VLSI homework 2
This commit is contained in:
parent
52f512b38c
commit
ab40545995
Binary file not shown.
@ -0,0 +1,61 @@
|
|||||||
|
# VSLI Homework 2 - Aidan Sharpe
|
||||||
|
|
||||||
|
## Problem 1
|
||||||
|
A 90[nm] long transistor has a gate oxide thickness $t_\text{ox}$ of 16[$\text{\r{A}}$]. What is its gate capcaitance per micrion of width?
|
||||||
|
|
||||||
|
```python
|
||||||
|
eps_0 = 8.85E-12
|
||||||
|
k_ox = 3.9
|
||||||
|
|
||||||
|
L = 90E-9 # 90nm expressed in meters
|
||||||
|
t_ox = 16E-10 # 16A expressed in meters
|
||||||
|
|
||||||
|
C_permeter = k_ox * eps_0 * L / t_ox
|
||||||
|
C_permicron = C_permeter * 1E-6
|
||||||
|
|
||||||
|
print(C_permicron)
|
||||||
|
```
|
||||||
|
$$\boxed{C_\text{permicron} = 1.94\text{[fF/$\mu$m]}}$$
|
||||||
|
|
||||||
|
## Problem 2
|
||||||
|
Consider the nMOS transistor in a 0.6[$\mu$m] process with gate oxide thickness of 100[$\text{\r{A}}$]. The doping level is $N_A = 2 \times 10^{17}$[cm$^{-3}$] and the nominal threshold voltage is 0.7[V]. The body is tied to ground with a substrate contact. How much does the threshold change at room temperature if the source is at 4[V] instead of 0[V]?
|
||||||
|
|
||||||
|
```python
|
||||||
|
from math import log, sqrt
|
||||||
|
|
||||||
|
V_t0 = 0.7 # The nominal threshold voltage
|
||||||
|
t_ox = 100E-8 # The gate threshold voltage in angstrom with CGS units
|
||||||
|
N_A = 2E17 # The doping level in cm^-3
|
||||||
|
|
||||||
|
k_ox = 3.9
|
||||||
|
k_si = 11.7
|
||||||
|
eps_0 = 8.85E-14 # Vacuum permittivity with CGS units
|
||||||
|
k = 1.380E-23 # Boltzmann's constant
|
||||||
|
q = 1.602E-19 # The charge of an electron
|
||||||
|
|
||||||
|
T = 300 # Room temperature in Kelvin
|
||||||
|
|
||||||
|
v_T = k*T/q
|
||||||
|
n_i = 1.45E10 # The intrinsic carrier concentration of undoped Si
|
||||||
|
|
||||||
|
eps_ox = k_ox * eps_0
|
||||||
|
eps_si = k_si * eps_0
|
||||||
|
|
||||||
|
V_b = 0
|
||||||
|
V_s0 = 0
|
||||||
|
V_s1 = 4
|
||||||
|
|
||||||
|
gamma = (t_ox / eps_ox) * sqrt(2*q*eps_si*N_A)
|
||||||
|
phi_s = 2 * v_T * log(N_A / n_i)
|
||||||
|
|
||||||
|
def V_t(V_t0, V_s, V_b, gamma, phi_s):
|
||||||
|
V_sb = V_s - V_b
|
||||||
|
return V_t0 + gamma*(sqrt(phi_s + V_sb) - sqrt(phi_s))
|
||||||
|
|
||||||
|
Delta_V_t = V_t(V_t0, V_s1, V_b, gamma, phi_s) \
|
||||||
|
- V_t(V_t0, V_s0, V_b, gamma, phi_s)
|
||||||
|
|
||||||
|
print(Delta_V_t)
|
||||||
|
```
|
||||||
|
|
||||||
|
$$\boxed{\Delta V_t = 0.955583\text{[V]}}$$
|
BIN
7th-Semester-Fall-2024/VLSI/homework/homework-2/homework-2.pdf
Normal file
BIN
7th-Semester-Fall-2024/VLSI/homework/homework-2/homework-2.pdf
Normal file
Binary file not shown.
10
7th-Semester-Fall-2024/VLSI/homework/homework-2/problem_1.py
Normal file
10
7th-Semester-Fall-2024/VLSI/homework/homework-2/problem_1.py
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
eps_0 = 8.85E-12
|
||||||
|
k_ox = 3.9
|
||||||
|
|
||||||
|
L = 90E-9 # 90nm expressed in meters
|
||||||
|
t_ox = 16E-10 # 16A expressed in meters
|
||||||
|
|
||||||
|
C_permeter = k_ox * eps_0 * L / t_ox
|
||||||
|
C_permicron = C_permeter * 1E-6
|
||||||
|
|
||||||
|
print(C_permicron)
|
35
7th-Semester-Fall-2024/VLSI/homework/homework-2/problem_2.py
Normal file
35
7th-Semester-Fall-2024/VLSI/homework/homework-2/problem_2.py
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
from math import log, sqrt
|
||||||
|
|
||||||
|
V_t0 = 0.7 # The nominal threshold voltage
|
||||||
|
t_ox = 100E-8 # The gate threshold voltage in angstrom with CGS units
|
||||||
|
N_A = 2E17 # The doping level in cm^-3
|
||||||
|
|
||||||
|
k_ox = 3.9
|
||||||
|
k_si = 11.7
|
||||||
|
eps_0 = 8.85E-14 # Vacuum permittivity with CGS units
|
||||||
|
k = 1.380E-23 # Boltzmann's constant
|
||||||
|
q = 1.602E-19 # The charge of an electron
|
||||||
|
|
||||||
|
T = 300 # Room temperature in Kelvin
|
||||||
|
|
||||||
|
v_T = k*T/q
|
||||||
|
n_i = 1.45E10 # The intrinsic carrier concentration of undoped Si
|
||||||
|
|
||||||
|
eps_ox = k_ox * eps_0
|
||||||
|
eps_si = k_si * eps_0
|
||||||
|
|
||||||
|
V_b = 0
|
||||||
|
V_s0 = 0
|
||||||
|
V_s1 = 4
|
||||||
|
|
||||||
|
gamma = (t_ox / eps_ox) * sqrt(2*q*eps_si*N_A)
|
||||||
|
phi_s = 2 * v_T * log(N_A / n_i)
|
||||||
|
|
||||||
|
def V_t(V_t0, V_s, V_b, gamma, phi_s):
|
||||||
|
V_sb = V_s - V_b
|
||||||
|
return V_t0 + gamma*(sqrt(phi_s + V_sb) - sqrt(phi_s))
|
||||||
|
|
||||||
|
Delta_V_t = V_t(V_t0, V_s1, V_b, gamma, phi_s) \
|
||||||
|
- V_t(V_t0, V_s0, V_b, gamma, phi_s)
|
||||||
|
|
||||||
|
print(Delta_V_t)
|
Loading…
Reference in New Issue
Block a user