Pretty much all of Fall 2024
This commit is contained in:
Binary file not shown.
Binary file not shown.
BIN
7th-Semester-Fall-2024/ECOMMS/homework/homework-2/HW 2.pdf
Normal file
BIN
7th-Semester-Fall-2024/ECOMMS/homework/homework-2/HW 2.pdf
Normal file
Binary file not shown.
BIN
7th-Semester-Fall-2024/ECOMMS/homework/homework-2/combined.pdf
Normal file
BIN
7th-Semester-Fall-2024/ECOMMS/homework/homework-2/combined.pdf
Normal file
Binary file not shown.
@ -0,0 +1,56 @@
|
||||
# ECOMMS Homework 2 - Aidan Sharpe
|
||||
|
||||
## Problem 1
|
||||
```python
|
||||
import numpy as np
|
||||
|
||||
f_c = 1250
|
||||
f_m = 125
|
||||
A_c = 10
|
||||
a = 1
|
||||
|
||||
def g(t):
|
||||
return A_c * (1 + a*(0.2*np.cos(2*np.pi*f_m*t) + 0.5*np.sin(2*np.pi*f_c*t)))
|
||||
|
||||
# First derivative of g(t)
|
||||
def dg_dt(t):
|
||||
return -0.2*2*f_m*np.pi*A_c*a*np.sin(2*np.pi*f_m*t) \
|
||||
+ 2*np.pi*0.5*f_c*A_c*np.cos(2*np.pi*f_c*t)
|
||||
|
||||
# Second derivative of g(t)
|
||||
def ddg_dtt(t):
|
||||
return -0.2*(2*np.pi*f_m)**2*A_c*a*np.cos(2*np.pi*f_m*t) \
|
||||
- 0.5*(2*np.pi*f_c)**2*A_c*a*np.sin(2*np.pi*f_c*t)
|
||||
|
||||
# Use Newton's method to find the maximum of the function
|
||||
def newton_method(t):
|
||||
for i in range(10):
|
||||
t = t - dg_dt(t)/ddg_dtt(t)
|
||||
print("Newton method:", t, np.max(g(t)))
|
||||
return np.max(g(t))
|
||||
|
||||
def dc_dt(t):
|
||||
return A_c*a*np.pi*f_c*np.cos(2*np.pi*f_c*t)
|
||||
|
||||
# Sample g(t) at the maxima and minima of the carrier signal
|
||||
def sample_method():
|
||||
samples = f_c / f_m
|
||||
n = np.arange(samples)
|
||||
t = (2*n + 1) / (4*f_c)
|
||||
t = t[np.argmax(g(t))]
|
||||
print("Sampling method:", t, g(t))
|
||||
return t
|
||||
|
||||
if __name__ == '__main__':
|
||||
t_max = sample_method()
|
||||
A_max = newton_method(t_max)
|
||||
a_coeff = (A_max - A_c) / A_c
|
||||
print("Value of a where positive modulation is 90%:", 0.9/a_coeff)
|
||||
```
|
||||
|
||||
### Sampling Method
|
||||
$t_max = 0.0002$, $g_max = 16.9754$
|
||||
### Newton Method
|
||||
$t_max = 0.000199206$, $g_max = 16.9755$
|
||||
|
||||
Positive modulation is 90% when $a=1.2902$
|
BIN
7th-Semester-Fall-2024/ECOMMS/homework/homework-2/problem-1.pdf
Normal file
BIN
7th-Semester-Fall-2024/ECOMMS/homework/homework-2/problem-1.pdf
Normal file
Binary file not shown.
@ -0,0 +1,42 @@
|
||||
import numpy as np
|
||||
|
||||
f_c = 1250
|
||||
f_m = 125
|
||||
A_c = 10
|
||||
a = 1
|
||||
|
||||
def g(t):
|
||||
return A_c * (1 + a*(0.2*np.cos(2*np.pi*f_m*t) + 0.5*np.sin(2*np.pi*f_c*t)))
|
||||
|
||||
# first derivative of g(t)
|
||||
def dg_dt(t):
|
||||
return -0.2*2*f_m*np.pi*A_c*a*np.sin(2*np.pi*f_m*t) + 2*np.pi*0.5*f_c*A_c*np.cos(2*np.pi*f_c*t)
|
||||
|
||||
# second derivative of g(t)
|
||||
def ddg_dtt(t):
|
||||
return -0.2*(2*np.pi*f_m)**2*A_c*a*np.cos(2*np.pi*f_m*t) - 0.5*(2*np.pi*f_c)**2*A_c*a*np.sin(2*np.pi*f_c*t)
|
||||
|
||||
# use Newton's method to find the maximum of the function
|
||||
def newton_method(t):
|
||||
for i in range(10):
|
||||
t = t - dg_dt(t)/ddg_dtt(t)
|
||||
print("Newton method:", t, np.max(g(t)))
|
||||
return np.max(g(t))
|
||||
|
||||
def dc_dt(t):
|
||||
return A_c*a*np.pi*f_c*np.cos(2*np.pi*f_c*t)
|
||||
|
||||
# Sample g(t) at the maxima and minima of the carrier signal
|
||||
def sample_method():
|
||||
samples = f_c / f_m
|
||||
n = np.arange(samples)
|
||||
t = (2*n + 1) / (4*f_c)
|
||||
t = t[np.argmax(g(t))]
|
||||
print("Sampling method:", t, g(t))
|
||||
return t
|
||||
|
||||
if __name__ == '__main__':
|
||||
t_max = sample_method()
|
||||
A_max = newton_method(t_max)
|
||||
a_coeff = (A_max - A_c) / A_c
|
||||
print("Value of a where positive modulation is 90%:", 0.9/a_coeff)
|
@ -0,0 +1,33 @@
|
||||
import numpy as np
|
||||
|
||||
f_m = 0.2
|
||||
f_c = 2*f_m
|
||||
A_c = 1
|
||||
a = 1
|
||||
|
||||
def g(t):
|
||||
return A_c*np.cos(2*np.pi*f_m*t) + A_c*np.cos(2*np.pi*f_c*t)
|
||||
|
||||
# first derivative of g(t)
|
||||
def dg_dt(t):
|
||||
return -(2*np.pi*f_m)*A_c*np.sin(2*np.pi*f_m*t) + -(2*np.pi*f_c)*A_c*np.sin(2*np.pi*f_c*t)
|
||||
|
||||
# second derivative of g(t)
|
||||
def ddg_dtt(t):
|
||||
return -(2*np.pi*f_m)**2*A_c*np.cos(2*np.pi*f_m*t) + -(2*np.pi*f_c)**2*A_c*np.cos(2*np.pi*f_c*t)
|
||||
|
||||
# use Newton's method to find the maximum of the function
|
||||
def newton_method(t):
|
||||
for i in range(3):
|
||||
t = t - dg_dt(t)/ddg_dtt(t)
|
||||
print(f"Iteration {i+1}: {t}\t{g(t)}")
|
||||
|
||||
def dc_dt(t):
|
||||
return A_c*a*np.pi*f_c*np.cos(2*np.pi*f_c*t)
|
||||
|
||||
if __name__ == '__main__':
|
||||
T_c = 1/f_c
|
||||
t_min = T_c/2
|
||||
newton_method(t_min)
|
||||
|
||||
newton_method(0)
|
@ -0,0 +1,24 @@
|
||||
import numpy as np
|
||||
import scipy as sp
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
f_c = 1
|
||||
f_m = f_c/4
|
||||
|
||||
omega_m = 2*np.pi*f_m
|
||||
omega_c = 2*np.pi*f_c
|
||||
|
||||
T_c = f_c
|
||||
|
||||
t = np.arange(0,10,T_c/10)
|
||||
m = np.cos(omega_m * t)
|
||||
|
||||
plt.plot(t, m)
|
||||
plt.show()
|
||||
|
||||
D_p = np.pi
|
||||
D_f = np.pi
|
||||
|
||||
S_p = np.cos(omega_c + D_p*m)
|
||||
plt.plot(t,S_p)
|
||||
plt.show()
|
@ -0,0 +1,26 @@
|
||||
import numpy as np
|
||||
import scipy as sp
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Modulation index
|
||||
beta = 2.0
|
||||
|
||||
# Number of impulses is 2*(beta+1) + 1.
|
||||
# For beta=2, the number of impulses is 3 either side of the center frequency
|
||||
# plus 1 for the center frequency, for a total of 7 impulses.
|
||||
|
||||
# Message frequency
|
||||
f_m = 15E+3
|
||||
|
||||
# Transmission bandwidth
|
||||
B_T = 2*(beta+1)*f_m
|
||||
|
||||
n = np.arange(0,10,1)
|
||||
bessel_values = sp.special.jv(n,beta)
|
||||
bessel_power = np.cumsum(bessel_values)
|
||||
plt.stem(n, bessel_values)
|
||||
plt.plot(n, bessel_power)
|
||||
plt.hlines(0.98*bessel_power[-1], xmin=n[0], xmax=n[-1])
|
||||
plt.show()
|
||||
|
||||
#
|
Reference in New Issue
Block a user