10^8} \approx 31.42\text{[ns]}$$ The refractive index of a medium is given by the ratio of $c$ and $v_p$: $$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$ $$v_p = \frac{1}{\sqrt{\mu \varepsilon}}$$ $$n = \frac{c}{v_p} = \sqrt{\frac{\mu \varepsilon}{\mu_0 \varepsilon_0}} = \sqrt{\mu_r \varepsilon_r}$$ For a non-magnetic material: $$\mu_r \approx 1$$ $$\therefore n = \sqrt{\varepsilon_r}$$ ## Polarization $$\begin{rcases} \nabla \cdot \vec{E} = {\rho \over \varepsilon_0} \\ \nabla \cdot \vec{B} = 0 \end{rcases} \text{Gauss}$$ $$\begin{rcases} \nabla \times \vec{E} = -{\partial \over \partial t} \vec{B} \end{rcases} \text{Faraday}$$ $$\begin{rcases} \nabla \times B = \mu_0 \vec{J} + \mu_0 \varepsilon_0{\partial \over \partial t}\vec{E} \end{rcases} \text{Ampere}$$ Polarization of a uniform plane wave describes the shape and olcus of the tip of the $\vec{E}$-field vector in the plane orthoganal to the direction of propagation. There are two pairs of $\vec{E}$ and $\vec{B}$ fields ($\hat{E}_x$, $\hat{H}_y$) and ($\hat{E}_y$, $\hat{H}_x$). When both pairs are present, we can evaluate polarization of plane waves. The $\vec{E}$-field has components in the $\hat{x}$ and $\hat{y}$ directions and travels in $\hat{z}$. $$\hat{E} = (\hat{E}_x \hat{x} + \hat{E}_y \hat{y})e^{-j \beta z}$$ $$\hat{E}_x = \lvert \hat{E}_{x_0} \rvert e^{-j \beta a}$$ $$\hat{E}_y = \lvert \hat{E}_{y_0} \rvert e^{-j \beta b}$$ #### Locus The shape the tip of the $\vec{E}$-field vector traces out while in motion. #### Phase Typically defined relative to a reference point such as $z=0$ or $t=0$ or some combination. ### Polarization Characteristics #### Linear polarization $\hat{E}_x$ and $\hat{E}_y$ have the same phase angle: $a = b$, so the x and y components of the $\vec{E}$-field will be in phase. $$\hat{E} = (\lvert \hat{E}_x \rvert \hat{x} + \lvert \hat{E}_y \rvert \hat{y} ) e^{-j( \beta z - a)}$$ In real time: $$\hat{E} = (\lvert \hat{E}_x \rvert \hat{x} + \lvert \hat{E}_y \rvert \hat{y} ) \cos(\omega t - \beta z + a)$$ As the wave continues to propagate in the $\hat{z}$ direction, the $\vec{E}$-field vector maintains its direction with angle, $\theta$, with respect to the y-axis. $$\tan(\theta) = {\lvert \hat{E}_x \rvert \over \vert \hat{E}_y \rvert}$$ When $z=0$, the $\vec{E}$ field is given by: $$\vec{E}(0, t) = (\lvert \hat{E}_x \rvert \hat{x} + \lvert \hat{E}_y \rvert \hat{y} ) \cos(\omega t + a)$$ $$\vec{E}(0, 0) = (\lvert \hat{E}_x \rvert \hat{x} + \lvert \hat{E}_y \rvert \hat{y} ) \cos(a)$$ #### Elliptical Polarization $\hat{E}_x$ and $\hat{E}_y$ have different phase angles. $\vec{E}$ is no longer in one plate. $$\hat{E} = \hat{x} \lvert \hat{E}_x \rvert e^{j (a - \beta z)} + \hat{y} \lvert \hat{E}_y \rvert e^{j(b - \beta z)}$$ Where: $E_x = \lvert \hat{E}_x \rvert \cos(\omega t - a + \beta z)$ $E_y = \lvert \hat{E}_y \rvert \cos(\omega t - b + \beta z)$ If $a=0$ and $b = {\pi \over 2}$: $$\vec{E}_x(z,t) = \lvert \hat{E}_x \rvert \cos(\omega t - a + \beta z)$$ $$\vec{E}_y(z,t) = \lvert \hat{E}_y \rvert \cos(\omega t - b + \beta z)$$ #### Circular Polarization $\hat{E}_x$ and $\hat{E}_y$ have the same magnitude with a phase angle difference of ${\pi \over 2}$. ### Example Determine the real-valued $\vec{E}$-field. $$\hat{E}(z) = -3j\hat{x} e^{-j\beta z}$$ $$\vec{E}(z, t) = -3j\hat{x} e^{-j \beta z} e^{j\omega t}$$ $$3 \hat{x} e^{-j \beta z} e^{j \omega t} e^{-\pi \over 2}$$ $$3 \cos\left(\omega t- \beta z - {\pi \over 2}\right)$$ ### Example What are $E_x$ and $E_y$ $$\hat{E}(z) = (3\hat{x} + 4\hat{y})e^{j\beta z}$$ $$\vec{E}(z, t) = (3\hat{x} + 4\hat{y})e^{j\beta z}e^{j\omega t}$$ $$E_x = 3\cos(\omega t + \beta z)$$ $$E_y = 4\cos(\omega t + \beta z)$$ ### Example $$\hat{E}(z) = (-4\hat{x} + 3\hat{y})e^{-j\beta z}$$ $$\hat{E}(z, t) = (-4\hat{x} + 3\hat{y})e^{-j\beta z}e^{j\omega t}$$ $$E_x = 4\cos(\omega t - \beta z + \pi)$$ $$E_y = 3\cos(\omega t - \beta z)$$ ## Non-Sinusoidal Waves Analytical solution of a 1-D traveling wave. $${\partial^2 \over \partial z^2}\vec{E} - {1\over c^2}{\partial^2 \over \partial t^2}\vec{E} = 0$$ ### D'Alemberts Solution $$\vec{E}(z, t) = E(z - ct) + E'(z + ct)$$ Show that the function, $F(z - ct) = F_0 e^{-(z+ct)^2}$ is a solution of the wave equation. Let $\gamma = z - ct$, and ${\partial \gamma \over \partial z} = 1$: $$F(z-ct) = F_0 e^{-\gamma^2}$$ $$F'(z + ct) = 0$$ $${\partial F \over \partial z} = {\partial F \over \partial \gamma} {\partial \gamma \over \partial z} = F_0 e^{-\gamma^2}(-2\gamma)$$ $${\partial^2 F \over \partial z^2} = {\partial \over \partial z}\left({\partial F \over \partial \gamma}{\partial \gamma \over \partial z}\right)$$ $$G = \left({\partial F \over \partial \gamma}{\partial \gamma \over \partial z}\right)$$ Don't forget chain rule: $${\partial G \over \partial \gamma}{\partial \gamma \over \partial z} = {\partial \over \partial z}\left({\partial F \over \partial \gamma}{\partial \gamma \over \partial z}\right){\partial \gamma \over \partial z}$$ $${\partial \over \partial \gamma} - 2\gamma F_0 e^{-\gamma^2} = -2F_0 {\partial \over \partial \gamma} \gamma e^{-\gamma^2}$$ By product rule: $$-2F_0 (\gamma (-2\gamma e^{-\gamma^2}) + e^{-\gamma^2})$$ $$F_0 (4\gamma^2 e^{-\gamma^2} - 2e^{-\gamma^2}) = F_0(-2 + 4\gamma^2)e^{-\gamma^2}$$ $$={\partial^2 \over \partial \gamma^2}F \left({\partial \gamma \over \partial z}\right)^2$$ $$\therefore {\partial^2 \over \partial t^2}F = {\partial^2 F \over \partial \gamma^2} \left({\partial \gamma \over \partial t}\right)^2 = F_0(-2 + 4\gamma^2)e^{-\gamma^2}(C^2)$$ This solution satisfies: $${\partial^2 \over \partial z^2}\vec{E} - {1\over c^2}{\partial^2 \over \partial t^2}\vec{E} = 0$$