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I. INTRODUCTION

Frequency Modulation (FM) is a widely used technique
in electrical communication systems, valued for its resilience
to noise and audio signal transmission. This exercise aims
to explore the principles of FM communication systems, by
modeling and analyzing system performance. By simulating a
single-tone FM system, both in ideal conditions and under the
influence of Gaussian noise, this project provides a hands-on
approach to understanding the behavior of FM modulation.
This analysis is crucial for applications ranging from radio
broadcasting to modern wireless communication technologies,
where maintaining signal integrity in noisy environments is
crucial.

II. FREQUENCY MODULATION

Given any message signal m(t), we can create its corre-
sponding frequency modulated signal using

s(t) = Ac cos(2πfct+ βfm(t)). (1)

where Ac is the carrier amplitude, fc is the carrier frequency,
and βf is the modulation index. Essentially, m(t) alters the
phase of the carrier signal such that the difference between
the instantaneous frequency and the carrier frequency is pro-
portional to the amplitude of m(t).

An example of an FM signal is seen in figure 1. While
it is difficult to make out the individual waves and their
frequencies, there are clearly areas where the waves seem to
“bunch up” or “spread out”. The “bunched up” areas corre-
spond to a higher frequency, and therefore a higher message
amplitude, and the more “spread out” areas correspond to a
lower frequency and therefore a lower message amplitude.

III. THE MODULATION INDEX

The modulation index βf determines how much the ampli-
tude of the message affects the frequency deviation. Since we
are using a sinusoidal signal to modulate m(t), the frequency
spectrum can be found by using a Bessel function. At the
zeros of the Bessel function, the carrier frequency has a small
amplitude, and therefore almost all transmission power is
being used to transmit the message. This behavior is known
as the ”null carrier” effect, and it is desirable, as it improves
the efficiency of the transmission. The smallest value for βf

that creates a null carrier effect is βf = 2.40483.

Fig. 1. Frequency modulated signal

We modeled our FM system with two different modulation
indices βf = 2.40483 and βf = 5, and we compared the
results, seen in figure 2. In the left plot, there is no frequency
contribution at the carrier frequency fc = 500[Hz]. In the right
plot, however, there is a spike at the carrier frequency.

Fig. 2. Comparing null carrier and non-null carrier spectra

IV. DEMODULATION

Demodulation is the process of recovering the original
message from a modulated signal. Put simply, it is the reverse



of modulation. For our setup we utilized a technique called
quadrature demodulation. To use quadrature demodulation, the
first step is to split the incoming signal into an in-phase (I)
component and a quadrature (Q) component. The I component
is obtained by multiplying the incoming signal with a local
oscillator oscillating at the carrier frequency. The Q component
is obtained with the same process, but the oscillator is given
a 90◦ phase-shift prior to the multiplication. The total signal
in I-Q form was represented as

IQ(t) = s(t) cos(2πfct) + js(t) sin(2πfct) (2)

where fC is the carrier frequency and s(t) is the incoming
FM signal.

Once the signal is decomposed into I-Q form, the message
signal becomes much easier to recover. The first step is to
take the complex conjugate of the I-Q signal, then calculate
the angle above the real axis. Since the effect of m(t) on
s(t) is a phase-shift, the angle is directly proportional to the
amplitude of the message signal.

We implemented this process in Python, and we were
able to demodulate both single- and multi-tone signals, as
seen in figure 3. While the amplitude of the original and
demodulated signal are not exactly the same, there is a constant
of proportionality relating the two signals. Another feature of
this demodulation technique is that the phase shift is very
small.

Fig. 3. Original and demodulated message signals

V. QUADRATURE AMPLITUDE MODULATION

QAM is a method of digital modulation widely used in
modern electrical communications to transmit information.
It relays two analog message signals by modulating the
amplitudes of two carrier waves. This is accomplished using
the amplitude-shift keying (ASK) digital modulation scheme.
In ASK, a symbol is sent by transmitting a fixed-amplitude
carrier wave at a fixed frequency for a specific duration of
time. The two carrier waves are of the same frequency and
are out of phase with each other by 90°, which is known as
orthogonality (quadrature). The transmitted signal is created
by adding the two carrier waves together. At the receiver, the

two waves can be coherently demodulated because of their
orthogonality. Another key property is that the modulations
are low-frequency/low-bandwidth waveforms compared to the
carrier frequency.

VI. CONCLUSION

We developed a simulation of a FM system including a
modulator, channel, and demodulator. We also varied the mod-
ulation index to demonstrate the null carrier effect. Analyzing
the incoming signal in both the spectral and time domains
allowed us to gain a deeper understanding of the frequency
modulation technique.



VII. APPENDIX

def l owpass ( da t a , f c u t o f f , f s ) :
nyq = 0 . 5 * f s
n o r m a l c u t o f f = f c u t o f f / nyq
b , a = sp . s i g n a l . b u t t e r ( 2 , n o r m a l c u t o f f , b t y p e =” low ” , a n a l o g = F a l s e )
y = sp . s i g n a l . l f i l t e r ( b , a , d a t a )
re turn y

def quad demod ( s fm , bandwidth , f s , f c , t ) :
i q = r e a l t o i q ( s fm , f c , bandwidth , f s , t )
i q = np . c o n j ( i q )
re turn 0 . 5 * np . a n g l e ( i q )

def r e a l t o i q ( s fm , f c , bandwidth , f s , t ) :
i = lowpass ( s fm * np . cos (2* np . p i * f c * t ) , bandwidth , f s )
q = lowpass ( s fm * np . s i n (2* np . p i * f c * t ) , bandwidth , f s )
re turn i + 1 j *q

def db ( x ) :
re turn 10* np . log10 ( x )


