# Homework 3 - Aidan Sharpe ## 1 $$F(x) = \begin{cases} 0 & x < 0 \\ 1 - e^{-7x} & x \ge 0 \end{cases}$$ ### a) Find the probability density function of $X$: $$f(x) = {d\over dx} F(x) = \begin{cases} 0 & x < 0 \\ 7e^{-7x} & x \ge 0 \end{cases} $$ ### b) Verify that $f(x)$ is a valid density function: $$\int\limits_0^\infty f(x)dx \overset{?}{=} 1$$ $$\int\limits_0^\infty 7e^{-7x}dx = \left[-e^{-7x}\Big|_0^\infty\right] = 0 - (-1) = 1$$ ### c) Find $P(X<0.25)$: $$F(0.25) = 1-e^{-7(0.25)} = 0.826$$ ### d) Find $P({5\over60} < X < {11\over60})$: $$F\left({11\over60}\right) = 0.723$$ $$F\left({5\over60}\right) = 0.442$$ $$P\left({5\over60} < X < {11\over60}\right) = 0.723 - 0.442 = 0.281$$ ## 2 $$f(x) = \begin{cases} kx^{-3} & x > 1 \\ 0 & \text{elsewhere} \end{cases}$$ ### a) Find $k$, such that $f(x)$ is a valid density function: $$\int\limits_0^\infty f(x)dx \overset{!}{=} 1$$ $$\int\limits_1^\infty kx^{-3}dx = \left[{-k\over 2x^2}\Big|_1^\infty\right] = 0 - {-k\over2}$$ $$\therefore k = 2$$ ### b) Find $F(x)$: $$F(x) = \int\limits_{-\infty}^x f(t)dt$$ $$F(x) = \begin{cases} 1-{1\over x^2} & x > 1 \\ 0 & \text{elsewhere} \end{cases}$$ ### c) Find $P(X>7)$: $$P(X>7) = F(7) = 0.98$$ ### d) Find $P(5 < X < 12)$: $$P(X < 12) = F(12) = 0.993$$ $$P(X < 5) = 0.96$$ $$P(5 < X < 12) = F(12) - F(5) = 0.033$$ ## 3 $$f(x) = \begin{cases} {1\over5} & 1 < x < 6 \\ 0 & \text{elsewhere} \end{cases}$$ ### a) Verify that $f(x)$ is a valid probability density function: $$\int\limits_0^\infty f(x)dx \overset{?}{=} 1$$ $${1\over5}(6 - 1) = 1$$ ### b) Find $P(2.5 \le X < 3)$: $$P(2.5 \le X < 3) = F(3) - F(2.5) = 0.4 - 0.3 = 0.1$$ ### c) Find $P(X \le 2)$: $$P(X \le 2) = F(2) = 0.4$$ ### d) Find $F(x)$: $$F(x) = \int\limits_{-\infty}^{x} f(t)dt$$ $$F(x) = \begin{cases} 0 & x < 1 \\ {(x-1)\over5} & 1 \le x < 6 \\ 1 & x \ge 6 \end{cases}$$ ## 4 A box contains 7 dimes and 5 nickels. Three coins are chosen. $T$ is their total value in cents. ### a) The set of all possible drawings of coins is: $$\{DDD, DDN, DND, DNN, NDD, NDN, NND, NNN\}$$ Therefore the following are values for $T$: $$T = \{30, 25, 20, 15\}$$ ### b) Find the probability density function for $T$, $f(x)$: $$P(T = 30) = {{7\choose3}{5\choose0}\over{12\choose3}} = 0.159$$ $$P(T = 25) = {{7\choose2}{5\choose1}\over{12\choose3}} = 0.477$$ $$P(T = 20) = {{7\choose1}{5\choose2}\over{12\choose3}} = 0.318$$ $$P(T = 15) = {{7\choose0}{5\choose3}\over{12\choose3}} = 0.046$$ $$f(x) = \begin{cases} 0.046 & x = 15 \\ 0.318 & x = 20 \\ 0.477 & x = 25 \\ 0.159 & x = 30 \\ \end{cases}$$ ### c) Find the CDF for $T$, $F(x)$: $$f(x) = \begin{cases} 0 & x < 15 \\ 0.046 & 15 \le x < 20 \\ 0.364 & 20 \le x < 25\\ 0.841 & 25 \le x < 30 \\ 1 & x \ge 30 \\ \end{cases}$$ ## 5 |$x$|$f(x)$| |-|- |10|0.08 |11|0.15 |12|0.30 |13|0.20 |14|0.20 |15|0.07 Determine the mean number of messages sent per hour $$\sum\limits_x xf(x) = 10(0.08) + 11(0.15) + 12(0.30) + 13(0.20) + 14(0.20) + 15(0.07) = 12.5$$ ## 6 Find the expected value for each of the following probability density functions: ### a) $$f(x) = \begin{cases} x + {1\over2} & 0 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$$ $$E[x]=\int\limits_0^1 \left(x+{1\over2}\right)dx = \left[ {x^2 + x \over 2} \Big|_0^1 \right] =1$$ ### b) $$f(x) = \begin{cases} {3\over x^4} & x \ge 1 \\ 0 & \text{elsewhere} \end{cases}$$ $$E[x] \int\limits_1^\infty {3\over x^4}dx = \left[ {-1 \over x^3} \Big|_1^\infty \right] = 0 - (-1) = 1$$