Lots of updates
This commit is contained in:
@ -94,5 +94,9 @@
|
||||
\@writefile{lof}{\addvspace {10\p@ }}
|
||||
\@writefile{lot}{\addvspace {10\p@ }}
|
||||
\@writefile{loa}{\addvspace {10\p@ }}
|
||||
\BKM@entry{id=25,open,dest={73656374696F6E2E342E31},srcline={646}}{5C3337365C3337375C303030345C3030302E5C303030315C3030305C3034305C3030305A5C3030305C3034305C303030545C303030725C303030615C3030306E5C303030735C303030665C3030306F5C303030725C3030306D5C3030305C3034305C303030545C303030725C303030615C3030306E5C303030735C303030665C303030655C303030725C3030305C3034305C303030465C303030755C3030306E5C303030635C303030745C303030695C3030306F5C3030306E5C30303073}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {4.1}Z Transform Transfer Functions}{20}{section.4.1}\protected@file@percent }
|
||||
\BKM@entry{id=26,open,dest={73656374696F6E2E342E32},srcline={711}}{5C3337365C3337375C303030345C3030302E5C303030325C3030305C3034305C303030545C303030685C303030655C3030305C3034305C303030495C3030306E5C303030765C303030655C303030725C303030735C303030655C3030305C3034305C3030305A5C3030302D5C303030545C303030725C303030615C3030306E5C303030735C303030665C3030306F5C303030725C3030306D}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {4.2}The Inverse Z-Transform}{22}{section.4.2}\protected@file@percent }
|
||||
\ttl@finishall
|
||||
\gdef \@abspage@last{21}
|
||||
\gdef \@abspage@last{24}
|
||||
|
@ -1,5 +1,5 @@
|
||||
# Fdb version 4
|
||||
["pdflatex"] 1708607362.56455 "dsp-notes.tex" "dsp-notes.pdf" "dsp-notes" 1708607366.21318 0
|
||||
["pdflatex"] 1709559602.73778 "dsp-notes.tex" "dsp-notes.pdf" "dsp-notes" 1709559606.30385 0
|
||||
"/usr/share/texlive/texmf-dist/fonts/enc/dvips/cm-super/cm-super-ts1.enc" 1136849721 2900 1537cc8184ad1792082cd229ecc269f4 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/map/fontname/texfonts.map" 1577235249 3524 cb3e574dea2d1052e39280babc910dc8 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/jknappen/ec/tcrm0900.tfm" 1136768653 1536 c4f439db76ef96a9c53bc437f35ffe20 ""
|
||||
@ -272,9 +272,9 @@
|
||||
"/usr/share/texlive/texmf-dist/web2c/texmf.cnf" 1684972800 40326 aba987258e6d6b6da5dec3a727ea174b ""
|
||||
"/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map" 1695741510.34335 4547801 12750a1f41d88f5207b57129561a9960 ""
|
||||
"/var/lib/texmf/web2c/pdftex/pdflatex.fmt" 1706540581 7862978 fdecdc3eb245d10d03b24652f2a7b5cd ""
|
||||
"dsp-notes.aux" 1708607365.89755 14058 5b332be2b43b5015de41ad47caedde7f "pdflatex"
|
||||
"dsp-notes.tex" 1708607362.32954 26839 68509db418ccada7097293573ea03d22 ""
|
||||
"dsp-notes.toc" 1708607365.90455 2628 847c67fc9a361c94b93fddf5f42993c2 "pdflatex"
|
||||
"dsp-notes.aux" 1709559606.06888 15137 d71e3a5d692c192400edc7722149b904 "pdflatex"
|
||||
"dsp-notes.tex" 1709559602.19286 32033 c93f323731d84d1fbd6a874164793c54 ""
|
||||
"dsp-notes.toc" 1709559606.07788 2803 5999d001a1951498525325cc99c8a389 "pdflatex"
|
||||
"letterfonts.tex" 1705928541.53457 8702 ef32ca12e97530ef5734ca4adcb1f6b1 ""
|
||||
"macros.tex" 1705928541.53457 3389 93000260d2aea292d29c76d4ace77a29 ""
|
||||
"preamble.tex" 1705928541.53457 20069 50a0a2a4e1b2811a514a77f6b07b9f7f ""
|
||||
|
@ -1,4 +1,4 @@
|
||||
This is pdfTeX, Version 3.141592653-2.6-1.40.24 (TeX Live 2022/CVE-2023-32700 patched) (preloaded format=pdflatex 2024.1.29) 22 FEB 2024 08:09
|
||||
This is pdfTeX, Version 3.141592653-2.6-1.40.24 (TeX Live 2022/CVE-2023-32700 patched) (preloaded format=pdflatex 2024.1.29) 4 MAR 2024 08:40
|
||||
entering extended mode
|
||||
restricted \write18 enabled.
|
||||
file:line:error style messages enabled.
|
||||
@ -1311,7 +1311,27 @@ Underfull \hbox (badness 10000) in paragraph at lines 639--645
|
||||
|
||||
[]
|
||||
|
||||
[20] (./dsp-notes.aux)
|
||||
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 647--651
|
||||
|
||||
[]
|
||||
|
||||
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 651--656
|
||||
|
||||
[]
|
||||
|
||||
[20] [21]
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 712--716
|
||||
|
||||
[]
|
||||
|
||||
|
||||
Underfull \hbox (badness 10000) in paragraph at lines 716--721
|
||||
|
||||
[]
|
||||
|
||||
[22] [23] (./dsp-notes.aux)
|
||||
|
||||
LaTeX Font Warning: Size substitutions with differences
|
||||
(Font) up to 0.5pt have occurred.
|
||||
@ -1321,18 +1341,18 @@ LaTeX Font Warning: Some font shapes were not available, defaults substituted.
|
||||
|
||||
)
|
||||
Here is how much of TeX's memory you used:
|
||||
37446 strings out of 476182
|
||||
750401 string characters out of 5796581
|
||||
37470 strings out of 476182
|
||||
750805 string characters out of 5796581
|
||||
1880793 words of memory out of 6000000
|
||||
56960 multiletter control sequences out of 15000+600000
|
||||
56976 multiletter control sequences out of 15000+600000
|
||||
544530 words of font info for 125 fonts, out of 8000000 for 9000
|
||||
1137 hyphenation exceptions out of 8191
|
||||
96i,11n,102p,740b,1712s stack positions out of 10000i,1000n,20000p,200000b,200000s
|
||||
{/usr/share/texlive/texmf-dist/fonts/enc/dvips/cm-super/cm-super-ts1.enc}</usr/share/texlive/texmf-dist/fonts/type1/public/newpx/NewPXMI.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/newpx/NewPXMI_gnu.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx12.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr17.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr5.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr7.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr9.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmss10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmssbx10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmti10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/newpx/pxmiaX.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/newpx/pxsys.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/cm-super/sfrm0900.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/newtx/txexs.pfb>
|
||||
Output written on dsp-notes.pdf (21 pages, 256873 bytes).
|
||||
Output written on dsp-notes.pdf (24 pages, 271477 bytes).
|
||||
PDF statistics:
|
||||
467 PDF objects out of 1000 (max. 8388607)
|
||||
350 compressed objects within 4 object streams
|
||||
107 named destinations out of 1000 (max. 500000)
|
||||
415 words of extra memory for PDF output out of 10000 (max. 10000000)
|
||||
505 PDF objects out of 1000 (max. 8388607)
|
||||
379 compressed objects within 4 object streams
|
||||
115 named destinations out of 1000 (max. 500000)
|
||||
455 words of extra memory for PDF output out of 10000 (max. 10000000)
|
||||
|
||||
|
Binary file not shown.
Binary file not shown.
@ -643,4 +643,95 @@ where $r$ is the magnitude and $\theta$ is the phase angle.
|
||||
\noindent
|
||||
If a region of convergence (ROC) does not include the unit circle, then its DTFT does not exist except for special case signals. If the ROC \emph{does} contain the unit circle, then the DTFT can be found by substituting $z = e^{j\omega}$.
|
||||
|
||||
\section{Z Transform Transfer Functions}
|
||||
Recall that the impulse response of an LTI system completely characterizes the system. It can be used to determine responses of other systems via convolution, and it is a useful tool in determining the BIBO stability of the system.
|
||||
\\
|
||||
\\
|
||||
Given an impulse response to a discrete LTI system, the Z-transform of the impulse response is called the \emph{transfer function}
|
||||
$$H(z) = Z[h[n]] = \sum_n h[n]z^{-n}$$
|
||||
An LTI system is causal if $h[n]$ is a causal signal. This is the same as if the ROC of $H(z)$ includes $z=\infty$. These conditions are equivalent because the ROC of a Z-transform only contains $z=\infty$ for causal signals.
|
||||
\\
|
||||
\\
|
||||
Additionally, an LTI system is BIBO stable if $h[n]$ is absolutely summable.
|
||||
$$\sum_n |h[n]| < \infty$$
|
||||
The equivalent condition for $H(z)$ is the ROC of $H(z)$ must include the unit circle. These conditions are equivalent because the DTFT exists when the unit circle is in the ROC, and the DTFT only exists when the signal is absolutely summable.
|
||||
\nt{
|
||||
For causal systems only, BIBO stability is achieved if all the poles of $H(z)$ are inside the unit circle. Since non-causal systems do not include $z=\infty$ in the ROC, this test will not hold for non-causal systems.
|
||||
}
|
||||
\noindent
|
||||
If the impulse response $h[n]$ has finite support, then the output, $y[n]$, given an input, $x[n]$, can be found by convolution.
|
||||
$$y[n] = h[n] * x[n] = \sum_{k=0}^{N-1} h[k] x[n-k]$$
|
||||
However, if the impulse response $h[n]$ has infinite support, the output, $y[n]$, is given by a constant coefficient difference equation.
|
||||
$$\sum_{j=0}^N a[j]y[n-j] = \sum_{k=0}^M b[k]x[n-k]$$
|
||||
where $a[j]$ are the constant coefficient of the output, and $b[k]$ are the constant coefficients of the input.
|
||||
|
||||
\ex{}
|
||||
{
|
||||
Given the infinite impulse response:
|
||||
$$h[n] = a^n u[n]$$
|
||||
The transfer function of the system is:
|
||||
$$H(z) = {z \over z - a}$$
|
||||
with a ROC of $|z| > |a|$. Since this includes $z=\infty$, the system is causal. If $|a| < 1$, then the system is also BIBO stable.
|
||||
|
||||
$$H(z) = {z \over z-a} = {Y(z) \over X(z)}$$
|
||||
$${Y(z) \over X(z)} = {1 \over 1-az^{-1}}$$
|
||||
$$Y(z)-az^{-1}Y(z) = X(z)$$
|
||||
Taking the inverse Z-transform:
|
||||
$$y[n] - a y[n-1] = x[n]$$
|
||||
$$y[n] = x[n] + ay[n-1]$$
|
||||
Since the output relies on both the input and the previous output, the recursive implementation of the input-output relationship is used.
|
||||
}
|
||||
|
||||
\ex{}
|
||||
{
|
||||
Given the impulse response,
|
||||
$$h[n] = na^n u[n]$$
|
||||
the corresponding transfer function is
|
||||
$$H(z) = {az \over (z-a)^2}$$
|
||||
with ROC, $|z| > |a|$. Since the impulse response is causal, the system is causal. Equivalently, since the ROC includes $z=\infty$, the system is causal.
|
||||
Given this region of convergence, the system is BIBO stable if and only if $|a| < 1$.
|
||||
$$H(z) = {az\over (z-a)^2} = {Y(z) \over X(z)}$$
|
||||
$$H(z) = {az \over z^2 - 2az + a^2} = {az \over z^2(1 -2az^{-1} + a^2z^{-2})}$$
|
||||
$$az^{-1}X(z) = Y(z) - 2az^{-1}Y(z) + a^2z^{-2}Y(z)$$
|
||||
Taking the inverse Z-transform to find the input-output relationship:
|
||||
$$x[n-1] = y[n] - 2ay[n-1] + a^2y[n-2]$$
|
||||
$$y[n] = x[n-1] + 2ay[n-1] - a^2y[n-2]$$
|
||||
}
|
||||
|
||||
\ex{}
|
||||
{
|
||||
$$h[n] = u[n] - u[n-4]$$
|
||||
$$h[n] = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}, 0 \le n \le 3$$
|
||||
$$H(z) = \sum_n h[n] z^{-n} = 1 + z^{-1} + z^{-2} + z^{-3}$$
|
||||
For finite support signals, the Z-transform is the entire Z-plane with the possible exception of $z=0$ and $z=\infty$. Checking $z=0$ reveals a pole, but $z=\infty$ works, so the system is causal. All finite support impulse responses (FIR) are BIBO stable.
|
||||
$$y[n] = \sum_{k=0}^3 h[k]x[n-k]$$
|
||||
$$y[n] = h[0]x[n] + h[1]x[n-1] + h[2]x[n-2] + h[3]x[n-3]$$
|
||||
}
|
||||
|
||||
\section{The Inverse Z-Transform}
|
||||
Given the causal signal $x[n] = a^n u[n]$, its Z-transform is $X(z) = {z \over z - a}$ with region of convergence $|z| > |a|$. Given an anti-causal signal $x[n] -a^n u[-n-1]$, its Z-transform is $X(z) = {z \over z - a}$ with region of convergence $|z| < |a|$.
|
||||
\\
|
||||
\\
|
||||
Consider the following second-order LTI system whose transfer function is given by:
|
||||
$$H(z) = {z (z - 0.2) \over (z-0.8)(z-0.9)}$$
|
||||
If the system is causal, then the ROC includes $\infty$, so the ROC must be $|z|>0.9$. In this case the system would be BIBO stable. However, if the system is anti-causal, then the ROC must include 0 and therefore would be $|z|<0.8$. In this case, the system would not be BIBO stable. If the system is two-sided, then the ROC would be $0.8 < |z| < 0.9$. In this case the system would also not be BIBO stable.
|
||||
\\
|
||||
\\
|
||||
Find the partial fraction expansion of $H(z) \over z$:
|
||||
$${H(z) \over z} = {z - 0.2 \over (z-0.8)(z-0.9)} = {A \over z - 0.9} + {B \over z - 0.8}$$
|
||||
$$z - 0.2 = (z-0.8)A + (z-0.9)B$$
|
||||
$$B = -6, A = 7$$
|
||||
$${H(z) \over z} = {7 \over z-0.9} - {6 \over z-0.8}$$
|
||||
$$H(z) = {7z \over z-0.9} - {6z \over z-0.8}$$
|
||||
Apply the inverse Z-transform on both sides. If the system is causal:
|
||||
$$h[n] = 7(0.9)^n u[n] - 6(0.8)^n u[n]$$
|
||||
If the system is anti-causal:
|
||||
$$h[n] = -7(0.9)^n u[-n-1] + 6(0.8)^n u[-n-1]$$
|
||||
If the system is two-sided:
|
||||
$$h[n] = -7(0.9)^n u[-n-1] - 6(0.8)^n u[n]$$
|
||||
|
||||
\nt
|
||||
{
|
||||
For FIR systems, if the Z-transform does not converge at $|z|= 0$ or $|z| = \infty$, they are not considered poles, because only IIR systems can have poles.
|
||||
}
|
||||
\end{document}
|
||||
|
@ -31,4 +31,6 @@
|
||||
\contentsline {subsection}{\numberline {3.1.2}Properties of the Discrete Time Fourier Transform}{17}{subsection.3.1.2}%
|
||||
\contentsline {subsection}{\numberline {3.1.3}Special Cases}{18}{subsection.3.1.3}%
|
||||
\contentsline {chapter}{\numberline {4}The Z-Transform}{19}{chapter.4}%
|
||||
\contentsline {section}{\numberline {4.1}Z Transform Transfer Functions}{20}{section.4.1}%
|
||||
\contentsline {section}{\numberline {4.2}The Inverse Z-Transform}{22}{section.4.2}%
|
||||
\contentsfinish
|
||||
|
Reference in New Issue
Block a user