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Abstract

This lab includes a variety of exercises to enhance knowledge and understanding of digital signal
responses. The first couple of exercises involved mathematically deducing the responses of signals. Then
MATLAB® was utilized to visually confirm calculated behavior.

1 Introduction

MATLAB® is a very helpful tool for visualizing different signals and better understanding their behav-
ior. The first two tasks include modulating amplitude, and determining periodicity mathematically. Then
MATLAB® was used to plot different signals in order to verify their periodicity, and if applicable, their
period. MATLAB® was also used to plot discrete time signals in order to better understand their behavior.
In addition, the boundedness of a signal was checked using MATLAB® to plot the signal. The energy of
an aperiodic signal was also observed using MATLAB®, and plotted as a function of time. Finally, this lab
utilized MATLAB® to explore the functionality of the modulo operator.

2 Results & Discussion

2.1 Analysis of Amplitude Modulation

A message, m(t), with a bandwidth, B = 2[kHz] modulates a cosine carrier with a frequency of 10[kHz].
The combined signal is s(t) = m(t) cos(20000πt). Using a Fourier transform on s(t) reveals a maximum
frequency at 12[kHz]. In fact, as seen in figure 1, by filling the band that m(t) occupies with white noise, the
Fourier transform of s(t) contains white noise centered on the carrier frequency with twice the bandwidth
of the original signal. The spike that occurs at 10[kHz] is the result of the original signal having a DC term
and the carrier frequency having a value of 10[kHz].

Figure 1: The Fourier transform of a white noise signal carried at 10[kHz]

When instead, m(t) had a triangular spectrum of amplitude 1, the spectrum of s(t) was two triangles
touching at the base at 10[kHz] as seen in figure 2.

1



Figure 2: The Fourier transform of a signal with a triangular spectrum carried at 10[kHz]

2.2 Periodicity and Sampling Frequency

Consider the signal x(t) = cos(2πt/7). Given the standard forms, cos(2πft) and cos(ωt), where f is linear
frequency and ω is angular frequency, f = 1

7 and ω = 2π
7 . Given sampling frequencies of 1[Hz], 2.5[Hz], 3[Hz],

and π[Hz], the sampling theorem is satisfied. To determine if the sampled signal is periodic, the fundamental
time period must be determined by

N =
2π

ω
(1)

where N is the fundamental time period and ω is the angular frequency of the signal. Given ω = 2π
7 , the

fundamental time period is 7[s]. With sampling frequencies of 1[Hz], 2.5[Hz], and 3[Hz], the discrete signal is
periodic. However, with a sampling frequency of π[Hz], the discrete signal is aperiodic. Determining whether
a sampled periodic signal is periodic can be done by satisfying the condition:

aN = bTs (2)

where a and b are integers, N is the fundamental time period, and Ts is the sampling period. The period
of the discrete signal if the condition is satisfied is the product of a and b. Therefore, for fs = 1[Hz], there
will be 7 samples per period, for fs = 2.5[Hz], there will be 35 samples per period, and for fs = 3[Hz], there
will be 21 samples per period. Seen in figure 3, the periodicity and samples per period for fs = 1, 2.5, and
3[Hz] can be determined simply by counting the samples. For fs = π[Hz], the aperiodic nature only becomes
apparent after observing many samples.

2.3 Plotting Discrete Time Signals

MATLAB® can be very helpful for plotting complicated signals over specific intervals. Using the impulse,
unit step, and the stem command, one can plot a variety of signals. One such signal is δ(n − 5) − 2δ(n −
8)+ 6δ(n− 11) over the interval 0 < n < 12, as shown in 4. This function comprises three impulse functions
that have been shifted and scaled.
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Figure 3: Sampling a periodic signal at different frequencies

Figure 4: Shifted and scaled impulses

The signal u(n − 3) − 2u(n − 8) + u(n − 12) across 0 < n < 15 is seen in figure 5. This signal consists of
three unit steps that have been shifted and scaled.
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Figure 5: Shifted and scaled unit steps

Plotting the signal nu(n) over the interval 0 < n < 20 reveals the discrete ramp function seen in figure 6.

Figure 6: A discrete ramp function

Plotting the signal n2u(n) on the interval, 0 < n < 10 reveals a quadratic regulated by the unit step seen in
figure 7.
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Figure 7: Discrete quadratic signal

MATLAB® is not limited to these simple signals. The signal 3(n− 3)2e−0.3n sin
(
2n
3

)
u(n) was plotted from

0 < n < 30 as seen in figure 8. This signal resembles an under-damped second order response due to the
combination of exponential decay and sinusoidal terms.

Figure 8: Oscillating exponential decay

2.4 Bounded Signals

A bounded signal has an amplitude that does not exceed a certain value. Using MATLAB®, the signal
x(n) = 5 cos(a2n)u(n) where a = π

4 is verified to be bounded as clearly seen in figure 9. It is bounded since
the amplitude of the signal never has an absolute value greater than 5.
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Figure 9: Boundedness of a cosine

The boundedness of x(n) = A|b|nu(n) where A = 5 and b = 1+j
2 is seen in figure 10. Since the signal is

defined only for non-negative integer values of n, and |b| < 1, it is bounded by A|b|0, which is 5 in this case.

Figure 10: More complex boundedness

2.5 Energy of an Aperiodic Signal

Given a signal x(n) its energy can be calculated by evaluating the discrete sum:

Ex =
∑
n

|x[n]|2. (3)

Given a periodic signal, the energy will always be infinite, however, some aperiodic signals have finite energy.

For example, the signal, x[n] = 1
nu[n − 1] will have a total energy of π2

6 . This is easily seen in figure 11,

where the energy, in red, approaches π2

6 in only the first 100 samples.
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Figure 11: First 100 samples of x[n] and its energy

2.6 The Modulo Operation

The modulo operation is the central operation in modular arithmetic. Essentially, the operation bundles
the set of integers into a subset from zero up to, but not including the modulus by wrapping back to zero.
This is similar to how a clock starts and ends at 12 o’clock, yet time remains continuous. The modulo
operation is a helpful tool for manipulating the order of the terms of a discrete signal. For example, given
the signal, x[n] =

[
1 −5 4 −8 6 −3 −1

]
on the interval 0 ≤ n ≤ 6, the order of the terms can

easily be manipulated using 7 as the modulus. By using 7 as the modulus, it is ensured that n remains on
the defined interval between 0 and 6. The signal x[n] was manipulated using x[⟨n + 3⟩7], x[⟨n − 4⟩7], and
x[⟨−n+ 2⟩7], where the angle brackets indicate the modulo operation with a modulus of the subscript. The
result of the modulo operation on the sampling times of x[n] are seen in figure 12.
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Figure 12: Applying the modulo operation to x[n].

3 Conclusions

In performing various operations in isolation and in conjunction with other operations on discrete and
continuous signals, the manipulation of such signals becomes more intuitive. For example, by visualizing the
Fourier transform of amplitude modulated signal, it becomes clear that the bandwidth is centered around the
carrier frequency and doubled. Again, by visualizing the sampling of a continuous time signal with various
sampling frequencies, it the condition to produce a periodic discrete time signal becomes quite clear. The
same level of intuition can be reached for boundedness, energy, and the effects of the modulo operation, simply
by programatically creating a visual representation. While these simulations are obvious simplifications of
reality, having a strong understanding of simple operations is crucial to understanding much more complex
systems.
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