# VLSI Homework 1 - Aidan Sharpe ## Problem 1 ```python import numpy as np import matplotlib.pyplot as plt e_0 = 8.85E-14 k_ox = 3.9 e_ox = e_0 * k_ox mu = 350 # 350 cm^2 / (V*s) t_ox = 100E-8 # 100A C_ox = e_ox / t_ox W = 1.2 L = 0.6 beta = mu * C_ox * W/L V_g_range = np.arange(6) V_t = 0.7 V_dd = np.linspace(0, 5, 50) def I_ds(V_gs, V_ds, V_t, beta): if V_gs < V_t: return np.zeros_like(V_ds) V_dsat = V_gs - V_t return np.where(V_ds < V_dsat, beta * (V_gs - V_t - V_ds/2) * V_ds, beta * (V_gs - V_t)**2 / 2) for V_s in (0, 2): for V_g in V_g_range: V_gs = V_g - V_s V_ds = V_dd - V_s plt.plot(V_ds, 1000*I_ds(V_gs, V_ds, V_t, beta), label="$V_{gs}$ = "+str(V_gs)) plt.xlabel("$V_{ds}$[V]") plt.ylabel("$I_{ds}$[mA]") plt.legend() plt.show() ``` ![](Figure_1.png) ## Problem 2 Show that a MOSFET with channel length $2L$, when operating in the linear region, has the same current $I_{DS1}$ as two MOSFETs in series each with channel length $L$. Assume the same gate voltage $V_{DD}$ for all MOSFETs in the design and the same supply voltage $V_{DS}$ for both designs. ### Known The current through a MOSFET in the linear region is: $$I_{DS} = \beta\left(V_{GS} - V_t - \frac{V_{DS}}{2}\right)V_{DS}$$ The parameter $\beta$ is defined as: $$\beta = \mu C_\text{ox} \frac{W}{L}$$ ### Defining Variables The factor $\beta_1$ for the singular MOSFET is $\mu C_\text{ox} \frac{W}{2L}$, and the factor $\beta_2$ for each of the MOSFETs in series is $\mu C_\text{ox} \frac{W}{L}$. Therefore, $\beta_2 = 2\beta_1$. The current $I_{DS1}$ through the singular MOSFET is: $$I_{DS1} = \beta_1\left(V_{DD} - V_t - \frac{V_{DS}}{2}\right)V_{DS}$$ The current $I_{DS2}$ through both MOSFETs in series is both: $$I_{DS2} = \beta_2\left(V_{DD} - V_1 - V_t - \frac{V_{DS} - V_1}{2}\right)(V_{DS} - V_1)$$ $$I_{DS2} = \beta_2\left(V_{DD} - V_t - \frac{V_1}{2}\right)V_1$$ ### Expanding $I_{DS2}$ The first equation for $I_{DS2}$ can be rewritten as the difference of two terms: $$I_{DS2} = \beta_2\left(V_{DD} - V_t - \frac{V_{DS}}{2} - \frac{V_1}{2}\right)(V_{DS} - V_1)$$ $$I_{DS2} = \beta_2\left(V_{DD} - V_t - \frac{V_{DS}}{2} - \frac{V_1}{2}\right)V_{DS} - \beta_2\left( V_{DD} - V_t - \frac{V_{DS}}{2} - \frac{V_1}{2}\right)V_1$$ The term $-\frac{V_1 V_{DS}}{2}$ can be pulled out of the first term, and its complement can be pulled out of the second term. Therefore, $I_{DS2}$ can be simplified to the difference of two terms each in the form of the current through a MOSFET in the linear region. $$I_{DS2} = \beta_2\left(V_{DD} - V_t - \frac{V_{DS}}{2}\right)V_{DS} - \beta_2\left( V_{DD} - V_t - \frac{V_1}{2}\right)V_1$$ ### Reducing $I_{DS2}$ Notice that the second term is the inverse of the second equation for $I_{DS2}$ under "Defining Variables". Setting them equal: $$I_{DS2} = \beta_2\left(V_{DD} - V_t - \frac{V_{DS}}{2}\right)V_{DS} - \beta_2\left( V_{DD} - V_t - \frac{V_1}{2}\right)V_1 = \beta_2\left(V_{DD} - V_t - \frac{V_1}{2}\right)V_1$$ Therefore: $$\beta_2\left(V_{DD} -V_t - \frac{V_{DS}}{2}\right)V_{DS} = 2\beta_2\left(V_{DD} - V_t - \frac{V_1}{2}\right)V_1$$ Substituting $\beta_2$ on the left for $2\beta_1$ gives: $$2\beta_1\left(V_{DD} - V_t - \frac{V_{DS}}{2}\right)V_{DS} = 2\beta_2\left(V_{DD} - V_t - \frac{V_1}{2}\right)V_1$$ Therefore: $$2I_{DS1} = 2I_{DS2}$$ $$\boxed{I_{DS1} = I_{DS2}}$$