5th semester files
BIN
5th-Semester-Fall-2023/EEMAGS/Engineering_Electromagnetics_8th_Edition.pdf
Executable file
@ -0,0 +1,9 @@
|
||||
\relax
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {I}Constants}{1}{}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {II}Fifth's Bullet Points}{1}{}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {III}Boundary Conditions}{1}{}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {IV}Laplace and Poisson}{1}{}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {V}General Transmission Lines}{2}{}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {VI}Voltage Standing Wave Ratio}{2}{}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {VII}Transmission Line Design}{2}{}\protected@file@percent }
|
||||
\gdef \@abspage@last{2}
|
@ -0,0 +1,65 @@
|
||||
# Fdb version 4
|
||||
["pdflatex"] 1703050027 "Equation-Sheet.tex" "Equation-Sheet.pdf" "Equation-Sheet" 1703050028 2
|
||||
"/usr/share/texlive/texmf-dist/fonts/enc/dvips/base/8r.enc" 1684972800 4850 80dc9bab7f31fb78a000ccfed0e27cab ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/map/fontname/texfonts.map" 1577235249 3524 cb3e574dea2d1052e39280babc910dc8 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmb7t.tfm" 1136768653 2172 fd0c924230362ff848a33632ed45dc23 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmbi7t.tfm" 1136768653 2228 e564491c42a4540b5ebb710a75ff306c ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmr7t.tfm" 1136768653 2124 2601a75482e9426d33db523edf23570a ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmr8r.tfm" 1136768653 4408 25b74d011a4c66b7f212c0cc3c90061b ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmrc7t.tfm" 1136768653 2680 312a2d12b1f1df8ee0212e7ba1962402 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmri7t.tfm" 1136768653 2288 f478fc8fed18759effb59f3dad7f3084 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmex7.tfm" 1246382020 1004 54797486969f23fa377b128694d548df ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam10.tfm" 1246382020 916 f87d7c45f9c908e672703b83b72241a3 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam5.tfm" 1246382020 924 9904cf1d39e9767e7a3622f2a125a565 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam7.tfm" 1246382020 928 2dc8d444221b7a635bb58038579b861a ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm10.tfm" 1246382020 908 2921f8a10601f252058503cc6570e581 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm5.tfm" 1246382020 940 75ac932a52f80982a9f8ea75d03a34cf ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm7.tfm" 1246382020 940 228d6584342e91276bf566bcf9716b83 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/esint/esint10.tfm" 1569948395 364 55557743e6c24ee44e49bc5e8dbbe3cd ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmex10.pfb" 1248133631 30251 6afa5cb1d0204815a708a080681d4674 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pfb" 1248133631 36299 5f9df58c2139e7edcf37c8fca4bd384d ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi7.pfb" 1248133631 36281 c355509802a035cadc5f15869451dcee ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb" 1248133631 35752 024fb6c41858982481f6968b5fc26508 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr7.pfb" 1248133631 32762 224316ccc9ad3ca0423a14971cfa7fc1 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.pfb" 1248133631 32569 5e5ddc8df908dea60932f3c484a54c0d ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy5.pfb" 1248133631 32915 7bf7720c61a5b3a7ff25b0964421c9b6 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy7.pfb" 1248133631 32716 08e384dc442464e7285e891af9f45947 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/type1/urw/times/utmr8a.pfb" 1136849748 46026 6dab18b61c907687b520c72847215a68 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/vf/adobe/times/ptmr7t.vf" 1136768653 1380 0ea3a3370054be6da6acd929ec569f06 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/vf/adobe/times/ptmrc7t.vf" 1136768653 1948 7330aeef3af211edff3b35fb2c12a0fd ""
|
||||
"/usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii" 1684972800 71627 94eb9990bed73c364d7f53f960cc8c5b ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty" 1359763108 5949 3f3fd50a8cc94c3d4cbf4fc66cd3df1c ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd" 1359763108 961 6518c6525a34feb5e8250ffa91731cff ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd" 1359763108 961 d02606146ba5601b5645f987c92e6193 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty" 1654720880 2222 78b930a5a6e3dc2ac69b78c2057b94d7 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty" 1654720880 4173 c989ee3ced31418e3593916ab26c793a ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty" 1654720880 88393 1adf6fa3f245270d06e3d4f8910f7fc5 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty" 1654720880 4474 f04cd1cc7bd76eb033e6fb12eb6a0d77 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty" 1654720880 2444 70065bddd85997dc1fd0bb7ae634e5fa ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty" 1579991033 13886 d1306dcf79a944f6988e688c1785f9ce ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/esint/esint.sty" 1567035683 2930 afa98ed936439dae4d7a74e105144a0f ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/esint/uesint.fd" 1567035683 795 7639bdc0e31ae0fddb2806b1ed14c450 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/graphics.cfg" 1465944070 1224 978390e9c2234eab29404bc21b268d1e ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/graphics-def/pdftex.def" 1663965824 19448 1e988b341dda20961a6b931bcde55519 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty" 1654720880 18387 8f900a490197ebaf93c02ae9476d4b09 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty" 1654720880 8010 a8d949cbdbc5c983593827c9eec252e1 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty" 1654720880 2671 7e67d78d9b88c845599a85b2d41f2e39 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty" 1654720880 4023 293ea1c16429fc0c4cf605f4da1791a9 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/ieeetran/IEEEtran.cls" 1440712899 281957 5b2e4fa15b0f7eabb840ebf67df4c0f7 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def" 1666901542 30426 f2fb69fcda4dc35ed0b7dee211bce679 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty" 1671310534 6107 386d6336ccdc5637fb2ac440a8c4ecaa ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty" 1671310555 6812 c155095bd0101370166071972167f9ce ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg" 1279039959 678 4792914a8f45be57bb98413425e4c7af ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/physics/physics.sty" 1356048875 29610 a9597219b282d9c78b02393dcd7d4322 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/psnfss/ot1ptm.fd" 1137110629 961 15056f4a61917ceed3a44e4ac11fcc52 ""
|
||||
"/usr/share/texlive/texmf-dist/web2c/texmf.cnf" 1684972800 40326 aba987258e6d6b6da5dec3a727ea174b ""
|
||||
"/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map" 1692725955 4602593 51c329d5d4c842553db0d1507bc406f1 ""
|
||||
"/var/lib/texmf/web2c/pdftex/pdflatex.fmt" 1702999815 7863018 6c1a2921badd19122d207500908262ae ""
|
||||
"Equation-Sheet.aux" 1703050028 800 89e43ef6261a6bd37cc51a7fb392a841 "pdflatex"
|
||||
"Equation-Sheet.tex" 1703050026 4251 549f3619bc19fd1492380af9c1272110 ""
|
||||
"Transmission_line_element.png" 1703040630 34630 cc0e6184c8d69c4be539fdd01839a611 ""
|
||||
(generated)
|
||||
"Equation-Sheet.aux"
|
||||
"Equation-Sheet.log"
|
||||
"Equation-Sheet.pdf"
|
||||
(rewritten before read)
|
313
5th-Semester-Fall-2023/EEMAGS/EquationSheet/Equation-Sheet.fls
Normal file
@ -0,0 +1,313 @@
|
||||
PWD /home/sharpe/Documents/Rowan-Classes/5th-Semester-Fall-2023/EEMAGS/EquationSheet
|
||||
INPUT /usr/share/texlive/texmf-dist/web2c/texmf.cnf
|
||||
INPUT /usr/share/texlive/texmf-dist/web2c/texmf.cnf
|
||||
INPUT /var/lib/texmf/web2c/pdftex/pdflatex.fmt
|
||||
INPUT Equation-Sheet.tex
|
||||
OUTPUT Equation-Sheet.log
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/ieeetran/IEEEtran.cls
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/ieeetran/IEEEtran.cls
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/ieeetran/IEEEtran.cls
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/ieeetran/IEEEtran.cls
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/ieeetran/IEEEtran.cls
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/ieeetran/IEEEtran.cls
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/ieeetran/IEEEtran.cls
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/ieeetran/IEEEtran.cls
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/ieeetran/IEEEtran.cls
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/ieeetran/IEEEtran.cls
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/ieeetran/IEEEtran.cls
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/psnfss/ot1ptm.fd
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/psnfss/ot1ptm.fd
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/psnfss/ot1ptm.fd
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/psnfss/ot1ptm.fd
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/map/fontname/texfonts.map
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmr7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmr7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmr7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmb7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmri7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmbi7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmr7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmb7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmri7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmbi7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmr7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmb7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmri7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmbi7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmb7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmri7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmbi7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmb7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmri7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmbi7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmr7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmb7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmri7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmbi7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmr7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmb7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmri7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmbi7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmr7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmb7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmri7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmbi7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmr7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmb7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmri7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmbi7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmr7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmb7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmri7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmbi7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/graphics.cfg
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/graphics.cfg
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/graphics.cfg
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/graphics.cfg
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics-def/pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics-def/pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics-def/pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/graphics-def/pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/esint/esint.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/esint/esint.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/esint/esint.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/esint/esint.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/esint/esint.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/esint/esint.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/esint/esint.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/esint/esint.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/esint/esint.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/esint/esint.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/esint/esint.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/physics/physics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/physics/physics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/physics/physics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/physics/physics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/physics/physics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/physics/physics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/physics/physics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/physics/physics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/physics/physics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/physics/physics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/physics/physics.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
|
||||
INPUT ./Equation-Sheet.aux
|
||||
INPUT Equation-Sheet.aux
|
||||
INPUT Equation-Sheet.aux
|
||||
OUTPUT Equation-Sheet.aux
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmrc7t.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmex7.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/amsfonts/cmextra/cmex7.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam10.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam7.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam5.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm10.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm7.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm5.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/esint/uesint.fd
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/esint/uesint.fd
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/esint/uesint.fd
|
||||
INPUT /usr/share/texlive/texmf-dist/tex/latex/esint/uesint.fd
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/esint/esint10.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/esint/esint10.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/public/esint/esint10.tfm
|
||||
INPUT ./Transmission_line_element.png
|
||||
INPUT ./Transmission_line_element.png
|
||||
INPUT Transmission_line_element.png
|
||||
INPUT ./Transmission_line_element.png
|
||||
OUTPUT Equation-Sheet.pdf
|
||||
INPUT ./Transmission_line_element.png
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/vf/adobe/times/ptmr7t.vf
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmr8r.tfm
|
||||
INPUT /var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/vf/adobe/times/ptmr7t.vf
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmr8r.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/vf/adobe/times/ptmrc7t.vf
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmr8r.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/tfm/adobe/times/ptmr8r.tfm
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/vf/adobe/times/ptmr7t.vf
|
||||
INPUT Equation-Sheet.aux
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/enc/dvips/base/8r.enc
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmex10.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi7.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr7.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy5.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy7.pfb
|
||||
INPUT /usr/share/texlive/texmf-dist/fonts/type1/urw/times/utmr8a.pfb
|
314
5th-Semester-Fall-2023/EEMAGS/EquationSheet/Equation-Sheet.log
Normal file
@ -0,0 +1,314 @@
|
||||
This is pdfTeX, Version 3.141592653-2.6-1.40.24 (TeX Live 2022/CVE-2023-32700 patched) (preloaded format=pdflatex 2023.12.19) 20 DEC 2023 00:27
|
||||
entering extended mode
|
||||
restricted \write18 enabled.
|
||||
file:line:error style messages enabled.
|
||||
%&-line parsing enabled.
|
||||
**Equation-Sheet.tex
|
||||
(./Equation-Sheet.tex
|
||||
LaTeX2e <2022-06-01> patch level 5
|
||||
L3 programming layer <2022-12-17> (/usr/share/texlive/texmf-dist/tex/latex/ieeetran/IEEEtran.cls
|
||||
Document Class: IEEEtran 2015/08/26 V1.8b by Michael Shell
|
||||
-- See the "IEEEtran_HOWTO" manual for usage information.
|
||||
-- http://www.michaelshell.org/tex/ieeetran/
|
||||
\@IEEEtrantmpdimenA=\dimen140
|
||||
\@IEEEtrantmpdimenB=\dimen141
|
||||
\@IEEEtrantmpdimenC=\dimen142
|
||||
\@IEEEtrantmpcountA=\count185
|
||||
\@IEEEtrantmpcountB=\count186
|
||||
\@IEEEtrantmpcountC=\count187
|
||||
\@IEEEtrantmptoksA=\toks16
|
||||
LaTeX Font Info: Trying to load font information for OT1+ptm on input line 503.
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/psnfss/ot1ptm.fd
|
||||
File: ot1ptm.fd 2001/06/04 font definitions for OT1/ptm.
|
||||
)
|
||||
-- Using 8.5in x 11in (letter) paper.
|
||||
-- Using PDF output.
|
||||
\@IEEEnormalsizeunitybaselineskip=\dimen143
|
||||
-- This is a 10 point document.
|
||||
\CLASSINFOnormalsizebaselineskip=\dimen144
|
||||
\CLASSINFOnormalsizeunitybaselineskip=\dimen145
|
||||
\IEEEnormaljot=\dimen146
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <5> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <5> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <7> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <7> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <8> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <8> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <9> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <9> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <10> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <10> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <11> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <11> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <12> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <12> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <17> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <17> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <20> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <20> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <24> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <24> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
\IEEEquantizedlength=\dimen147
|
||||
\IEEEquantizedlengthdiff=\dimen148
|
||||
\IEEEquantizedtextheightdiff=\dimen149
|
||||
\IEEEilabelindentA=\dimen150
|
||||
\IEEEilabelindentB=\dimen151
|
||||
\IEEEilabelindent=\dimen152
|
||||
\IEEEelabelindent=\dimen153
|
||||
\IEEEdlabelindent=\dimen154
|
||||
\IEEElabelindent=\dimen155
|
||||
\IEEEiednormlabelsep=\dimen156
|
||||
\IEEEiedmathlabelsep=\dimen157
|
||||
\IEEEiedtopsep=\skip47
|
||||
\c@section=\count188
|
||||
\c@subsection=\count189
|
||||
\c@subsubsection=\count190
|
||||
\c@paragraph=\count191
|
||||
\c@IEEEsubequation=\count192
|
||||
\abovecaptionskip=\skip48
|
||||
\belowcaptionskip=\skip49
|
||||
\c@figure=\count193
|
||||
\c@table=\count194
|
||||
\@IEEEeqnnumcols=\count195
|
||||
\@IEEEeqncolcnt=\count196
|
||||
\@IEEEsubeqnnumrollback=\count197
|
||||
\@IEEEquantizeheightA=\dimen158
|
||||
\@IEEEquantizeheightB=\dimen159
|
||||
\@IEEEquantizeheightC=\dimen160
|
||||
\@IEEEquantizeprevdepth=\dimen161
|
||||
\@IEEEquantizemultiple=\count198
|
||||
\@IEEEquantizeboxA=\box51
|
||||
\@IEEEtmpitemindent=\dimen162
|
||||
\IEEEPARstartletwidth=\dimen163
|
||||
\c@IEEEbiography=\count199
|
||||
\@IEEEtranrubishbin=\box52
|
||||
) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
|
||||
Package: graphicx 2021/09/16 v1.2d Enhanced LaTeX Graphics (DPC,SPQR)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
|
||||
Package: keyval 2022/05/29 v1.15 key=value parser (DPC)
|
||||
\KV@toks@=\toks17
|
||||
) (/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
|
||||
Package: graphics 2022/03/10 v1.4e Standard LaTeX Graphics (DPC,SPQR)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
|
||||
Package: trig 2021/08/11 v1.11 sin cos tan (DPC)
|
||||
) (/usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/graphics.cfg
|
||||
File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration
|
||||
)
|
||||
Package graphics Info: Driver file: pdftex.def on input line 107.
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/graphics-def/pdftex.def
|
||||
File: pdftex.def 2022/09/22 v1.2b Graphics/color driver for pdftex
|
||||
))
|
||||
\Gin@req@height=\dimen164
|
||||
\Gin@req@width=\dimen165
|
||||
) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty
|
||||
Package: amsmath 2022/04/08 v2.17n AMS math features
|
||||
\@mathmargin=\skip50
|
||||
|
||||
For additional information on amsmath, use the `?' option.
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty
|
||||
Package: amstext 2021/08/26 v2.01 AMS text
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty
|
||||
File: amsgen.sty 1999/11/30 v2.0 generic functions
|
||||
\@emptytoks=\toks18
|
||||
\ex@=\dimen166
|
||||
)) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty
|
||||
Package: amsbsy 1999/11/29 v1.2d Bold Symbols
|
||||
\pmbraise@=\dimen167
|
||||
) (/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty
|
||||
Package: amsopn 2022/04/08 v2.04 operator names
|
||||
)
|
||||
\inf@bad=\count266
|
||||
LaTeX Info: Redefining \frac on input line 234.
|
||||
\uproot@=\count267
|
||||
\leftroot@=\count268
|
||||
LaTeX Info: Redefining \overline on input line 399.
|
||||
LaTeX Info: Redefining \colon on input line 410.
|
||||
\classnum@=\count269
|
||||
\DOTSCASE@=\count270
|
||||
LaTeX Info: Redefining \ldots on input line 496.
|
||||
LaTeX Info: Redefining \dots on input line 499.
|
||||
LaTeX Info: Redefining \cdots on input line 620.
|
||||
\Mathstrutbox@=\box53
|
||||
\strutbox@=\box54
|
||||
LaTeX Info: Redefining \big on input line 722.
|
||||
LaTeX Info: Redefining \Big on input line 723.
|
||||
LaTeX Info: Redefining \bigg on input line 724.
|
||||
LaTeX Info: Redefining \Bigg on input line 725.
|
||||
\big@size=\dimen168
|
||||
LaTeX Font Info: Redeclaring font encoding OML on input line 743.
|
||||
LaTeX Font Info: Redeclaring font encoding OMS on input line 744.
|
||||
\macc@depth=\count271
|
||||
LaTeX Info: Redefining \bmod on input line 905.
|
||||
LaTeX Info: Redefining \pmod on input line 910.
|
||||
LaTeX Info: Redefining \smash on input line 940.
|
||||
LaTeX Info: Redefining \relbar on input line 970.
|
||||
LaTeX Info: Redefining \Relbar on input line 971.
|
||||
\c@MaxMatrixCols=\count272
|
||||
\dotsspace@=\muskip16
|
||||
\c@parentequation=\count273
|
||||
\dspbrk@lvl=\count274
|
||||
\tag@help=\toks19
|
||||
\row@=\count275
|
||||
\column@=\count276
|
||||
\maxfields@=\count277
|
||||
\andhelp@=\toks20
|
||||
\eqnshift@=\dimen169
|
||||
\alignsep@=\dimen170
|
||||
\tagshift@=\dimen171
|
||||
\tagwidth@=\dimen172
|
||||
\totwidth@=\dimen173
|
||||
\lineht@=\dimen174
|
||||
\@envbody=\toks21
|
||||
\multlinegap=\skip51
|
||||
\multlinetaggap=\skip52
|
||||
\mathdisplay@stack=\toks22
|
||||
LaTeX Info: Redefining \[ on input line 2953.
|
||||
LaTeX Info: Redefining \] on input line 2954.
|
||||
) (/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty
|
||||
Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support
|
||||
\symAMSa=\mathgroup4
|
||||
\symAMSb=\mathgroup5
|
||||
LaTeX Font Info: Redeclaring math symbol \hbar on input line 98.
|
||||
LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold'
|
||||
(Font) U/euf/m/n --> U/euf/b/n on input line 106.
|
||||
) (/usr/share/texlive/texmf-dist/tex/latex/esint/esint.sty
|
||||
Package: esint
|
||||
\symlargesymbolsA=\mathgroup6
|
||||
) (/usr/share/texlive/texmf-dist/tex/latex/physics/physics.sty
|
||||
Package: physics
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty (/usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty
|
||||
Package: expl3 2022-12-17 L3 programming layer (loader)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def
|
||||
File: l3backend-pdftex.def 2022-10-26 L3 backend support: PDF output (pdfTeX)
|
||||
\l__color_backend_stack_int=\count278
|
||||
\l__pdf_internal_box=\box55
|
||||
))
|
||||
Package: xparse 2022-12-17 L3 Experimental document command parser
|
||||
)) (./Equation-Sheet.aux)
|
||||
\openout1 = `Equation-Sheet.aux'.
|
||||
|
||||
LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 19.
|
||||
LaTeX Font Info: ... okay on input line 19.
|
||||
LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 19.
|
||||
LaTeX Font Info: ... okay on input line 19.
|
||||
LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 19.
|
||||
LaTeX Font Info: ... okay on input line 19.
|
||||
LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 19.
|
||||
LaTeX Font Info: ... okay on input line 19.
|
||||
LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 19.
|
||||
LaTeX Font Info: ... okay on input line 19.
|
||||
LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 19.
|
||||
LaTeX Font Info: ... okay on input line 19.
|
||||
LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 19.
|
||||
LaTeX Font Info: ... okay on input line 19.
|
||||
|
||||
-- Lines per column: 58 (exact).
|
||||
(/usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
|
||||
[Loading MPS to PDF converter (version 2006.09.02).]
|
||||
\scratchcounter=\count279
|
||||
\scratchdimen=\dimen175
|
||||
\scratchbox=\box56
|
||||
\nofMPsegments=\count280
|
||||
\nofMParguments=\count281
|
||||
\everyMPshowfont=\toks23
|
||||
\MPscratchCnt=\count282
|
||||
\MPscratchDim=\dimen176
|
||||
\MPnumerator=\count283
|
||||
\makeMPintoPDFobject=\count284
|
||||
\everyMPtoPDFconversion=\toks24
|
||||
) (/usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty
|
||||
Package: epstopdf-base 2020-01-24 v2.11 Base part for package epstopdf
|
||||
Package epstopdf-base Info: Redefining graphics rule for `.eps' on input line 485.
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
|
||||
File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Live
|
||||
))
|
||||
|
||||
LaTeX Warning: No \author given.
|
||||
|
||||
|
||||
LaTeX Warning: No \author given.
|
||||
|
||||
|
||||
LaTeX Warning: No \author given.
|
||||
|
||||
LaTeX Font Info: Trying to load font information for U+msa on input line 23.
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd
|
||||
File: umsa.fd 2013/01/14 v3.01 AMS symbols A
|
||||
)
|
||||
LaTeX Font Info: Trying to load font information for U+msb on input line 23.
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd
|
||||
File: umsb.fd 2013/01/14 v3.01 AMS symbols B
|
||||
)
|
||||
LaTeX Font Info: Trying to load font information for U+esint on input line 23.
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/esint/uesint.fd
|
||||
File: uesint.fd
|
||||
)
|
||||
|
||||
Package amsmath Warning: Foreign command \over;
|
||||
(amsmath) \frac or \genfrac should be used instead
|
||||
(amsmath) on input line 26.
|
||||
|
||||
<Transmission_line_element.png, id=1, 1927.2pt x 988.69376pt>
|
||||
File: Transmission_line_element.png Graphic file (type png)
|
||||
<use Transmission_line_element.png>
|
||||
Package pdftex.def Info: Transmission_line_element.png used on input line 97.
|
||||
(pdftex.def) Requested size: 154.80157pt x 79.41393pt.
|
||||
[1{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}
|
||||
|
||||
|
||||
]
|
||||
./Equation-Sheet.tex:114: Missing $ inserted.
|
||||
<inserted text>
|
||||
$
|
||||
l.114
|
||||
|
||||
I've inserted a begin-math/end-math symbol since I think
|
||||
you left one out. Proceed, with fingers crossed.
|
||||
|
||||
./Equation-Sheet.tex:114: Display math should end with $$.
|
||||
<to be read again>
|
||||
\tex_par:D
|
||||
l.114
|
||||
|
||||
The `$' that I just saw supposedly matches a previous `$$'.
|
||||
So I shall assume that you typed `$$' both times.
|
||||
|
||||
[2
|
||||
|
||||
<./Transmission_line_element.png>] (./Equation-Sheet.aux) )
|
||||
Here is how much of TeX's memory you used:
|
||||
3678 strings out of 476182
|
||||
58869 string characters out of 5796580
|
||||
1867793 words of memory out of 6000000
|
||||
23972 multiletter control sequences out of 15000+600000
|
||||
540215 words of font info for 88 fonts, out of 8000000 for 9000
|
||||
1137 hyphenation exceptions out of 8191
|
||||
72i,11n,77p,320b,218s stack positions out of 10000i,1000n,20000p,200000b,200000s
|
||||
{/usr/share/texlive/texmf-dist/fonts/enc/dvips/base/8r.enc}</usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmex10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi7.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr7.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy5.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy7.pfb></usr/share/texlive/texmf-dist/fonts/type1/urw/times/utmr8a.pfb>
|
||||
Output written on Equation-Sheet.pdf (2 pages, 137318 bytes).
|
||||
PDF statistics:
|
||||
60 PDF objects out of 1000 (max. 8388607)
|
||||
35 compressed objects within 1 object stream
|
||||
0 named destinations out of 1000 (max. 500000)
|
||||
6 words of extra memory for PDF output out of 10000 (max. 10000000)
|
||||
|
@ -0,0 +1,35 @@
|
||||
# EEMAGS Equation Sheet
|
||||
|
||||
## Curl and Divergence Identities
|
||||
1. The Laplacian: can operate on a scalar or vector field
|
||||
$$\nabla \cdot (\nabla f) = \nabla^2 f$$
|
||||
$$\frac{\partial^2 f}{\partial x} + \frac{\partial^2 f}{\partial y} + \frac{\partial^2 f}{\partial z}$$
|
||||
2. The curl of a gradient is $0$
|
||||
$$\nabla \times (\nabla f) = 0$$
|
||||
3. The gradient of divergence is a scalar
|
||||
$$\nabla (\nabla \cdot \vec{f})$$
|
||||
4. The divergence of curl is $0$
|
||||
$$\nabla \cdot (\nabla \times \vec{v}) = 0$$
|
||||
5. Curl of curl
|
||||
$$\nabla \times (\nabla \times \vec{A}) = \nabla(\nabla \cdot \vec{A}) - \nabla^2 \vec{A}$$
|
||||
|
||||
## Maxwell's Equations
|
||||
Gauss's Law for $\vec{E}$-fields:
|
||||
$$\Phi_E =\int \vec{E} \cdot d\vec{s} = \frac{Q_{enc}}{\varepsilon_0}$$
|
||||
$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$
|
||||
|
||||
Gauss's Law for $\vec{B}$-fields:
|
||||
$$\int \vec{B} \cdot d\vec{s} = 0 $$
|
||||
$$ \nabla \cdot \vec{B} = 0$$
|
||||
|
||||
Faraday's Law
|
||||
$$\int \vec{E} \cdot d\vec{l} = -\frac{d}{dt}\vec{B} $$
|
||||
$$ \nabla \times \vec{E} = -\frac{d}{dt}\vec{B}$$
|
||||
|
||||
Ampere's Law
|
||||
$$\int \vec{B} \cdot d\vec{l} = \mu_0\left( \vec{J} + \varepsilon_0 \frac{d\vec{E}}{dt}\right) = \mu_0 I_{enc}$$
|
||||
$$ \nabla \times \vec{B} = \mu_0 J + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$
|
||||
|
||||
## Work and Voltage
|
||||
$$\Delta V = -\int \vec{E} \cdot d\vec{l}$$
|
||||
$$-\nabla V = \vec{E}$$
|
BIN
5th-Semester-Fall-2023/EEMAGS/EquationSheet/Equation-Sheet.pdf
Normal file
143
5th-Semester-Fall-2023/EEMAGS/EquationSheet/Equation-Sheet.tex
Normal file
@ -0,0 +1,143 @@
|
||||
% DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
|
||||
% Version 2, December 2004
|
||||
%
|
||||
% Copyright (C) 2023 Aidan Sharpe <amsharpe102@pm.me>
|
||||
%
|
||||
% Everyone is permitted to copy and distribute verbatim or modified
|
||||
% copies of this license document, and changing it is allowed as long
|
||||
% as the name is changed.
|
||||
%
|
||||
% DO WHAT THE FUCK YOU WANT TO PUBLIC LICENSE
|
||||
% TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
|
||||
%
|
||||
% 0. You just DO WHAT THE FUCK YOU WANT TO.
|
||||
|
||||
|
||||
|
||||
\documentclass[journal]{IEEEtran}
|
||||
|
||||
\usepackage{graphicx}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amsfonts}
|
||||
\usepackage{esint}
|
||||
\usepackage{physics}
|
||||
|
||||
\DeclareMathOperator\arctanh{arctanh}
|
||||
|
||||
\setlength{\parindent}{0pt}
|
||||
|
||||
\title{EEMAGS Equation Sheet}
|
||||
|
||||
\newcommand{\del}[2]{\frac{\partial #1}{\partial #2}}
|
||||
\newcommand{\veps}{\varepsilon}
|
||||
\newcommand{\vphi}{\varphi}
|
||||
|
||||
\begin{document}
|
||||
\maketitle
|
||||
|
||||
\section{Constants}
|
||||
$$\varepsilon_0 = 8.854 \times 10^{-12}$$
|
||||
$$\mu_0 = 1.257 \times 10^{-6}$$
|
||||
$$c = 3 \times 10^8$$
|
||||
$$\eta_0 = \sqrt{{\mu_0 \over \varepsilon_0}} = 377\Omega \approx 120\pi$$
|
||||
|
||||
\section{Fifth's Bullet Points}
|
||||
Find $\veps_r$ given $\lambda$ and $f$:
|
||||
$$\veps_r = {c^2 \over \mu_r \lambda^2 f^2}$$
|
||||
Find $v_p$ given $\delta$, $\alpha$, and $\beta$ given a good conductor:
|
||||
$$v_p = {\omega \over \beta}$$
|
||||
Find $P_\text{avg}$ given $\vec{H}(t)$ in air:
|
||||
|
||||
Find $\Gamma$ in polar and VWSR given $Z_L$ and $Z_0$:
|
||||
$$\Gamma = {Z_L - Z_0 \over Z_L + Z_0}$$
|
||||
$$\text{VWSR} = {1 + |\Gamma| \over 1 - |\Gamma|}$$
|
||||
Find $\vec{E}(z,t)$ given $\vec{H}(z,t)$ in a lossless medium of $\mu_r$ and $\veps_r$:
|
||||
|
||||
Find $\lambda$, $\veps_r$, and $\vec{H}$ given $\vec{E}$:
|
||||
$$\hat{H}_y = {\hat{E}_x \over \eta}$$
|
||||
$$\veps_r = {\beta^2 \over \omega^2 \mu_r \mu_0 \veps_0}$$
|
||||
$$\lambda = {v_p \over f}$$
|
||||
Find $\Gamma^2$ and $\langle P \rangle$ from $\veps$, lossless:
|
||||
|
||||
Find $\beta_\text{air}$, $\beta_\text{material}$, $\hat{\Gamma}$, $\hat{T}$ given $\vec{E}^i$, $\veps_r$, $\mu_r$, $\sigma_r$:
|
||||
|
||||
Find $v_p$, $L$, and $Z_0$ given $\veps_r$ and $C$, lossless:
|
||||
$$v_p = {1 \over \sqrt{\mu_0 \mu_r \veps_0 \veps_r}} = {\omega \over \beta}$$
|
||||
$$Z_0 = \sqrt{L \over C}$$
|
||||
$$L = {\mu_0 \mu_r \veps_0 \veps_r \over C}$$
|
||||
Find $C$ given $Z_0$, $R_L$, $f$, and VWSR:
|
||||
$$C = {L \over Z_0^2} - {G \over j\omega} + {R \over j\omega Z_0^2}$$
|
||||
$$\text{VWSR} = {1 + |\Gamma| \over 1 - |\Gamma|}$$
|
||||
$$\Gamma = {R_L - Z_0 \over R_L + Z_0}$$
|
||||
$$\omega = 2\pi f$$
|
||||
Find VWSR, $\Gamma$, $Z_\text{in}$ from $\lambda$, $Z_0$, $Z_L$, length:
|
||||
$$\Gamma = {Z_L - Z_0 \over Z_L + Z_0}$$
|
||||
$$\text{VWSR} = {1 + |\Gamma| \over 1 - |\Gamma|}$$
|
||||
$$\max[Z_\text{in}] = Z_0 \cdot \text{VWSR}$$
|
||||
$$\min[Z_\text{in}] = {Z_0 \over \text{VWSR}}$$
|
||||
Find $Z_0$, $\alpha$, $\beta$, $\gamma$, $\lambda$ given $Z_\text{in, sc}$ and $Z_\text{in, oc}$:
|
||||
$$Z_0 = \sqrt{Z_\text{in, sc} Z_\text{in, oc}}$$
|
||||
$$\gamma = {1\over l} \arctanh\left(\sqrt{Z_\text{in, sc} \over Z_\text{in, oc}}\right)$$
|
||||
|
||||
|
||||
\section{Boundary Conditions}
|
||||
Electric field boundary conditions:
|
||||
$$\vec{E}_{T1} = \vec{E}_{T2}$$
|
||||
$$\vec{D}_{N1} = \vec{D}_{N2}$$
|
||||
$$\vec{E} = \vec{E}_N + \vec{E}_T$$
|
||||
$$\vec{D} = \veps \vec{E}$$
|
||||
|
||||
Magnetic field boundary conditions:
|
||||
$$\vec{H}_{T1} = \vec{H}_{T2}$$
|
||||
$$\vec{B}_{N1} = \vec{B}_{N2}$$
|
||||
$$\vec{B} = \vec{B}_N + \vec{B}_T$$
|
||||
$$\vec{B} = \mu \vec{H}$$
|
||||
|
||||
Normal vectors:
|
||||
$$\vec{n} = \vec{E}_1 - \vec{E}_2$$
|
||||
$$\vec{n} = \vec{H}_1 - \vec{H}_2$$
|
||||
$$\hat{n} = {\vec{n} \over \|\vec{n}\|}$$
|
||||
|
||||
|
||||
|
||||
\section{Laplace and Poisson}
|
||||
The Laplacian:
|
||||
$$\vec{\nabla} \cdot (-\vec{\nabla}V) = -\vec{\nabla}^2 V = {\rho \over \veps_0}$$
|
||||
Laplace's Equation (charge free region):
|
||||
$$\vec{\nabla}^2 V = 0$$
|
||||
Poisson's Equation:
|
||||
$$\vec{\nabla}^2 V = -{\rho \over \veps_0}$$
|
||||
|
||||
\section{General Transmission Lines}
|
||||
\begin{center}
|
||||
\includegraphics[width=0.3\textwidth]{Transmission_line_element.png}
|
||||
\end{center}
|
||||
$$\begin{aligned}
|
||||
\gamma &= \alpha + j\beta = \left[(R + j\omega L)(G + j\omega C)\right]^{1/2} \\ & = {1\over l} \arctanh\left( \sqrt{Z_\text{in, sc} \over Z_\text{in, oc}}\right)
|
||||
\end{aligned}$$
|
||||
|
||||
The characteristic impedance:
|
||||
$$Z_0 = \sqrt{R + j\omega L \over G + j\omega C} = \sqrt{Z_\text{in, sc} Z_\text{in, oc}}$$
|
||||
$$Z_\text{in} = Z_0 {Z_L + Z_0 \tanh(\gamma l) \over Z_0 + Z_L \tanh(\gamma l)}$$
|
||||
|
||||
\section{Voltage Standing Wave Ratio}
|
||||
$$\Gamma = {V_\text{reflected} \over V_\text{incident}}\Big|_{z' = 0} = {Z_L - Z_0 \over Z_L + Z_0}$$
|
||||
$$\text{VWSR} = {|V_\text{max}| \over |V_\text{min}|} = {1 + |\Gamma| \over 1 - |\Gamma|}$$
|
||||
|
||||
$$v_p = {\omega \over \beta}$$
|
||||
|
||||
$$P_\text{avg} = {|V_0^+| \over 2 Z_0}(1 - |\Gamma_L|^2)
|
||||
|
||||
|
||||
\section{Transmission Line Design}
|
||||
Lossless lines:
|
||||
$$R = G = 0$$
|
||||
$$\alpha = 0$$
|
||||
$$\beta = \omega \sqrt{LC}$$
|
||||
|
||||
Distortionless lines:
|
||||
$${R \over L} = {G \over C}$$
|
||||
$$\alpha = R \sqrt{C \over L}$$
|
||||
$$\beta = \omega \sqrt{LC}$$
|
||||
|
||||
\end{document}
|
After Width: | Height: | Size: 34 KiB |
BIN
5th-Semester-Fall-2023/EEMAGS/Exam Notes.png
Normal file
After Width: | Height: | Size: 39 KiB |
21
5th-Semester-Fall-2023/EEMAGS/Homework/H0306a.m
Normal file
@ -0,0 +1,21 @@
|
||||
clear all;
|
||||
k = 9e9;
|
||||
q1 = 1.0e-6;
|
||||
q2 = -1.0e-6;
|
||||
ax = 1.0;
|
||||
ay = 0;
|
||||
bx = -1.0;
|
||||
by = 0;
|
||||
|
||||
[X, Y] = meshgrid(-2:0.9:2,-2:0.9:2);
|
||||
|
||||
V = 1./sqrt((X - ax).^2 + (Y-ay).^2 ) * k * q1 + 1./sqrt((X-bx).^2 + (Y-by).^2) * k * q2;
|
||||
|
||||
surfc(X, Y, V);
|
||||
|
||||
[Ex, Ey] = gradient(-V, 0.2, 0.2);
|
||||
figure
|
||||
contour(X, Y, V);
|
||||
|
||||
hold on;
|
||||
quiver(X, Y, Ex, Ey);
|
BIN
5th-Semester-Fall-2023/EEMAGS/Homework/H0306a.png
Normal file
After Width: | Height: | Size: 23 KiB |
BIN
5th-Semester-Fall-2023/EEMAGS/Homework/H0306b.png
Normal file
After Width: | Height: | Size: 73 KiB |
BIN
5th-Semester-Fall-2023/EEMAGS/Homework/H0306c.png
Normal file
After Width: | Height: | Size: 80 KiB |
36
5th-Semester-Fall-2023/EEMAGS/Homework/H04.m
Normal file
@ -0,0 +1,36 @@
|
||||
clear;
|
||||
clf;
|
||||
|
||||
N = 50;
|
||||
L = 20.0;
|
||||
h = L/N;
|
||||
c = 1;
|
||||
tau = h/c;
|
||||
nstep = 50;
|
||||
|
||||
coef = c * tau / (2*h);
|
||||
|
||||
sig=0.1; % width of the pulse
|
||||
z = ((1:N) - 1/2)*h - L/2; % value of z at time 0
|
||||
phi = (sech(z / (2 * sig^2))).^2; % wave shape
|
||||
phiset = zeros(nstep, N);
|
||||
|
||||
x = z;
|
||||
t = 0:tau:(nstep - 1) * tau;
|
||||
[xx, tt] = meshgrid(x, t);
|
||||
|
||||
for ist = 1:nstep
|
||||
phiset(ist,:) = phi;
|
||||
|
||||
for k = 1:N
|
||||
if ( k ~= 1 ) && ( k ~= N )
|
||||
phinew(k) = (0.5-coef)*phi(k+1) + (0.5+coef)*phi(k-1);
|
||||
else
|
||||
phinew(1) = (0.5-coef)*phi(2) + (0.5+coef)*phi(N);
|
||||
phinew(N) = (0.5-coef)*phi(1) + (0.5+coef)*phi(N-1);
|
||||
end
|
||||
end
|
||||
phi = phinew;
|
||||
end
|
||||
|
||||
surf(xx, tt, phiset);
|
BIN
5th-Semester-Fall-2023/EEMAGS/Homework/H0502a.png
Normal file
After Width: | Height: | Size: 45 KiB |
266
5th-Semester-Fall-2023/EEMAGS/Homework/Homework-01.md
Normal file
@ -0,0 +1,266 @@
|
||||
# Homework 1 - Aidan Sharpe
|
||||
|
||||
## 1.
|
||||
If $\vec{A} = 4\hat{x} + 4\hat{y} - 2\hat{z}$ and $\vec{B} = 3\hat{x} - 1.5\hat{y} + \hat{z}$, find the acute angle between $\vec{A}$ and $\vec{B}$.
|
||||
|
||||
Definition of dot product:
|
||||
$$\vec{A} \cdot \vec{B} = (A_x B_x)+(A_y B_y) + (A_z B_z) =\lVert \vec{A} \rVert \lVert \vec{B} \rVert \cos(\varphi)$$
|
||||
Solve the dot product:
|
||||
$$\vec{A} \cdot \vec{B} = (4 \cdot 3) + (4 \cdot (-1.5)) + ((-2) \cdot 1) = 4$$
|
||||
Magnitudes of the vectors:
|
||||
$$\lVert \vec{A} \rVert = \sqrt{4^2 + 4^2 + (-2)^2} = \sqrt{36} = 6$$
|
||||
$$\lVert \vec{B} \rVert = \sqrt{3^2 + \left(-\frac{3}{2}\right)^2 + 1^2} = \sqrt{\frac{49}{4}} = \frac{7}{2}$$
|
||||
By the definition of the dot product:
|
||||
$$4 = 6 \cdot \frac{7}{2} \cos(\varphi)$$
|
||||
$$\therefore \cos(\varphi) = \frac{4}{21}$$
|
||||
$$\therefore \varphi = \arccos\left(\frac{4}{21}\right) = 1.379 = 79.02^\circ$$
|
||||
|
||||
## 2
|
||||
If $\vec{A} = \frac{10}{\rho}\hat{\rho} + 5\hat{\varphi} + 2\hat{z}$ and $\vec{B} = 5\hat{\rho} + \cos(\varphi)\hat{\varphi} + \rho\hat{z}$, find (a) $\vec{A} \cdot \vec{B}$ and (b) $\vec{A} \times \vec{B}$ at $x=1$, $y=1$, $z=1$.
|
||||
|
||||
Convert from cartesian to cylidrical:
|
||||
$$\rho = \sqrt{x^2 + y^2} = \sqrt{2}$$
|
||||
$$\varphi = \arctan\left(\frac{y}{x}\right) = \frac{\pi}{4}$$
|
||||
$$z = z = 1$$
|
||||
Find $\vec{A}$ and $\vec{B}$ at $x=1$, $y=1$, $z=1$:
|
||||
$$\vec{A} = \frac{10}{\sqrt{2}}\hat{\rho}+5\hat{\varphi}+2\hat{z} = 5\sqrt{2}\hat{\rho}+5\hat{\varphi}+2\hat{z}$$
|
||||
$$\vec{B} = 5\hat{\rho}+\cos\left(\frac{\pi}{4}\right)\hat{\varphi}+\sqrt{2}\hat{z}=5\hat{\rho}+\frac{\sqrt{2}}{2}\hat{\varphi}+\sqrt{2}\hat{z}$$
|
||||
|
||||
### a) Find $\vec{A} \cdot \vec{B}$
|
||||
$$\vec{A} \cdot \vec{B} = \left(5\sqrt{2} \cdot 5\right) + \left(5 \cdot \frac{\sqrt{2}}{2}\right) + \left(2 \cdot \sqrt{2}\right) = \frac{59\sqrt{2}}{2}$$
|
||||
|
||||
### b) Find $\vec{A} \times \vec{B}$
|
||||
$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\rho} & \hat{\varphi} & \hat{z} \\ 5\sqrt{2} & 5 & 2 \\ 5 & \frac{\sqrt{2}}{2} & \sqrt{2} \end{vmatrix} = 4\sqrt{2}\hat{\rho} - 20\hat{z}$$
|
||||
|
||||
## 3
|
||||
Two point charges have mass $0.2$g. Two insulating threads of length $1$m are used to suspend the charges from a common point. The gravitational force is $980 \times 10^{-5}\text{N/g}$.
|
||||
|
||||
Define $\varphi$ as the angle between the threads, $\alpha$ as half of that angle, and $\beta$ as $\frac{\pi}{2} - \alpha$. This way, $\alpha$ and $\beta$ make a right triangle with the leg adjacent to $\alpha$ making a perpendicular bisector of the distance between the charges, $r$.
|
||||
|
||||
Find the distance, $r$:
|
||||
$$\frac{r}{2} = (1\text{m})\cos(\beta)$$
|
||||
$$\therefore r = 2\cos(\beta)$$
|
||||
|
||||
By Coulomb's Law, the electric field force on each charge, $\vec{F}_e$, is:
|
||||
$$\vec{F}_e = \frac{q^2}{4\pi\varepsilon_0 r^2}\hat{x}$$
|
||||
Pluggin in for $r$,
|
||||
$$\vec{F}_e = \frac{q^2}{16\pi\varepsilon_0\cos^2(\beta)}\hat{x}$$
|
||||
|
||||
The force due to gravity on each charge, $\vec{F}_g$, is:
|
||||
$$\vec{F}_g = 0.2 \cdot 980\times 10^{-5} = 0.00196(-\hat{y})\text{N}$$
|
||||
|
||||
Assuming static equilibrium:
|
||||
$$\sum F_x = 0 = F_{e_x} + F_{T_x} + F_{g_x}$$
|
||||
$$\sum F_y = 0 = F_{e_y} + F_{T_y} + F_{g_y}$$
|
||||
Where:
|
||||
|
||||
$F_{T_x}$ is the x-component of the force due to tension in each thread, $F_T$.
|
||||
|
||||
$F_{T_y}$ is the y-component of $F_T$.
|
||||
|
||||
Since $F_g$ only acts in the $\hat{y}$ direction, and $F_e$ only acts in the $\hat{x}$ direction:
|
||||
$$F_{e_x} + F_{T_x} = 0$$
|
||||
$$F_{T_y} + F_{g_y} = 0$$
|
||||
|
||||
Define the components of the tension force $F_T$:
|
||||
$$F_{T_x} = F_T\cos\left(\frac{\pi}{2} + \alpha\right) = -F_T\cos(\beta)$$
|
||||
$$F_{T_y} = F_T\sin\left(\frac{\pi}{2} + \alpha\right) = F_T\sin(\beta)$$
|
||||
|
||||
Solve for $F_T$ using equilibrium in the $\hat{y}$ direction:
|
||||
$$F_T\sin(\beta) - 0.00196 = 0$$
|
||||
$$\therefore F_T = \frac{0.00196}{\sin(\beta)}$$
|
||||
|
||||
Plug in $F_T$ to solve equilibrium in the $\hat{x}$ direction:
|
||||
$$F_e + \left( \frac{0.00196}{\sin(\beta)} \right)(-\cos(\beta)) = 0$$
|
||||
$$\therefore F_e = 0.00196 \cot(\beta)$$
|
||||
|
||||
### a) When $\varphi = 45^\circ$, solve for the charge, $q$:
|
||||
Since $\varphi = \frac{\pi}{4}$, $\alpha = \frac{\pi}{8}$, and $\beta = \frac{3\pi}{8}$.
|
||||
|
||||
Known:
|
||||
$$F_e = \frac{q^2}{16\pi\varepsilon_0\cos^2(\beta)}$$
|
||||
$$F_e = 0.00196\frac{\cos(\beta)}{\sin(\beta)}$$
|
||||
|
||||
Set equal:
|
||||
$$\frac{q^2}{16\pi\varepsilon_0\cos^2(\beta)} = 0.00196\cot(\beta)$$
|
||||
$$\therefore q^2 = 16\pi\varepsilon_0\frac{\cos^3(\beta)}{\sin(\beta)}$$
|
||||
|
||||
Plug in for $\beta$ and solve for $q$:
|
||||
$$q = \pm \sqrt{16\pi\varepsilon_0(0.00196)\frac{\cos^3\left(\frac{3\pi}{8}\right)}{\sin\left(\frac{3\pi}{8}\right)}} = \pm 2.300\times10^{-7}\text{C}$$
|
||||
|
||||
### b) When $q=0.5\mu\text{C}$, solve for the angle, $\varphi$:
|
||||
Known:
|
||||
$$F_e = \frac{q^2}{16\pi\varepsilon_0\cos^2(\beta)}$$
|
||||
$$F_e = 0.00196\frac{\cos(\beta)}{\sin(\beta)}$$
|
||||
|
||||
Set equal:
|
||||
$$\frac{q^2}{16\pi\varepsilon_0\cos^2(\beta)} = 0.00196\cot(\beta)$$
|
||||
|
||||
Plug in for $q$:
|
||||
$$\frac{(0.5\times 10^{-6})^2}{16\pi\varepsilon_0(0.00196)} = \frac{\cos^3(\beta)}{\sin(\beta)}$$
|
||||
$$\therefore \frac{\cos^3(\beta)}{\sin(\beta)} = 0.287$$
|
||||
$$\therefore \beta = 0.915$$
|
||||
Using $\beta$ to solve for $\varphi$:
|
||||
$$\alpha = \frac{\pi}{2} - \beta = 0.656$$
|
||||
$$\varphi = 2\alpha = 1.314 = 75.257^\circ$$
|
||||
|
||||
## 4
|
||||
The magnetic field, $\vec{B} = B_0(\hat{x} + 2\hat{y} - 4\hat{z})$ exists at a point. Find the electric field at that point if the force experienced by a test charge with velocity, $\vec{v} = v_0(3\hat{x} - \hat{y} + 2\hat{z})$ is $0$.
|
||||
|
||||
Lorentz Force Law:
|
||||
$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$$
|
||||
|
||||
Since $\vec{F}$ is $0$:
|
||||
$$0 = q\vec{E} + q\vec{v} \times \vec{B}$$
|
||||
$$\therefore q\vec{E} = -q\vec{v} \times \vec{B}$$
|
||||
$$\therefore \vec{E} = -\vec{v} \times \vec{B}$$
|
||||
|
||||
By the definition of the cross product:
|
||||
$$-\vec{v} \times \vec{B} = \vec{B} \times \vec{v}$$
|
||||
In terms of $\vec{E}$:
|
||||
$$\vec{E} = \vec{B} \times \vec{v} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ 1 & 2 & -4 \\ 3 & -1 & 2 \end{vmatrix} = -14\hat{y} - 7\hat{z}$$
|
||||
|
||||
## 5
|
||||
A circular loop with radius, $a$, exists in the x-y plane. If the loop is uniformly charged and has total charge, $Q$, determine the $\vec{E}$-field intensity at some point along the axis normal to the loop.
|
||||
|
||||
By Coulomb's Law:
|
||||
$$\vec{E} = \int \frac{dq}{4\pi\varepsilon_0 r^2}\hat{r}$$
|
||||
|
||||
Calling the distance along the normal axis $z$:
|
||||
$$r^2 = a^2 + z^2$$
|
||||
|
||||
Along a uniformly charged line, the charge, $dq$, at any given point is given by the equation:
|
||||
$$dq = \lambda dl$$
|
||||
Where:
|
||||
|
||||
$\lambda$ is the linear charge density
|
||||
|
||||
The linear charge density, $\lambda$ is defined as:
|
||||
$$\lambda = \frac{Q}{L}$$
|
||||
Where:
|
||||
|
||||
$Q$ is the total charge
|
||||
|
||||
$L$ is the total length
|
||||
|
||||
For a circular loop with radius, $a$, and total charge, $Q$:
|
||||
$$\lambda = \frac{Q}{2\pi a}$$
|
||||
$$dl = a d\varphi$$
|
||||
$$\therefore dq = \frac{Qd\varphi}{2\pi}$$
|
||||
|
||||
Plugging into Coulomb's Law:
|
||||
$$\vec{E} = \int\limits_{0}^{2\pi} \frac{Qd\varphi}{8\pi^2\varepsilon_0(a^2 + z^2)} \hat{r}$$
|
||||
$$\therefore \vec{E} = \frac{Q}{8\pi^2\varepsilon_0(a^2 + z^2)} \int\limits_{0}^{2\pi}\hat{r}d\varphi$$
|
||||
|
||||
Find $\hat{r}$ in terms of $\hat{x}$, $\hat{y}$, and $\hat{z}$:
|
||||
$$\hat{r} = \frac{\vec{a} + \vec{z}}{\sqrt{a^2 + z^2}}$$
|
||||
$$\vec{z} = z\hat{z}$$
|
||||
$$\vec{a} = a\cos{\varphi}\hat{x} + a\sin{\varphi}\hat{y}$$
|
||||
|
||||
Back to Coulomb's Law:
|
||||
$$\vec{E} = \frac{Q}{8\pi^2\varepsilon_0(a^2 + z^2)^{(3/2)}} \int\limits_{0}^{2\pi} (a\cos(\varphi)\hat{x} + a\sin(\varphi)\hat{y} + z\hat{z})d\varphi$$
|
||||
|
||||
By components:
|
||||
$$E_x = \frac{aQ}{8\pi^2\varepsilon_0(a^2 + z^2)^{3/2}} \int\limits_{0}^{2\pi} \cos(\varphi)d\varphi = 0$$
|
||||
$$E_y = \frac{aQ}{8\pi^2\varepsilon_0(a^2 + z^2)^{3/2}} \int\limits_{0}^{2\pi} \sin(\varphi)d\varphi = 0$$
|
||||
$$E_z = \frac{zQ}{8\pi^2\varepsilon_0(a^2 + z^2)^{3/2}} \int\limits_{0}^{2\pi} d\varphi = \frac{zQ}{4\pi\varepsilon_0(a^2 + z^2)^{3/2}}$$
|
||||
|
||||
Recombining:
|
||||
$$\vec{E} = \frac{zQ}{4\pi\varepsilon_0(a^2 + z^2)^{3/2}}\hat{z}$$
|
||||
|
||||
## 6
|
||||
Consider a circular ring in the x-y plane with inner radius, $a$, outer radius, $b$, and uniform charge density, $\rho_s$. Find an expression for the $\vec{E}$-field at a point at distance, $z$, along the axis normal to the ring.
|
||||
|
||||
By Coulomb's Law:
|
||||
$$d\vec{E} = \frac{dq}{4\pi\varepsilon_0 r^2}\hat{r}$$
|
||||
|
||||
Calling the radial distance, $\rho$:
|
||||
$$r^2 = \rho^2 + z^2$$
|
||||
|
||||
For surface charge densities:
|
||||
$$dq = \rho_s ds$$
|
||||
|
||||
In cylindrical coordinates:
|
||||
$$ds = \rho d\rho d\varphi$$
|
||||
|
||||
Plugging into Coulomb's Law:
|
||||
$$\vec{E} = \iint \frac{\rho_s \rho}{4\pi\varepsilon_0(\rho^2 + z^2)}\hat{r}d\rho d\varphi$$
|
||||
|
||||
$\hat{r}$ is defined as:
|
||||
$$\hat{r} = \frac{\vec{\rho} + \vec{z}}{\sqrt{\rho^2 + z^2}}$$
|
||||
Where:
|
||||
|
||||
$\vec{z} = z\hat{z}$
|
||||
|
||||
$\vec{\rho} = \rho\cos(\varphi)\hat{x} + \rho\sin(\varphi)\hat{y}$
|
||||
|
||||
Splitting $\hat{r}$ by components:
|
||||
$$\hat{r} = \frac{\rho\cos(\varphi)\hat{x} + \rho\sin(\varphi)\hat{y} + z\hat{z}}{\sqrt{\rho^2 + z^2}}$$
|
||||
|
||||
Back to Coulomb's Law:
|
||||
$$\vec{E} = \frac{\rho_s}{4\pi\varepsilon_0}\int\limits_{0}^{2\pi}\int\limits_{a}^{b} \frac{\rho^2\cos(\varphi)\hat{x} + \rho^2\sin(\varphi)\hat{y} + \rho z\hat{z}}{(\rho^2 + z^2)^{3/2}} d\rho d\varphi$$
|
||||
|
||||
By components:
|
||||
$$E_x = \frac{\rho_s}{4\pi\varepsilon_0}\int\limits_{0}^{2\pi}\int\limits_{a}^{b} \frac{\rho^2\cos(\varphi)}{(\rho^2 + z^2)^{3/2}} d\rho d\varphi = 0$$
|
||||
$$E_y = \frac{\rho_s}{4\pi\varepsilon_0}\int\limits_{0}^{2\pi}\int\limits_{a}^{b} \frac{\rho^2\sin(\varphi)}{(\rho^2 + z^2)^{3/2}} d\rho d\varphi = 0$$
|
||||
$$E_z = \frac{\rho_s}{4\pi\varepsilon_0}\int\limits_{0}^{2\pi}\int\limits_{a}^{b} \frac{\rho z}{(\rho^2 + z^2)^{3/2}} d\rho d\varphi = \frac{\rho_s z}{2\varepsilon_0} \left(\frac{1}{\sqrt{z^2 + a^2}} - \frac{1}{\sqrt{z^2 + b^2}}\right)$$
|
||||
|
||||
Recombining:
|
||||
$$\vec{E} = \frac{\rho_s z}{2 \varepsilon_0} \left( \frac{1}{\sqrt{z^2 + a^2}} - \frac{1}{\sqrt{z^2 + b^2}} \right) \hat{z}$$
|
||||
|
||||
## 7
|
||||
Consider two concentric cylindrical surfaces. The inner having radius, $a$, and charge density $\rho_s$, and the outer having radius, $b$, and charge density $-\rho_s$.
|
||||
|
||||
By Gauss's Law:
|
||||
$$\Phi_E = \frac{Q_{enc}}{\varepsilon_0} = \oint_S \vec{E} \cdot d\vec{A}$$
|
||||
|
||||
The $\vec{E}$-field for a cylindrical surface with radius, $\rho$, and length, $l$, is given by the equation:
|
||||
$$2\pi\rho l E = \frac{Q_{enc}}{\varepsilon_0}$$
|
||||
|
||||
### a) For $\rho < a$:
|
||||
$$Q_{enc} = 0$$
|
||||
$$\therefore E = 0$$
|
||||
|
||||
### b) For $a < \rho < b$:
|
||||
$$Q_{enc} = 2\pi a l\rho_s$$
|
||||
Where:
|
||||
|
||||
$l$ is the length of the section of the cylender.
|
||||
|
||||
$$2\pi\rho lE = \frac{2\pi a l \rho_s}{\varepsilon_0}$$
|
||||
$$\therefore E = \frac{a\rho_s}{\rho \varepsilon_0}$$
|
||||
|
||||
### c) For $\rho > b$:
|
||||
$$Q_{enc} = 2\pi l\rho_s(a-b)$$
|
||||
$$2\pi \rho l E = \frac{2\pi l \rho_s(a-b)}{\varepsilon_0}$$
|
||||
$$\therefore E = \frac{\rho_s (a-b)}{\rho \varepsilon_0}$$
|
||||
|
||||
## 8
|
||||
Consider an infinite slab of thickness, $d$, centered on the origin ($x=0$, $y=0$, $z=0$).
|
||||
|
||||
By Gauss's Law:
|
||||
$$\Phi_E = \frac{Q_{enc}}{\varepsilon_0} = \oint_S \vec{E} \cdot d\vec{A}$$
|
||||
|
||||
### a) Find the strength of the electric field inside the slab ($\lvert z \rvert < d/2$):
|
||||
$$Q_{enc} = \rho_v lwh$$
|
||||
$$\oint_S \vec{E} \cdot d\vec{A} = E(2lw + 2lh + 2wh)$$
|
||||
$$E = \frac{\rho_v lwh}{2\varepsilon_0(lw + lh + wh)}$$
|
||||
Where:
|
||||
|
||||
$l$ is the size of the x dimension of a Gaussian rectangular prism centered on the origin,
|
||||
|
||||
$w$ is the size of the y dimension of that rectangular prism,
|
||||
|
||||
$h$ is the size of the z dimension of that rectangular prism
|
||||
|
||||
### b) Find the strength of the electric field inside the slab ($\lvert z \rvert > d/2$):
|
||||
$$Q_{enc} = \frac{\rho_v lwd}{2}$$
|
||||
$$\oint_S \vec{E} \cdot d\vec{A} = E(2lw + 2lh + 2wh)$$
|
||||
$$E = \frac{\rho_v lwd}{4\varepsilon_0 (lw + lh + wh)}$$
|
||||
Where:
|
||||
|
||||
$l$ is the size of the x dimension of a Gaussian rectangular prism centered on the origin,
|
||||
|
||||
$w$ is the size of the y dimension of that rectangular prism,
|
||||
|
||||
$h$ is the size of the z dimension of that rectangular prism
|
BIN
5th-Semester-Fall-2023/EEMAGS/Homework/Homework-01.pdf
Normal file
145
5th-Semester-Fall-2023/EEMAGS/Homework/Homework-02.md
Normal file
@ -0,0 +1,145 @@
|
||||
# Homework 2 - Aidan Sharpe
|
||||
## 1
|
||||
Consider a long cylindrical wire of radius, $a$, carrying a current $I = I_0 \cos(\omega t)\hat{z}$.
|
||||
|
||||
### a)
|
||||
Write an expression for the magnetic field strength, $B$, outside the wire ($\rho > a$):
|
||||
|
||||
By Ampere's Law:
|
||||
$$\int \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$$
|
||||
|
||||
For a closed loop of radius, $\rho$:
|
||||
$$\int \vec{B} \cdot d\vec{l} = B(2\pi\rho)$$
|
||||
$$\therefore B(2\pi\rho) = \mu_0 I_{enc}$$
|
||||
|
||||
Since ($\rho > a$):
|
||||
$$I_{enc} = I = I_0 \cos(\omega t)$$
|
||||
|
||||
Recombining:
|
||||
$$B(2\pi\rho) = \mu_0 I_0 \cos(\omega t)$$
|
||||
$$\therefore B = {\mu_0 I_0 \cos(\omega t) \over 2\pi\rho} \text{[T]}$$
|
||||
|
||||
### b)
|
||||
Consider a rectangular loop a distance, $d$, from the wire with sidelengths $\alpha$ in the $\hat{x}$ direction, and $\beta$ in the $\hat{z}$ direction.
|
||||
|
||||
#### i)
|
||||
Calculate the magnetic flux, $\Phi_B$, through the loop.
|
||||
|
||||
By Gauss's Law for magnetism:
|
||||
$$\Phi_B = \iint \vec{B} \cdot d\vec{s}$$
|
||||
|
||||
Since the $\beta$ does not vary:
|
||||
$$\Phi_B = \beta \int\limits_{d}^{d+\alpha} {\mu_0 I_0 \cos(\omega t) \over 2\pi\rho} d\rho$$
|
||||
|
||||
Taking out constants:
|
||||
$$\Phi_B = {\beta \mu_0 I_0 \cos(\omega t) \over 2 \pi} \int\limits_d^{d+\alpha} {1 \over \rho}d\rho$$
|
||||
|
||||
Evaluate:
|
||||
$$\Phi_B = {\beta \mu_0 I_0 \cos(\omega t) \over 2\pi} \ln\left( {\lvert d + \alpha \rvert \over \lvert d \rvert} \right) \text{[Vs]}$$
|
||||
|
||||
#### ii)
|
||||
Find the induced EMF, $\cal{E}$:
|
||||
|
||||
$$\mathcal{E} = -{d \over dt}\Phi_B$$
|
||||
|
||||
Plug in:
|
||||
$$\mathcal{E} = -{d \over dt} {\beta \mu_0 I_0 \cos(\omega t) \over 2\pi} \ln\left({\lvert d + \alpha \rvert \over \lvert d \rvert}\right)$$
|
||||
|
||||
Evaluate:
|
||||
$$\mathcal{E} = {\beta \mu_0 I_0 \sin(\omega t) \over 2\pi} \ln\left({\lvert d + \alpha \rvert \over \lvert d \rvert}\right) \text{[V]}$$
|
||||
|
||||
## 2
|
||||
A quarter circle loop of wire with inner radius, $a$, and outer radius, $b$, has current, $I$. Find the magnetic field strength at the center of the circle.
|
||||
|
||||
By superposition:
|
||||
$$B = B_1 + B_2 + B_3 + B_4$$
|
||||
|
||||
By Ampere's law:
|
||||
$$\int \vec{B_1} \cdot d\vec{l} = \mu_0 I_{enc_1}$$
|
||||
$$\int \vec{B_2} \cdot d\vec{l} = \mu_0 I_{enc_2}$$
|
||||
$$\int \vec{B_3} \cdot d\vec{l} = \mu_0 I_{enc_3}$$
|
||||
$$\int \vec{B_4} \cdot d\vec{l} = \mu_0 I_{enc_4}$$
|
||||
|
||||
Since the current in the first and third segments are either parallel or antiparallel:
|
||||
$$I_{enc_1} = 0$$
|
||||
$$I_{enc_3} = 0$$
|
||||
|
||||
Since all of $I$ is enclosed in a loop from either segment two or four:
|
||||
$$I_{enc_2} = I_{enc_4} = I$$
|
||||
|
||||
Back to Ampere's Law:
|
||||
$$\int \vec{B_1} \cdot d\vec{l} = 0 \therefore B_1 = 0$$
|
||||
$$\int \vec{B_2} \cdot d\vec{l} = \mu_0 I$$
|
||||
$$\int \vec{B_3} \cdot d\vec{l} = 0 \therefore B_2 = 0$$
|
||||
$$\int \vec{B_4} \cdot d\vec{l} = \mu_0 I$$
|
||||
|
||||
Determining $d\vec{l}$ for segments two and four:
|
||||
$$\int \vec{B_2} \cdot \vec{a}d\varphi = \mu_0 I$$
|
||||
$$\int \vec{B_4} \cdot \vec{b}d\varphi = \mu_0 I$$
|
||||
|
||||
Determining the bounds:
|
||||
$$\int\limits_0^{\pi \over 2} \vec{B_2} \cdot \vec{a} d\varphi = \mu_0 I$$
|
||||
$$\int\limits^0_{\pi \over 2} \vec{B_4} \cdot \vec{b} d\varphi = \mu_0 I$$
|
||||
|
||||
Evaluate:
|
||||
$$B_2 \left({\pi a \over 2}\right) = \mu_0 I$$
|
||||
$$B_4 \left({-\pi b \over 2}\right) = \mu_0 I$$
|
||||
|
||||
Solve for $B$:
|
||||
$$B_2 = {2 \mu_0 I \over \pi a}$$
|
||||
$$B_4 = -{2 \mu_0 I \over \pi b}$$
|
||||
$$B = {2 \mu_0 I \over \pi a} - {2 \mu_0 I \over \pi b} = {2 \mu_0 I (a-b) \over \pi^2 a b} \text{[T]}$$
|
||||
|
||||
## 3
|
||||
Consider a cylinder of radius, $\rho_0 = 0.5\text{[m]}$, with a current density, $\vec{J} = 4.5e^{-2\rho}\hat{z}[A/m^2]$.
|
||||
|
||||
By Ampere's Law:
|
||||
$$\int \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$$
|
||||
|
||||
For a radial current density:
|
||||
$$I_{enc} = \int\limits_{0}^{2\pi} \int\limits_{0}^{\rho} J sdsd\varphi$$
|
||||
|
||||
Plugging in $J$ with $s$ as the integrating variable:
|
||||
$$I_{enc} = \int\limits_{0}^{2\pi} \int\limits_{0}^{\rho} 4.5e^{-2s} sdsd\varphi$$
|
||||
$$I_{enc} = 4.5\int\limits_{0}^{2\pi} \int\limits_{0}^{\rho} e^{-2s} sdsd\varphi$$
|
||||
$$I_{enc} = 4.5\int\limits_{0}^{2\pi} \left[ \left( {-\rho \over 2} - {1 \over 4}\right)e^{-2\rho} + {1 \over 4}\right]d\varphi$$
|
||||
$$\therefore I_{enc} = {9 \pi e^{-2\rho}(e^{2\rho} -2\rho -1) \over 4}$$
|
||||
|
||||
Back to Ampere's Law:
|
||||
$$\int \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$$
|
||||
|
||||
For a circular loop:
|
||||
$$\int\limits_{0}^{2\pi} B\rho d\varphi = \mu_0 I_{enc}$$
|
||||
$$B(2\pi\rho) = {9 \pi e^{-2\rho}(e^{2\rho} -2\rho -1) \over 4}$$
|
||||
|
||||
For $\rho \le \rho_0$
|
||||
$$B = {9 e^{-2\rho}(e^{2\rho} -2\rho -1) \over 8\rho}$$
|
||||
|
||||
For $\rho \ge \rho_0$:
|
||||
$$I_{enc} = 4.5\int\limits_{0}^{2\pi} \int\limits_{0}^{\rho_0} e^{-2s} sdsd\varphi = {9 (e-2) \pi \over 4 e}$$
|
||||
|
||||
$$B(2\pi\rho) = {9(e-2)\pi \over 4e}$$
|
||||
$$\therefore B = {9(e-2) \over 8e\rho}\text{[T]}$$
|
||||
|
||||
## 4
|
||||
Consider a solenoidal wire with $n$ coils per unit length. The core becomes magnetized when a current $I=10[A]$ is put into the wire coil, and this causes a bound current to flow around the cylindrical surface of the core as shown in the side view diagram. This bound core surface current density has magnitude, $J = 20n [A/m]$
|
||||
|
||||
$$B = B_s + B_c$$
|
||||
$$B_s = \mu_0 I n = 10\mu_0n$$
|
||||
Pretend the core current is just another solenoid:
|
||||
$$B_c = \mu_0 I n = 20\mu_0n$$
|
||||
$$B = 30\mu_0 n \text{[T]}$$
|
||||
|
||||
## 5
|
||||
A satellite travelling at $5\text{[km/s]}$ enters a current filled curtain. From $t=1\text{[s]}$ to $t=3\text{[s]}$, the satellite's magnetometer increases from $-95\hat{x}\text{[nT]}$ to $95\hat{x}\text{[nT]}$. If the current flows in the $\hat{z}$ direction, find the current density, $J$.
|
||||
|
||||
By Ampere's Law:
|
||||
$$\int \vec{B} \cdot d\vec{l} = \mu_0 \iint \vec{J} \cdot d\vec{s}$$
|
||||
|
||||
The total increase in $B$ is $195 \text{[nT]}$, so:
|
||||
$$195 \times 10^{-9} = \mu_0 \iint \vec{J} \cdot d\vec{s}$$
|
||||
|
||||
Plug in bounds to get the total distance through the curtain:
|
||||
$$195 \times 10^{-9} = \mu_0 \int\limits_{1}^{3} \int\limits_{0}^{-5000} J dvdt$$
|
||||
$$195 \times 10^{-9} = -10000J\mu_0$$
|
||||
$$J = {-195 \times 10^{-13} \over \mu_0} \text{[A/m}]$$
|
BIN
5th-Semester-Fall-2023/EEMAGS/Homework/Homework-02.pdf
Normal file
134
5th-Semester-Fall-2023/EEMAGS/Homework/Homework-03.md
Normal file
@ -0,0 +1,134 @@
|
||||
# Homework 3 - Aidan Sharpe
|
||||
|
||||
## 1
|
||||
An particle with charge $-e$ has velocity $\vec{v} = -v\hat{y}$. An electric acts in the $\hat{x}$ direction. What direction must a $\vec{B}$ field act for the net force on the particle to be 0?
|
||||
|
||||
$$\vec{F}_{net} = \vec{F}_E + \vec{F}_B = 0$$
|
||||
$$\therefore \vec{F}_B = -\vec{F}_E$$
|
||||
$$\vec{F}_E = q\vec{E} = (-)(\hat{x}) = -\hat{x}$$
|
||||
$$\vec{F}_B = q\vec{v} \times \vec{B}$$
|
||||
$$(-)\begin{vmatrix}
|
||||
\hat{x} & \hat{y} & \hat{z} \\
|
||||
0 & (-) & 0 \\
|
||||
B_x & B_y & B_z \\
|
||||
\end{vmatrix} \overset{!}{=} \hat{x}$$
|
||||
$$-[(-B_z)\hat{x} - (0)\hat{y} + (0-(-)B_x)\hat{z})] \overset{!}{=} \hat{x}$$
|
||||
$$\therefore \hat{a}_B = \hat{z}$$
|
||||
|
||||
## 2
|
||||
Consider a plane wave in free space with electromagnetic field intensity:
|
||||
$$\hat{E}e^{j\omega t} = 30\pi e^{j(10^8t + \beta z)}\hat{x}$$
|
||||
$$\hat{H}e^{j\omega t} = H_m e^{j(10^8t + \beta z)}\hat{y}$$
|
||||
|
||||
Find the direction of propagation and the values for $H_m$, $\beta$, and the wavelength.
|
||||
|
||||
Since $\beta z$ is added to $\omega t$, propagation is in the $-\hat{z}$ direction.
|
||||
|
||||
$${E_x \over H_y} = \mu_0 c$$
|
||||
$$E_x = 30\pi$$
|
||||
$$H_y = H_m$$
|
||||
$$\therefore H_m = {30\pi \over \mu_0 c}$$
|
||||
$$\boxed{H_m = 0.25}$$
|
||||
|
||||
$$\beta = \omega \sqrt{\mu \varepsilon}$$
|
||||
For free space:
|
||||
$$\beta = \omega \sqrt{\mu_0 \varepsilon_0}$$
|
||||
$$\omega = 10^8$$
|
||||
$$\boxed{\beta = 0.334}$$
|
||||
$$\lambda = {c \over f}$$
|
||||
$$f = {\omega \over 2\pi} = {5 \over \pi} \times 10^7$$
|
||||
$$\lambda = {3 \times 10^8 \over {5 \over \pi} \times 10^7} = {30\pi \over 5}$$
|
||||
$$\boxed{\lambda = 6\pi\text{[m]}}$$
|
||||
|
||||
## 3
|
||||
A uniform electric field has intensity:
|
||||
$$\vec{E} = 15\cos\left(\pi \times 10^8t +{\pi \over 3}z\right)\hat{y}$$
|
||||
|
||||
The $\vec{E}$ field is polarized in the $\hat{y}$ direction.
|
||||
|
||||
The wave will propagate in the $-\hat{z}$ direction.
|
||||
|
||||
$$f = {\pi \times 10^8 \over 2\pi} = 5 \times 10^7 \text{[s}^{-1}]$$
|
||||
|
||||
$$\lambda = {3 \times 10^8 \over 5 \times 10^7} = 6 \text{[m]}$$
|
||||
|
||||
$$H_x = {15 \over \mu_0 c} = 0.0398$$
|
||||
|
||||
$$\vec{H} = 0.0398\cos\left(\pi \times 10^8 t + {\pi \over 3}z\right)\hat{x}$$
|
||||
|
||||
## 4
|
||||
### a)
|
||||
The properties of a uniform basic plane wave in free space are:
|
||||
|
||||
Polarization, amplitude, angular frequency, and the direction of propagation. All other properties, such as wavelength, and the spatial frequency, $\beta$, can be derrived.
|
||||
|
||||
### b)
|
||||
A uniform plane wave in free space is propagating in the $\hat{z}$ direction. If the wavelength is $\lambda = 3$[cm].
|
||||
|
||||
$$f = {c \over \lambda} = {3 \times 10^8 \over 3 \times 10^{-2}} = 10^{10}\text{[s}^{-1}]$$
|
||||
$$\beta = 2\pi f \sqrt{\mu_0 \varepsilon_0} = 209.613$$
|
||||
|
||||
The amplitude of the x-polarized $\vec{E}$-field is:
|
||||
$$\hat{E}_m = 200e^{j {\pi \over 4}}$$
|
||||
|
||||
Real-time $\vec{E}$-field:
|
||||
$$\vec{E}(z, t) = 200\cos\left(2\pi \times 10^{10}t - 209.613z + {\pi \over 4}\right)\hat{x}$$
|
||||
|
||||
Phasor $\vec{H}$-field:
|
||||
$$\hat{H} = 0.53e^{j({\pi \over 4} - 209.613z)}\hat{y}$$
|
||||
|
||||
Real-time $\vec{H}$-field:
|
||||
$$\vec{H}(z, t) = 0.53\cos\left(2\pi \times 10^{10}t - 209.613z + {\pi \over 4}\right)\hat{y}$$
|
||||
|
||||
## 5
|
||||
A 25[cm] by 25[cm] circuit in the y-z plane grows in the $\hat{y}$ direction by 10[m/s]. The circuit contains a 5-ohm resitor. Find the current through the circuit if it is placed in a uniform $\vec{B}$ field of $-0.5\hat{x}$[T].
|
||||
|
||||
By Ohms law:
|
||||
$$V = IR$$
|
||||
$$\mathcal{E} = -{d \over dt} \int \vec{B} \cdot d\vec{s}$$
|
||||
$$\mathcal{E} = -{d B A(t) \over dt}$$
|
||||
$$B A(t) = -0.5 \times 0.25(0.25 + 10t) = -1.25t - 0.03125$$
|
||||
$$\mathcal{E} = -{d B A(t) \over dt} = 1.25 \text{[V]}$$
|
||||
$$I = {V \over R} = 250\text{[mA]}$$
|
||||
|
||||
Since the magnetic flux inside the loop is increasing, and the magnetic field induced by the current must counteract the magnetic field inducing the current, the current must flow counter-clockwise around the loop.
|
||||
|
||||
## 6
|
||||
### a)
|
||||
```matlab
|
||||
clear all;
|
||||
k = 9e9;
|
||||
q1 = 1.0e-6;
|
||||
q2 = 1.0e-6;
|
||||
ax = 1.0;
|
||||
ay = 0;
|
||||
bx = -1.0;
|
||||
by = 0;
|
||||
|
||||
[X, Y] = meshgrid(-2:0.9:2,-2:0.9:2);
|
||||
|
||||
V = 1./sqrt((X - ax).^2 + (Y-ay).^2 ) * k * q1 + 1./sqrt((X-bx).^2 + (Y-by).^2) * k * q2;
|
||||
|
||||
surfc(X, Y, V);
|
||||
|
||||
[Ex, Ey] = gradient(-V, 0.2, 0.2);
|
||||
figure
|
||||
contour(X, Y, V);
|
||||
|
||||
hold on;
|
||||
quiver(X, Y, Ex, Ey);
|
||||
```
|
||||
|
||||

|
||||
|
||||
### b)
|
||||
|
||||

|
||||
|
||||
### c)
|
||||
```matlab
|
||||
% Removed the negative sign on q2
|
||||
q1 = 1.0e-6;
|
||||
q2 = 1.0e-6;
|
||||
```
|
||||

|
BIN
5th-Semester-Fall-2023/EEMAGS/Homework/Homework-03.pdf
Normal file
BIN
5th-Semester-Fall-2023/EEMAGS/Homework/Homework-04-Plot.jpg
Normal file
After Width: | Height: | Size: 252 KiB |
142
5th-Semester-Fall-2023/EEMAGS/Homework/Homework-05.md
Normal file
@ -0,0 +1,142 @@
|
||||
# Homework 5 - Aidan Sharpe
|
||||
|
||||
## 1
|
||||
A nonuniform time-varying electric field given in the cylindrical coordinates by:
|
||||
$$\vec{E} = \left(3\rho^2 \cot(\varphi) \hat{\rho} + {\cos(\varphi) \over \rho}\hat{\varphi}\right) \sin(3 \times 10^8t) [\text{V/m}]$$
|
||||
|
||||
The field is applied to the following homogeneous, isotropic dielectric materials:
|
||||
1. Teflon
|
||||
- $\mu_r = 1$
|
||||
- $\varepsilon_r = 2.1$
|
||||
- $\sigma = 0$
|
||||
1. Glass
|
||||
- $\mu_r = 1$
|
||||
- $\varepsilon_r = 6.3$
|
||||
- $\sigma = 0$
|
||||
1. Sea Water
|
||||
- $\mu_r = 1$
|
||||
- $\varepsilon_r = 81$
|
||||
- $\sigma = 4$[S/m]
|
||||
|
||||
### a)
|
||||
Find the polarization vector, the polarization current density, and the polarization charge density for each material.
|
||||
|
||||
$$\vec{P} = \varepsilon_0 \chi_e \vec{E}$$
|
||||
$$\chi_e = \varepsilon_r - 1$$
|
||||
$$\vec{J}_p = {\partial \over \partial t} \vec{P}$$
|
||||
$$\rho_p = - \nabla \cdot \vec{P}$$
|
||||
|
||||
In cylindrical coordinates:
|
||||
$$\nabla = {1\over\rho}{\partial (\rho A_\rho) \over \partial \rho} + {1\over\rho}{\partial A_\varphi \over \partial \varphi} + {\partial A_z \over \partial z}$$
|
||||
|
||||
For teflon:
|
||||
$$\vec{P} = \varepsilon_0 (2.1 - 1) \left(9\rho^2 \cot(\varphi) \hat{\rho} + {\cos(\varphi) \over \rho^2}\hat{\varphi}\right) \sin(3 \times 10^8t)$$
|
||||
$$\vec{J}_p = (3\times10^8)\varepsilon_0 (2.1 -1)\left(9\rho^2 \cot(\varphi) \hat{\rho} + {\cos(\varphi) \over \rho^2}\hat{\varphi}\right) \cos(3 \times 10^8t)$$
|
||||
$$\nabla \cdot \vec{P} = 1.1 \varepsilon_0 \sin(3\times10^8t)\left[{\partial \over \partial \rho} 9\rho^2\cot(\varphi) + {\partial \over \partial \varphi} {1\over\rho^2}\cos(\varphi)\right]$$
|
||||
$$\rho_p = 1.1 \varepsilon_0 \sin(3 \times 10^8) \left[-18 \rho \cot(\varphi) + {1\over\rho^2} \sin(\varphi)\right]$$
|
||||
|
||||
|
||||
For glass:
|
||||
$$\vec{P} = \varepsilon_0(6.3 - 1) \left(9\rho^2 \cot(\varphi) \hat{\rho} + {\cos(\varphi) \over \rho^2}\hat{\varphi}\right) \sin(3 \times 10^8t)$$
|
||||
$$\vec{J}_p = (3\times10^8)\varepsilon_0 (6.3 -1)\left(9\rho^2 \cot(\varphi) \hat{\rho} + {\cos(\varphi) \over \rho^2}\hat{\varphi}\right) \cos(3 \times 10^8t)$$
|
||||
$$\nabla \cdot \vec{P} = 5.3 \varepsilon_0 \sin(9\times10^8t)\left[{\partial \over \partial \rho} 9\rho^2\cot(\varphi) + {\partial \over \partial \varphi} {1\over\rho^2}\cos(\varphi)\right]$$
|
||||
$$\rho_p = 5.3 \varepsilon_0 \sin(9 \times 10^8) \left[-18 \rho \cot(\varphi) + {1\over\rho^2} \sin(\varphi)\right]$$
|
||||
|
||||
For sea water:
|
||||
$$\vec{P} = \varepsilon_0(81 - 1) \left(9\rho^2 \cot(\varphi) \hat{\rho} + {\cos(\varphi) \over \rho^2}\hat{\varphi}\right) \sin(3 \times 10^8t)$$
|
||||
$$\vec{J}_p = (3\times10^8)\varepsilon_0 (81 -1)\left(9\rho^2 \cot(\varphi) \hat{\rho} + {\cos(\varphi) \over \rho^2}\hat{\varphi}\right) \cos(3 \times 10^8t)$$
|
||||
$$\nabla \cdot \vec{P} = 80 \varepsilon_0 \sin(3\times10^8t)\left[{\partial \over \partial \rho} 9\rho^2\cot(\varphi) + {\partial \over \partial \varphi} {1\over\rho^2}\cos(\varphi)\right]$$
|
||||
$$\rho_p = 80 \varepsilon_0 \sin(3 \times 10^8) \left[-18 \rho \cot(\varphi) + {1\over\rho^2} \sin(\varphi)\right]$$
|
||||
|
||||
### b)
|
||||
Find the ratio of the conduction to the displacement currents in the sea water.
|
||||
|
||||
$${4 \over J_p} = {1 \over (6\times10^9) \varepsilon_0\left(9\rho^2 \cot(\varphi) \hat{\rho} + {\cos(\varphi) \over \rho^2}\hat{\varphi}\right) \cos(3 \times 10^8t)}$$
|
||||
|
||||
**NOTE**: I am unsure why the book seems to be taking a slightly different approach to finding $\rho_p$. In the example we did in class, I was also off by a factor of three, so I am likely missing something here. The example we did in class was:
|
||||
$$\vec{P} = k\vec{r} = kr\hat{r}$$ Taking the negative of the dot product with $\nabla = {\partial \over \partial r} \hat{r}$ gives me $-k$ and not $-3k$, as you got. ## 2
|
||||
Three coaxial cylinders separated by two different dielectric are charged as follows:
|
||||
- The inner cylinder of radius $a$ has a positive linear charge density $\rho_{l1}$[C/m].
|
||||
- The middle cylinder of radius $b$ is grounded
|
||||
- The outer cylinder of radius $c$ has negative linear charge density $-\rho_{l2}$[C/m]
|
||||
|
||||
### a)
|
||||
Determine and draw sketches showing the variation of electric flux density and the electric field intensity between the cylinders and outside them.
|
||||
|
||||
For the inner cylinder, the electric field inside is 0, and the flux through a cylindrical surface with length, $z$, and radius, $\rho$, enclosing the cylinder is given by Gauss's law:
|
||||
$$\Phi_E = {Q_\text{enc} \over \varepsilon_0 \varepsilon_r} = {\rho_{l_1} z \over \varepsilon_0 \varepsilon_1} = \int \vec{E} \cdot d\vec{s}$$
|
||||
|
||||
By inspection, the electric field strength through the label of the cylinder is uniform, so the surface integral of the electric field evaluates to:
|
||||
$$E 2\pi \rho z$$
|
||||
|
||||
Solving for the $E$-field strength at the surface yields
|
||||
$$E = {\rho_{l_1} \over 2 \pi \rho \varepsilon_0 \varepsilon_1} : \{a < \rho < b\}$$
|
||||
|
||||
Since the middle cylinder is grounded the electric field is defined to be zero at and around its extent.
|
||||
$$E = 0 : \{b \le \rho \le c\}$$
|
||||
|
||||
Outside the large cylinder, more charge is added, this time $-\rho_{l_2}$. The total electric field here is:
|
||||
$$E = {- \rho_{l_2} \over 2 \pi \rho \varepsilon_0} : \{\rho > c\}$$
|
||||
|
||||
The total electric field strength at a distance, $\rho$ is given by the piecewise function:
|
||||
$$E(\rho) = \begin{cases} {\rho_{l1} \over 2 \pi \rho \varepsilon_0 \varepsilon_1} & a < \rho < b \\ 0 & b \le \rho < c \\ {- \rho_{l_2} \over 2 \pi \rho \varepsilon_0} & \rho > c \\ \end{cases}$$
|
||||
|
||||
Using some dummy values to plot the field strength. $\rho_{l1} = 1.5$, $\rho_{l2} = 1.3$, $\varepsilon_0 =1$, $a=1$, $b=2$, $c=3$, $\varepsilon_1 = 1.2$, $\varepsilon_2 = 1.4$.
|
||||
$$E(\rho) = \begin{cases} {\rho_{l1} \over 2 \pi \rho \varepsilon_0 \varepsilon_1} & a < \rho < b \\ 0 & b \le \rho < c \\ {-\rho_{l_2} \over 2 \pi \rho \varepsilon_0} & \rho > c \\ \end{cases}$$
|
||||
|
||||
### b)
|
||||
Determine the induced surface charge on the middle conductor.
|
||||
$$\sigma(2 \pi b z) = -\rho_{l_1} z$$
|
||||
$$\therefore \sigma = -{\rho_{l_1} \over 2\pi b}$$
|
||||
|
||||
## 3
|
||||
An $N$ turn toroid of rectangular cross section consists of 3 regions. Region 1 with relative permeability $\mu_{r_1} = 3000$, region 2 with $\mu_{r_2} = 1 + 2/\rho$, region 3 is air.
|
||||
|
||||
### a)
|
||||
Find the magnetic field intensity, $\vec{H}$, the magnetic flux density, $\vec{B}$, and the magnetization, $\vec{M}$ in each of the three regions.
|
||||
|
||||
Region 1:
|
||||
$$M_1 = (3000 -1) {N I \over 2\pi \rho} = {2998 N I \over 2\pi \rho}\hat{\varphi}$$
|
||||
$$H_1 = {N_I \over 2\pi \rho}$$
|
||||
$$B_1 = \mu_0{3000 N I \over 2\pi \rho} = {1500 N I \mu_0 \over \rho}\hat{\varphi}$$
|
||||
|
||||
Region 2:
|
||||
$$M_2 = {2\over \rho}{N I \over 2\pi \rho} = {NI \over 2\pi \rho^2}\hat{\varphi}$$
|
||||
$$H_2 = {N_I \over 2\pi \rho}$$
|
||||
$$B_2 = \mu_0\left(1 + {2\over\rho}\right){N I \over 2\pi \rho}\hat{\varphi}$$
|
||||
|
||||
Region 3:
|
||||
$$M_3 = 0\hat{\varphi}$$
|
||||
$$H_3 = {N_I \over 2\pi \rho}$$
|
||||
$$B_3 = \mu_0{N I \over 2\pi \rho}\hat{\varphi}$$
|
||||
|
||||
### b)
|
||||
Find the magnetization current density in region 2:
|
||||
$$J_m = \nabla \times \vec{H} = {1\over\rho}{\partial \vec{H} \over \partial \rho} = -{NI \over \pi\rho^3}$$
|
||||
|
||||
## 4
|
||||
A uniform plane wave is travelling in a medium in the $\hat{x}$ direction. $\lambda = 25$[cm], $v_p= 2 \times 10^8$[m/s], and $\hat{E}$ is polarized in the $\hat{z}$ direction.
|
||||
|
||||
### a)
|
||||
Find the frequency of the wave and $\varepsilon_r$:
|
||||
$$\lambda = {v_p \over f} \therefore f = {v_p \over \lambda} = 8 \times 10^9[\text{s}^{-1}]$$
|
||||
|
||||
$$v_p = {1 \over \sqrt{\mu \varepsilon}}$$
|
||||
$$\mu = \mu_0$$
|
||||
$$\varepsilon = \varepsilon_0 \varepsilon_r$$
|
||||
$$\therefore \varepsilon_r = {1 \over \mu_0 \varepsilon_0 v_p^2} = 2.246$$
|
||||
|
||||
### b)
|
||||
$$\lambda = {2\pi \over \beta} \therefore \beta = 8\pi$$
|
||||
$$\hat{E} = 50e^{j(16\pi \times 10^9-8\pi x)}\hat{z}$$
|
||||
$$\hat{H} = -0.1989e^{j(16\pi \times 10^9 - 8\pi x)} \hat{y}$$
|
||||
|
||||
## 5
|
||||
An electromagnetic plane wave of frequency $f$ is given by:
|
||||
$$\omega = 2\pi f$$
|
||||
$$\hat{E} = E_0e^{j\omega t - \beta z)}\hat{x}$$
|
||||
$$\hat{H} = {E_0 \over \eta} \cos(\omega t - \beta z)\hat{y}$$
|
||||
|
||||
$$\mathcal{E} = -{d\over dt}\mu \int_s \vec{H} \cdot d\vec{s}$$
|
||||
$$\mathcal{E} = \mu {E_0 \over \eta} 2\pi\omega \sin(\omega t - \beta z) = \mu {E_0 \over \eta} 2\pi\omega e^{j(\omega t - \beta z - {\pi \over 2})}$$
|
||||
|
BIN
5th-Semester-Fall-2023/EEMAGS/Homework/Homework-05.pdf
Normal file
131
5th-Semester-Fall-2023/EEMAGS/Homework/Homework-06.md
Normal file
@ -0,0 +1,131 @@
|
||||
# Homework 6 - Aidan Sharpe
|
||||
## Exercise 1
|
||||
Consider a solenoid containing two coaxial magnetic rods of radii $a$ and $b$ and permeabilities $\mu_1 = 2\mu_0$ and $\mu_2 = 3\mu_0$. If the solenoid has $n$ turns every $d$ meters along the axis and carries a steady current, $I$.
|
||||
|
||||
### a)
|
||||
Find $\vec{H}$ inside the first rod, between the first and second rod, and outside the second rod.
|
||||
|
||||
For a solenoid regardless of magnetic materials:
|
||||
$$\vec{H} = {I n \over d}\hat{z}$$
|
||||
So for all regions:
|
||||
$$\vec{H} = {I n \over d}\hat{z}$$
|
||||
|
||||
### b)
|
||||
Find $\vec{B}$ inside the three regions.
|
||||
|
||||
$\vec{B}$ relies on magnetic material properties:
|
||||
$$\vec{B} = \mu \vec{H}$$
|
||||
|
||||
Therefore:
|
||||
$$\vec{B} = \begin{cases} 2\mu_0\vec{H} & \text{In region 1}\\ 3\mu_0\vec{H} & \text{In region 2}\\ \mu_0\vec{H} & \text{In region 3} \end{cases}$$
|
||||
|
||||
### c)
|
||||
$\vec{M}$ in each region:
|
||||
|
||||
By definition:
|
||||
$$\vec{M} = \chi_m \vec{H}$$
|
||||
$$\chi_m = \mu_r - 1$$
|
||||
Therefore:
|
||||
$$\vec{M} = \begin{cases} \vec{H} & \text{In region 1} \\ 2\vec{H} & \text{In region 2} \\ 0 & \text{In region 3} \end{cases}$$
|
||||
|
||||
### d)
|
||||
$\vec{J}$ in each region:
|
||||
|
||||
By definition:
|
||||
$$\vec{J}_m = \nabla \times \vec{M}$$
|
||||
|
||||
Since $\vec{M}$ is both conservative and solenoidal inside the solenoid, for all three regions:
|
||||
$$\vec{J}_m = 0$$
|
||||
|
||||
## Exercise 2
|
||||
In a nonmagnetic medium:
|
||||
$$E = 4\sin(2\pi \times 10^7 t - 0.8x)\hat{z}$$
|
||||
|
||||
### a)
|
||||
Find $\varepsilon_r$ and $\eta$:
|
||||
|
||||
The general form:
|
||||
$$\vec{E}(x,t) = E_0\cos(\omega t -\beta x)\hat{z}$$
|
||||
$$\beta = \omega \sqrt{\mu \varepsilon} = 0.8$$
|
||||
$$0.8 = 2\pi\times10^7 \sqrt{\mu_0 \varepsilon_0 \varepsilon_r}$$
|
||||
$${{\left(0.8 \over 2\pi\times10^7\right)^2} \over \mu_0 \varepsilon_0} = \varepsilon_r$$
|
||||
$$\boxed{\varepsilon_r = 14.566}$$
|
||||
$$\eta = \sqrt{\mu \over \varepsilon} = \sqrt{\mu_0 \over \varepsilon_0 \varepsilon_r}$$
|
||||
$$\boxed{\eta = 98.275}$$
|
||||
|
||||
### b)
|
||||
Find the average poynting vector
|
||||
$$\vec{P}_\text{avg} = {E_0^2 \over 2 \eta}\hat{x} = {4^2 \over 2(98.275)}$$
|
||||
$$\vec{P}_\text{avg} = 0.081$$
|
||||
|
||||
## Exercise 3
|
||||
$$E = 3\sin(2\pi\times10^7t - 0.4\pi x)\hat{y} + 4\sin(2\pi\times10^7t - 0.4\pi x)\hat{z}$$
|
||||
|
||||
### b)
|
||||
$$\varepsilon_r = {\left({\beta \over \omega}\right)^2 \over \mu_0 \varepsilon_0} = {\left({0.4\pi\over 2\pi\times10^7}\right)^2 \over \mu_0 \varepsilon_0}$$
|
||||
$$\boxed{\varepsilon_r = 35.941}$$
|
||||
|
||||
### a)
|
||||
$$\lambda = {v_p \over f}$$
|
||||
$$v_p = {1 \over \sqrt{\mu \varepsilon}} = {1 \over \sqrt{\mu_0 \varepsilon_0 \varepsilon_r}} = 5\times10^7$$
|
||||
$$f = {\omega \over 2\pi} = 10^7$$
|
||||
$$\boxed{\lambda = 5\text{[m]}}$$
|
||||
|
||||
### c)
|
||||
$$H = {E_0 \over \eta}\sin(\omega t - \beta x)\hat{z} + {E_0' \over \eta}\sin(\omega t - \beta x)\hat{y}$$
|
||||
|
||||
$$\eta = \sqrt{\mu_0 \over \varepsilon_0 \varepsilon_r} = 62.85$$
|
||||
$$\boxed{H = 0.0477\sin(2\pi\times10^7t - 0.4\pi x)\hat{z} + 0.0636\sin(2\pi\times10^7t -0.4\pi x)\hat{y}}$$
|
||||
|
||||
## Exercise 4
|
||||
Prove that:
|
||||
$$\hat{H}_y = - {\hat{E}_x \over \eta_0}$$
|
||||
|
||||
Starting with a genering electric plane wave in the $-\hat{z}$ direction:
|
||||
$$\vec{E}(z, t) = E_0 \cos(\omega t + \beta_0 z)\hat{x}$$
|
||||
|
||||
We will use Faraday's Law of Induction to convert a measure in the $\vec{E}$-field to a value for the $\vec{B}$-field:
|
||||
$$\nabla \times \vec{E} = -{\partial \over \partial t}\vec{B}$$
|
||||
|
||||
Converting from $\vec{B}$ to $\vec{H}$:
|
||||
$$\nabla \times \vec{E} = -\mu{\partial \over \partial t} \vec{H}$$
|
||||
|
||||
Assuming free space:
|
||||
$$\mu = \mu_0$$
|
||||
|
||||
This gives the final form for Faraday's Law:
|
||||
$$\nabla \times \vec{E} = -\mu_0 {\partial \over \partial t} \vec{H}$$
|
||||
|
||||
Evaluating the curl of $\vec{E}$:
|
||||
$$\nabla \times \vec{E} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ {\partial \over \partial x} & {\partial \over \partial y} & {\partial \over \partial z} \\ \|\vec{E}\| & 0 & 0 \end{vmatrix} = {\partial \over \partial z}\|\vec{E}\|\hat{y} - {\partial \over \partial y}\|\vec{E}\|\hat{z}$$
|
||||
|
||||
Since $\vec{E}$ only varies with respect to $z$ and $t$ this can be rewritten as:
|
||||
$$\nabla \times \vec{E} = {\partial \over \partial{z}}\|\vec{E}\|\hat{y}$$
|
||||
|
||||
Evaluate the partial derivative:
|
||||
$$\nabla \times \vec{E} = -E_0\beta_0\sin(\omega t + \beta_0 z)\hat{y}$$
|
||||
|
||||
Back to Faraday's Law:
|
||||
$$-E_0\beta_0\sin(\omega t + \beta_0 z)\hat{y} = -\mu_0{\partial \over \partial t} \vec{H}$$
|
||||
|
||||
Divide out by $-\mu_0$:
|
||||
$${\partial \over \partial t}\vec{H} = {E_0 \beta_0 \over \mu_0}\sin(\omega t + \beta_0 z)\hat{y}$$
|
||||
|
||||
Expand out $\beta_0$:
|
||||
$$\beta_0 = \omega \sqrt{\mu_0 \varepsilon_0}$$
|
||||
$${\partial \over \partial t}\vec{H} = {E_0 \omega \sqrt{\mu_0 \varepsilon_0} \over \mu_0}\sin(\omega t + \beta_0 z)dt\hat{y}$$
|
||||
|
||||
Integrate both sides with respect to $t$:
|
||||
$$\vec{H}(z,t) = {E_0 \omega \sqrt{\mu_0 \varepsilon_0} \over \mu_0}\int\sin(\omega t + \beta_0 z)dt \hat{y}$$
|
||||
|
||||
Evaluate the integral:
|
||||
$$\vec{H}(z,t) = -{E_0 \omega \sqrt{\mu_0 \varepsilon_0} \over \mu_0 \omega} \cos(\omega t + \beta_0 z)\hat{y}$$
|
||||
|
||||
Simplifying the fraction:
|
||||
$$\vec{H}(z,t) = -E_0 \sqrt{\varepsilon_0 \over \mu_0} \cos(\omega t + \beta_0 z)\hat{y}$$
|
||||
|
||||
Using the definition of $\eta_0$:
|
||||
$$\eta_0 = \sqrt{\mu_0 \over \varepsilon_0}$$
|
||||
$$\vec{H}(z,t) = -{E_0 \over \eta_0}\cos(\omega t + \beta z)\hat{y}$$
|
||||
|
||||
$$\therefore \vec{H}(z,t) = -{\|\vec{E}(z,t)\| \over \eta_0}\hat{y}$$
|
BIN
5th-Semester-Fall-2023/EEMAGS/Homework/Homework-06.pdf
Normal file
121
5th-Semester-Fall-2023/EEMAGS/Homework/Homework-08.md
Normal file
@ -0,0 +1,121 @@
|
||||
# Homework 8 - Aidan Sharpe
|
||||
|
||||
## 1
|
||||
A transmission line is terminated with a matched 50$\Omega$ load. The transmitter puts out 100W of power, and the transmission line is 100ft long. What for what value of $\alpha$ will the power loss be 10W over the length of the line?
|
||||
|
||||
$$\alpha = {\ln\left({P_\text{in} \over P_\text{out}}\right) \over l} = {\ln\left({100 \over 90}\right) \over 30.48[\text{m}]} = 0.00345671\left[{\text{np} \over \text{m}}\right]$$
|
||||
|
||||
## 2
|
||||
Evaluate the phase velocity and attenuation constant for a distorionless line, and compare it to a lossless line.
|
||||
|
||||
$$\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}$$
|
||||
$$\gamma ^2 = (R + j\omega L)(G + j\omega C)$$
|
||||
$$\gamma^2 = \omega^2 LC(j + {R \over \omega L})(j + {G \over \omega C})$$
|
||||
|
||||
For a distorionless line:
|
||||
$${R \over L} = {G \over C}$$
|
||||
$$(j + {R \over \omega L}) = (j + {G \over \omega C})$$
|
||||
So $\gamma^2$ becomes:
|
||||
$$\gamma^2 = \omega^2 L C (j + {R \over \omega L})^2$$
|
||||
Solving for $\gamma$
|
||||
$$\gamma = \omega\sqrt{L C}(j + {R \over \omega L})$$
|
||||
Separating the real and imaginary components:
|
||||
$$\alpha = R \sqrt{C \over L}$$
|
||||
$$\beta = j\omega\sqrt{L C}$$
|
||||
|
||||
For a lossless line, there is no attenuation (by definition). Therefore:
|
||||
$$\alpha = 0$$
|
||||
To actually be able to build this lossless line, $R=0$ and $G=0$.
|
||||
$$\gamma^2 = (R + j\omega L)(G + j\omega C)$$
|
||||
Since $R$ and $G$ are both 0:
|
||||
$$\gamma^2 = (j\omega L)(j \omega C)$$
|
||||
$$\gamma^2 = -\omega^2 LC$$
|
||||
$$\gamma = \sqrt{-\omega^2 LC} = j\omega\sqrt{LC}$$
|
||||
Separating out real and imaginary:
|
||||
$$\alpha = 0$$
|
||||
$$\beta = j\omega\sqrt{LC}$$
|
||||
|
||||
For lossless and distortionless lines, the attenuation constant differs, but the phase constant does not. Since the phase velocity only depends on $\omega$ and $\beta$, $v_p$ is the same for both lossless and distortionless lines.
|
||||
|
||||
$$v_p = {\omega \over \beta} = {-j \over \sqrt{LC}}$$
|
||||
|
||||
## 3
|
||||
$$\hat{Z}_L = 75 + j150 \Omega$$
|
||||
$$f = 2[\text{MHz}]$$
|
||||
$$\omega = 2\pi f = 4\pi \times 10^6$$
|
||||
$$r = 150\left[{\Omega \over \text{km}}\right]$$
|
||||
$$l = 1.4\left[{\text{mH} \over \text{km}}\right]$$
|
||||
$$c = 88\left[{\text{nF} \over \text{km}}\right]$$
|
||||
$$g = 0.8\left[{\mu\text{s} \over \text{km}}\right]$$
|
||||
$$\hat{V}_G = 100 e^{j0^\circ}$$
|
||||
$$z = 100[\text{m}]$$
|
||||
|
||||
$$R = 15[\Omega]$$
|
||||
$$L = 140[\mu\text{H}]$$
|
||||
$$C = 8.8[\text{nF}]$$
|
||||
$$G = 80[n\Omega]$$
|
||||
|
||||
### a)
|
||||
Find $\hat{Z}_0$:
|
||||
$$Z_0 = \sqrt{R + j\omega L \over G + j\omega C} = \sqrt{15 + j(4\pi\times10^6)(140\times10^{-6}) \over 80\times10^{-9} + j(4\pi \times 10^6)(8.8\times10^{-9})}$$
|
||||
$$Z_0 = 126.1324 - j0.5377$$
|
||||
$$\hat{\gamma} = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}$$
|
||||
$$\hat{\gamma} = 0.0595 + j13.9482$$
|
||||
|
||||
### b)
|
||||
Find the input imedance
|
||||
$$Z_\text{in} = Z_0{Z_L + Z_0 \tanh(\gamma z) \over Z_0 + Z_L \tanh(\gamma z)}$$
|
||||
$$Z_\text{in} = -126.1324 + j0.5377$$
|
||||
|
||||
### c)
|
||||
Find the average power delivered
|
||||
$$\alpha = {\ln\left({P_\text{in} \over P_\text{out}}\right) \over z}$$
|
||||
$$\alpha = 0.0595$$
|
||||
$$P_\text{in} = {V_G^2 \over Z_\text{in}} = 79.2802 + j0.3373$$
|
||||
$$P_\text{out} = P_\text{in} e^{-\alpha z} = 0.2073 + j0.0009$$
|
||||
|
||||
## 4
|
||||
$$\Gamma = {Z_L - Z_0 \over Z_L + Z_0}$$
|
||||
|
||||
### a)
|
||||
$$Z_L = 3 Z_0$$
|
||||
$$\Gamma = 0.5$$
|
||||
|
||||
### b)
|
||||
$$Z_L = (2 - j2)Z_0$$
|
||||
$$\Gamma = 0.5385 - j0.3077$$
|
||||
|
||||
### c)
|
||||
$$Z_L = -j2Z_0$$
|
||||
$$\Gamma = 0.6 - j0.8$$
|
||||
|
||||
### d)
|
||||
$$Z_L = 0$$
|
||||
$$\Gamma = -1$$
|
||||
|
||||
## 5
|
||||
|
||||
### a)
|
||||
$$\Gamma = 0.06+j0.24$$
|
||||
|
||||
### b)
|
||||
$$\text{VWSR} = {1 + |\Gamma| \over 1 - |\Gamma|} = 1.657$$
|
||||
|
||||
### c)
|
||||
$$Z_\text{in} = Z_0 {Z_L + Z_0\tanh(\gamma l) \over Z_0 + Z_L\tanh(\gamma l)} 30.50 - j1.09$$
|
||||
|
||||
### d)
|
||||
$$Y_\text{in} = {1 \over Z_in} = 0.03274 + j0.0012$$
|
||||
|
||||
### e)
|
||||
$$0.106\lambda$$
|
||||
|
||||
### f)
|
||||
$$z = -0.106\lambda$$
|
||||
|
||||
## 6
|
||||
$$L = {3\lambda \over 8}$$
|
||||
$$Z_\text{in} = -j2.5$$
|
||||
$$Z_L = {-j2.5 \over 100} = -j0.025$$
|
||||
At ${3\lambda \over 8}$:
|
||||
$$Z_L = j95$$
|
BIN
5th-Semester-Fall-2023/EEMAGS/Homework/Homework-08.pdf
Normal file
23
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-01/Lab01.aux
Normal file
@ -0,0 +1,23 @@
|
||||
\relax
|
||||
\providecommand\hyper@newdestlabel[2]{}
|
||||
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
|
||||
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
|
||||
\global\let\oldcontentsline\contentsline
|
||||
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
|
||||
\global\let\oldnewlabel\newlabel
|
||||
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
|
||||
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
|
||||
\AtEndDocument{\ifx\hyper@anchor\@undefined
|
||||
\let\contentsline\oldcontentsline
|
||||
\let\newlabel\oldnewlabel
|
||||
\fi}
|
||||
\fi}
|
||||
\global\let\hyper@last\relax
|
||||
\gdef\HyperFirstAtBeginDocument#1{#1}
|
||||
\providecommand\HyField@AuxAddToFields[1]{}
|
||||
\providecommand\HyField@AuxAddToCoFields[2]{}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {I}Introduction \& Methods}{2}{section.1}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {II}Results \& Analysis}{2}{section.2}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {III}Conclusions}{2}{section.3}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {IV}Further Comments}{2}{section.4}\protected@file@percent }
|
||||
\gdef \@abspage@last{1}
|
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-01/Lab01.dvi
Normal file
1331
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-01/Lab01.log
Normal file
4
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-01/Lab01.out
Normal file
@ -0,0 +1,4 @@
|
||||
\BOOKMARK [1][-]{section.1}{\376\377\000I\000n\000t\000r\000o\000d\000u\000c\000t\000i\000o\000n\000\040\000\046\000\040\000M\000e\000t\000h\000o\000d\000s}{}% 1
|
||||
\BOOKMARK [1][-]{section.2}{\376\377\000R\000e\000s\000u\000l\000t\000s\000\040\000\046\000\040\000A\000n\000a\000l\000y\000s\000i\000s}{}% 2
|
||||
\BOOKMARK [1][-]{section.3}{\376\377\000C\000o\000n\000c\000l\000u\000s\000i\000o\000n\000s}{}% 3
|
||||
\BOOKMARK [1][-]{section.4}{\376\377\000F\000u\000r\000t\000h\000e\000r\000\040\000C\000o\000m\000m\000e\000n\000t\000s}{}% 4
|
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-01/Lab01.pdf
Normal file
66
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-01/Lab01.tex
Normal file
@ -0,0 +1,66 @@
|
||||
\documentclass[conference]{IEEEtran}
|
||||
\usepackage[siunitx]{circuitikz}
|
||||
\usepackage{graphicx}
|
||||
%\usepackage{lipsum}
|
||||
\usepackage{color}
|
||||
\usepackage{enumitem}
|
||||
\usepackage{epsfig}
|
||||
\usepackage{mathptmx}
|
||||
\usepackage{times}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{float}
|
||||
\usepackage{hyperref}
|
||||
%\usepackage{setspace}
|
||||
%\usepackage{tikz}
|
||||
\usepackage{circuitikz}
|
||||
\usepackage{pgfplots}
|
||||
\usepackage{textcomp}
|
||||
%\usepgfplotslibrary{external}
|
||||
%\tikzexternalize
|
||||
%\usepackage[utf8]{inputenc}
|
||||
%\usepackage[english]{babel}
|
||||
%\usepackage{pgf}
|
||||
\usepackage{pgfpages}
|
||||
\usepackage[margin=0.4in]{geometry}
|
||||
\usepackage{lmodern}
|
||||
\usepackage{datetime}
|
||||
\usepackage{ragged2e}
|
||||
\input{border.tex}
|
||||
\pgfpagesuselayout{boxed}
|
||||
|
||||
\hyphenation{op-tical net-works semi-conduc-tor}% correct bad hyphenation here
|
||||
|
||||
\font\myfont=cmr12 at 15pt
|
||||
\title{\myfont Getting Situated with Ansys Electronics Desktop for EEMAGS}
|
||||
\author{Aidan Sharpe 916373346}
|
||||
|
||||
|
||||
\providecommand{\keywords}[1]{\textbf{\textit{Keywords---}} #1}
|
||||
\providecommand{\e}[1]{\ensuremath{\times 10^{#1}}}
|
||||
\setlength{\columnsep}{7mm}
|
||||
\pgfplotsset{compat=1.15}
|
||||
\begin{document}
|
||||
|
||||
\makeatletter
|
||||
\@twocolumnfalse
|
||||
\maketitle
|
||||
\@twocolumntrue
|
||||
\makeatother
|
||||
|
||||
\section{Introduction \& Methods}
|
||||
The primary goals of this lab were to get situated with the \textit{Ansys Electronics Desktop} software and the Rowan Virtual Desktop environment as a whole. Within the \textit{Ansys Electronics Desktop} software, the primary goal was to learn the placements of specific tool bars and widgets by constructing objects in the primary view port and analyzing the electric field around some primitive objects.
|
||||
|
||||
The lab consisted of two parts, with the first acting as a guide to using the basic features of the software, and the second allowing for further exploration into different object primitives and the electrical interactions between them.
|
||||
|
||||
\section{Results \& Analysis}
|
||||
In part one, a perfectly conducting cylinder was charged and centered in a square-based rectangular prism with the same height. The electric field inside the rectangular prism was then analyzed. Since there were no reference voltages, the field lines were un-ordered and fairly chaotic. To resolve this, one of the vertical faces of the prism was defined as $0$V. Then, electric field intensity and direction were analyzed inside the rectangular prism. The resulting electric field, in accordance with predictions, extended from the cylinder to the grounded side of the rectangular prism. On the side of the rectangular prism opposing the grounded side, however, the electric field lines still exhibited some chaotic behavior, similar to the analysis before grounding. While quite simple in theory, this part of the lab still proved to be moderately challenging since some parts of the software were quite unintuitive. After completing part one, however, creating and analyzing objects should be much more straightforward in the future.
|
||||
|
||||
While part one was a guided exercise, part two was much more open-ended. A similar process was to be followed with some other shape. For this we created a sheath-ground coaxial cable. By making a hollow copper cylinder defined as $0$V, and a much skinnier concentric solid copper core with charge $1000$C, the electric field in and around the coaxial cable could be measured.
|
||||
|
||||
\section{Conclusions}
|
||||
While parts of this lab did not directly align with the course material, it definitely served its purpose as a crash course in the basic features of \textit{Ansys Electronics Desktop}. Going forward, using the software will require much less direction, and hopefully less fiddling around with. We found the software to be quite unintuitive to use at times, but we could not find any real suitable alternatives online. While it can be difficult to use at times, using visualization software at all is better than relying on calculations and analogy alone.
|
||||
|
||||
\section{Further Comments}
|
||||
Unfortunately, I was unable to access Ansys to take screenshots for this lab. I have an IRT ticket and they are working it out. Thank you for understanding.
|
||||
\end{document}
|
18
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-01/border.tex
Normal file
@ -0,0 +1,18 @@
|
||||
\pgfpagesdeclarelayout{boxed}
|
||||
{
|
||||
\edef\pgfpageoptionborder{0pt}
|
||||
}
|
||||
{
|
||||
\pgfpagesphysicalpageoptions
|
||||
{%
|
||||
logical pages=1,%
|
||||
}
|
||||
\pgfpageslogicalpageoptions{1}
|
||||
{
|
||||
border code=\pgfsetlinewidth{2pt}\pgfstroke,%
|
||||
border shrink=\pgfpageoptionborder,%
|
||||
resized width=.95\pgfphysicalwidth,%
|
||||
resized height=.95\pgfphysicalheight,%
|
||||
center=\pgfpoint{.5\pgfphysicalwidth}{.5\pgfphysicalheight}%
|
||||
}%
|
||||
}
|
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-02/BackAir.png
Normal file
After Width: | Height: | Size: 25 KiB |
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-02/BackDiamond.png
Normal file
After Width: | Height: | Size: 24 KiB |
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-02/CenterAir.png
Normal file
After Width: | Height: | Size: 27 KiB |
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-02/Coax.png
Normal file
After Width: | Height: | Size: 23 KiB |
32
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-02/Lab-02.aux
Normal file
@ -0,0 +1,32 @@
|
||||
\relax
|
||||
\providecommand\hyper@newdestlabel[2]{}
|
||||
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
|
||||
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
|
||||
\global\let\oldnewlabel\newlabel
|
||||
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
|
||||
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
|
||||
\AtEndDocument{\ifx\hyper@anchor\@undefined
|
||||
\let\newlabel\oldnewlabel
|
||||
\fi}
|
||||
\fi}
|
||||
\global\let\hyper@last\relax
|
||||
\gdef\HyperFirstAtBeginDocument#1{#1}
|
||||
\providecommand\HyField@AuxAddToFields[1]{}
|
||||
\providecommand\HyField@AuxAddToCoFields[2]{}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {I}Introduction \& Methods}{2}{section.1}\protected@file@percent }
|
||||
\newlabel{eqn:capacitance-parallel-plate}{{1}{2}{Introduction \& Methods}{equation.1.1}{}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {II}Results \& Analysis}{2}{section.2}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {\mbox {II-A}}Air as a Dielectric}{2}{subsection.2.1}\protected@file@percent }
|
||||
\newlabel{eqn:efield-line-voltage}{{2}{2}{Air as a Dielectric}{equation.2.2}{}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Measuring electric field strength at the edge}}{2}{figure.1}\protected@file@percent }
|
||||
\newlabel{fig:field-air-edge}{{1}{2}{Measuring electric field strength at the edge}{figure.1}{}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Measuring electric field strength in the center of the capacitor}}{2}{figure.2}\protected@file@percent }
|
||||
\newlabel{fig:field-air-center}{{2}{2}{Measuring electric field strength in the center of the capacitor}{figure.2}{}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {\mbox {II-B}}Changing the Dielectric}{2}{subsection.2.2}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {\mbox {II-C}}Changing the Form of the Conductors}{2}{subsection.2.3}\protected@file@percent }
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Using diamond as a dielectric}}{3}{figure.3}\protected@file@percent }
|
||||
\newlabel{fig:diamond-dielectric}{{3}{3}{Using diamond as a dielectric}{figure.3}{}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Electric field between coaxial conductors}}{3}{figure.4}\protected@file@percent }
|
||||
\newlabel{fig:coax-efield}{{4}{3}{Electric field between coaxial conductors}{figure.4}{}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {III}Conclusions}{3}{section.3}\protected@file@percent }
|
||||
\gdef \@abspage@last{2}
|
409
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-02/Lab-02.log
Normal file
@ -0,0 +1,409 @@
|
||||
This is pdfTeX, Version 3.141592653-2.6-1.40.24 (TeX Live 2022/CVE-2023-32700 patched) (preloaded format=pdflatex 2023.8.22) 2 OCT 2023 12:13
|
||||
entering extended mode
|
||||
\write18 enabled.
|
||||
%&-line parsing enabled.
|
||||
**/tmp/nvim.sharpe/EktD7U/0
|
||||
(/tmp/nvim.sharpe/EktD7U/0
|
||||
LaTeX2e <2022-06-01> patch level 5
|
||||
L3 programming layer <2022-12-17>
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/ieeetran/IEEEtran.cls
|
||||
Document Class: IEEEtran 2015/08/26 V1.8b by Michael Shell
|
||||
-- See the "IEEEtran_HOWTO" manual for usage information.
|
||||
-- http://www.michaelshell.org/tex/ieeetran/
|
||||
\@IEEEtrantmpdimenA=\dimen140
|
||||
\@IEEEtrantmpdimenB=\dimen141
|
||||
\@IEEEtrantmpdimenC=\dimen142
|
||||
\@IEEEtrantmpcountA=\count185
|
||||
\@IEEEtrantmpcountB=\count186
|
||||
\@IEEEtrantmpcountC=\count187
|
||||
\@IEEEtrantmptoksA=\toks16
|
||||
LaTeX Font Info: Trying to load font information for OT1+ptm on input line 5
|
||||
03.
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/psnfss/ot1ptm.fd
|
||||
File: ot1ptm.fd 2001/06/04 font definitions for OT1/ptm.
|
||||
)
|
||||
-- Using 8.5in x 11in (letter) paper.
|
||||
-- Using PDF output.
|
||||
\@IEEEnormalsizeunitybaselineskip=\dimen143
|
||||
-- This is a 10 point document.
|
||||
\CLASSINFOnormalsizebaselineskip=\dimen144
|
||||
\CLASSINFOnormalsizeunitybaselineskip=\dimen145
|
||||
\IEEEnormaljot=\dimen146
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <5> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <5> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <7> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <7> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <8> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <8> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <9> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <9> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <10> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <10> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <11> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <11> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <12> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <12> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <17> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <17> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <20> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <20> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/n' in size <24> not available
|
||||
(Font) Font shape `OT1/ptm/b/n' tried instead on input line 1090.
|
||||
LaTeX Font Info: Font shape `OT1/ptm/bx/it' in size <24> not available
|
||||
(Font) Font shape `OT1/ptm/b/it' tried instead on input line 1090.
|
||||
|
||||
\IEEEquantizedlength=\dimen147
|
||||
\IEEEquantizedlengthdiff=\dimen148
|
||||
\IEEEquantizedtextheightdiff=\dimen149
|
||||
\IEEEilabelindentA=\dimen150
|
||||
\IEEEilabelindentB=\dimen151
|
||||
\IEEEilabelindent=\dimen152
|
||||
\IEEEelabelindent=\dimen153
|
||||
\IEEEdlabelindent=\dimen154
|
||||
\IEEElabelindent=\dimen155
|
||||
\IEEEiednormlabelsep=\dimen156
|
||||
\IEEEiedmathlabelsep=\dimen157
|
||||
\IEEEiedtopsep=\skip47
|
||||
\c@section=\count188
|
||||
\c@subsection=\count189
|
||||
\c@subsubsection=\count190
|
||||
\c@paragraph=\count191
|
||||
\c@IEEEsubequation=\count192
|
||||
\abovecaptionskip=\skip48
|
||||
\belowcaptionskip=\skip49
|
||||
\c@figure=\count193
|
||||
\c@table=\count194
|
||||
\@IEEEeqnnumcols=\count195
|
||||
\@IEEEeqncolcnt=\count196
|
||||
\@IEEEsubeqnnumrollback=\count197
|
||||
\@IEEEquantizeheightA=\dimen158
|
||||
\@IEEEquantizeheightB=\dimen159
|
||||
\@IEEEquantizeheightC=\dimen160
|
||||
\@IEEEquantizeprevdepth=\dimen161
|
||||
\@IEEEquantizemultiple=\count198
|
||||
\@IEEEquantizeboxA=\box51
|
||||
\@IEEEtmpitemindent=\dimen162
|
||||
\IEEEPARstartletwidth=\dimen163
|
||||
\c@IEEEbiography=\count199
|
||||
\@IEEEtranrubishbin=\box52
|
||||
) (/usr/share/texlive/texmf-dist/tex/latex/circuitikz/circuitikz.sty
|
||||
Package: circuitikz 2022/12/10{} The CircuiTikz circuit drawing package version
|
||||
1.6.0
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.tex
|
||||
\pgfutil@everybye=\toks17
|
||||
\pgfutil@tempdima=\dimen164
|
||||
\pgfutil@tempdimb=\dimen165
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-common-lists.t
|
||||
ex)) (/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def
|
||||
\pgfutil@abb=\box53
|
||||
) (/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/pgf.revision.tex)
|
||||
Package: pgfrcs 2021/05/15 v3.1.9a (3.1.9a)
|
||||
))
|
||||
Package: pgf 2021/05/15 v3.1.9a (3.1.9a)
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
|
||||
Package: graphicx 2021/09/16 v1.2d Enhanced LaTeX Graphics (DPC,SPQR)
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
|
||||
Package: keyval 2022/05/29 v1.15 key=value parser (DPC)
|
||||
\KV@toks@=\toks18
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
|
||||
Package: graphics 2022/03/10 v1.4e Standard LaTeX Graphics (DPC,SPQR)
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
|
||||
Package: trig 2021/08/11 v1.11 sin cos tan (DPC)
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/graphics.cfg
|
||||
File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration
|
||||
)
|
||||
Package graphics Info: Driver file: pdftex.def on input line 107.
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/graphics-def/pdftex.def
|
||||
File: pdftex.def 2022/09/22 v1.2b Graphics/color driver for pdftex
|
||||
))
|
||||
\Gin@req@height=\dimen166
|
||||
\Gin@req@width=\dimen167
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex
|
||||
Package: pgfsys 2021/05/15 v3.1.9a (3.1.9a)
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex
|
||||
\pgfkeys@pathtoks=\toks19
|
||||
\pgfkeys@temptoks=\toks20
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeysfiltered.code.t
|
||||
ex
|
||||
\pgfkeys@tmptoks=\toks21
|
||||
))
|
||||
\pgf@x=\dimen168
|
||||
\pgf@y=\dimen169
|
||||
\pgf@xa=\dimen170
|
||||
\pgf@ya=\dimen171
|
||||
\pgf@xb=\dimen172
|
||||
\pgf@yb=\dimen173
|
||||
\pgf@xc=\dimen174
|
||||
\pgf@yc=\dimen175
|
||||
\pgf@xd=\dimen176
|
||||
\pgf@yd=\dimen177
|
||||
\w@pgf@writea=\write3
|
||||
\r@pgf@reada=\read2
|
||||
\c@pgf@counta=\count266
|
||||
\c@pgf@countb=\count267
|
||||
\c@pgf@countc=\count268
|
||||
\c@pgf@countd=\count269
|
||||
\t@pgf@toka=\toks22
|
||||
\t@pgf@tokb=\toks23
|
||||
\t@pgf@tokc=\toks24
|
||||
\pgf@sys@id@count=\count270
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgf.cfg
|
||||
File: pgf.cfg 2021/05/15 v3.1.9a (3.1.9a)
|
||||
)
|
||||
Driver file for pgf: pgfsys-pdftex.def
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.def
|
||||
File: pgfsys-pdftex.def 2021/05/15 v3.1.9a (3.1.9a)
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-common-pdf.de
|
||||
f
|
||||
File: pgfsys-common-pdf.def 2021/05/15 v3.1.9a (3.1.9a)
|
||||
)))
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath.code.
|
||||
tex
|
||||
File: pgfsyssoftpath.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
\pgfsyssoftpath@smallbuffer@items=\count271
|
||||
\pgfsyssoftpath@bigbuffer@items=\count272
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol.code.
|
||||
tex
|
||||
File: pgfsysprotocol.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
)) (/usr/share/texlive/texmf-dist/tex/latex/xcolor/xcolor.sty
|
||||
Package: xcolor 2022/06/12 v2.14 LaTeX color extensions (UK)
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/color.cfg
|
||||
File: color.cfg 2016/01/02 v1.6 sample color configuration
|
||||
)
|
||||
Package xcolor Info: Driver file: pdftex.def on input line 227.
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/graphics/mathcolor.ltx)
|
||||
Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1353.
|
||||
Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1357.
|
||||
Package xcolor Info: Model `RGB' extended on input line 1369.
|
||||
Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1371.
|
||||
Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1372.
|
||||
Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1373.
|
||||
Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1374.
|
||||
Package xcolor Info: Model `Gray' substituted by `gray' on input line 1375.
|
||||
Package xcolor Info: Model `wave' substituted by `hsb' on input line 1376.
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex
|
||||
Package: pgfcore 2021/05/15 v3.1.9a (3.1.9a)
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex
|
||||
\pgfmath@dimen=\dimen178
|
||||
\pgfmath@count=\count273
|
||||
\pgfmath@box=\box54
|
||||
\pgfmath@toks=\toks25
|
||||
\pgfmath@stack@operand=\toks26
|
||||
\pgfmath@stack@operation=\toks27
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.code.tex
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.basic.code
|
||||
.tex)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.trigonomet
|
||||
ric.code.tex)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.random.cod
|
||||
e.tex)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.comparison
|
||||
.code.tex)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.base.code.
|
||||
tex)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.round.code
|
||||
.tex)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.misc.code.
|
||||
tex)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.integerari
|
||||
thmetics.code.tex)))
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex
|
||||
\c@pgfmathroundto@lastzeros=\count274
|
||||
))
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfint.code.tex)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepoints.code.te
|
||||
x
|
||||
File: pgfcorepoints.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
\pgf@picminx=\dimen179
|
||||
\pgf@picmaxx=\dimen180
|
||||
\pgf@picminy=\dimen181
|
||||
\pgf@picmaxy=\dimen182
|
||||
\pgf@pathminx=\dimen183
|
||||
\pgf@pathmaxx=\dimen184
|
||||
\pgf@pathminy=\dimen185
|
||||
\pgf@pathmaxy=\dimen186
|
||||
\pgf@xx=\dimen187
|
||||
\pgf@xy=\dimen188
|
||||
\pgf@yx=\dimen189
|
||||
\pgf@yy=\dimen190
|
||||
\pgf@zx=\dimen191
|
||||
\pgf@zy=\dimen192
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathconstruct.
|
||||
code.tex
|
||||
File: pgfcorepathconstruct.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
\pgf@path@lastx=\dimen193
|
||||
\pgf@path@lasty=\dimen194
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathusage.code
|
||||
.tex
|
||||
File: pgfcorepathusage.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
\pgf@shorten@end@additional=\dimen195
|
||||
\pgf@shorten@start@additional=\dimen196
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorescopes.code.te
|
||||
x
|
||||
File: pgfcorescopes.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
\pgfpic=\box55
|
||||
\pgf@hbox=\box56
|
||||
\pgf@layerbox@main=\box57
|
||||
\pgf@picture@serial@count=\count275
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoregraphicstate.c
|
||||
ode.tex
|
||||
File: pgfcoregraphicstate.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
\pgflinewidth=\dimen197
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransformation
|
||||
s.code.tex
|
||||
File: pgfcoretransformations.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
\pgf@pt@x=\dimen198
|
||||
\pgf@pt@y=\dimen199
|
||||
\pgf@pt@temp=\dimen256
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorequick.code.tex
|
||||
File: pgfcorequick.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreobjects.code.t
|
||||
ex
|
||||
File: pgfcoreobjects.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathprocessing
|
||||
.code.tex
|
||||
File: pgfcorepathprocessing.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorearrows.code.te
|
||||
x
|
||||
File: pgfcorearrows.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
\pgfarrowsep=\dimen257
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreshade.code.tex
|
||||
File: pgfcoreshade.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
\pgf@max=\dimen258
|
||||
\pgf@sys@shading@range@num=\count276
|
||||
\pgf@shadingcount=\count277
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreimage.code.tex
|
||||
File: pgfcoreimage.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreexternal.code.
|
||||
tex
|
||||
File: pgfcoreexternal.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
\pgfexternal@startupbox=\box58
|
||||
))
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorelayers.code.te
|
||||
x
|
||||
File: pgfcorelayers.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransparency.c
|
||||
ode.tex
|
||||
File: pgfcoretransparency.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepatterns.code.
|
||||
tex
|
||||
File: pgfcorepatterns.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorerdf.code.tex
|
||||
File: pgfcorerdf.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
)))
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmoduleshapes.code.tex
|
||||
File: pgfmoduleshapes.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
\pgfnodeparttextbox=\box59
|
||||
) (/usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmoduleplot.code.tex
|
||||
File: pgfmoduleplot.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-0-65
|
||||
.sty
|
||||
Package: pgfcomp-version-0-65 2021/05/15 v3.1.9a (3.1.9a)
|
||||
\pgf@nodesepstart=\dimen259
|
||||
\pgf@nodesepend=\dimen260
|
||||
)
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-1-18
|
||||
.sty
|
||||
Package: pgfcomp-version-1-18 2021/05/15 v3.1.9a (3.1.9a)
|
||||
)) (/usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgffor.sty
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex))
|
||||
(/usr/share/texlive/texmf-dist/tex/latex/pgf/math/pgfmath.sty
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex))
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex
|
||||
Package: pgffor 2021/05/15 v3.1.9a (3.1.9a)
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex)
|
||||
\pgffor@iter=\dimen261
|
||||
\pgffor@skip=\dimen262
|
||||
\pgffor@stack=\toks28
|
||||
\pgffor@toks=\toks29
|
||||
))
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex
|
||||
Package: tikz 2021/05/15 v3.1.9a (3.1.9a)
|
||||
|
||||
(/usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothandlers
|
||||
.code.tex
|
||||
File: pgflibraryplothandlers.code.tex 2021/05/15 v3.1.9a (3.1.9a)
|
||||
\pgf@plot@mark@count=\count278
|
||||
\pgfplotmarksize=\dimen263
|
||||
)
|
||||
\tikz@lastx=\dimen264
|
||||
\tikz@lasty=\dimen265
|
||||
\tikz@lastxsaved=\dimen266
|
||||
\tikz@lastysaved=\dimen267
|
||||
\tikz@lastmovetox=\dimen268
|
||||
\tikz@lastmovetoy=\dimen269
|
||||
\tikzleveldistance=\dimen270
|
||||
\tikzsiblingdista
|
6
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-02/Lab-02.out
Normal file
@ -0,0 +1,6 @@
|
||||
\BOOKMARK [1][-]{section.1}{\376\377\000I\000n\000t\000r\000o\000d\000u\000c\000t\000i\000o\000n\000\040\000\046\000\040\000M\000e\000t\000h\000o\000d\000s}{}% 1
|
||||
\BOOKMARK [1][-]{section.2}{\376\377\000R\000e\000s\000u\000l\000t\000s\000\040\000\046\000\040\000A\000n\000a\000l\000y\000s\000i\000s}{}% 2
|
||||
\BOOKMARK [2][-]{subsection.2.1}{\376\377\000A\000i\000r\000\040\000a\000s\000\040\000a\000\040\000D\000i\000e\000l\000e\000c\000t\000r\000i\000c}{section.2}% 3
|
||||
\BOOKMARK [2][-]{subsection.2.2}{\376\377\000C\000h\000a\000n\000g\000i\000n\000g\000\040\000t\000h\000e\000\040\000D\000i\000e\000l\000e\000c\000t\000r\000i\000c}{section.2}% 4
|
||||
\BOOKMARK [2][-]{subsection.2.3}{\376\377\000C\000h\000a\000n\000g\000i\000n\000g\000\040\000t\000h\000e\000\040\000F\000o\000r\000m\000\040\000o\000f\000\040\000t\000h\000e\000\040\000C\000o\000n\000d\000u\000c\000t\000o\000r\000s}{section.2}% 5
|
||||
\BOOKMARK [1][-]{section.3}{\376\377\000C\000o\000n\000c\000l\000u\000s\000i\000o\000n\000s}{}% 6
|
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-02/Lab-02.pdf
Normal file
121
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-02/Lab-02.tex
Normal file
@ -0,0 +1,121 @@
|
||||
\documentclass[conference]{IEEEtran}
|
||||
\usepackage[siunitx]{circuitikz}
|
||||
\usepackage{graphicx}
|
||||
%\usepackage{lipsum}
|
||||
\usepackage{color}
|
||||
\usepackage{enumitem}
|
||||
\usepackage{epsfig}
|
||||
\usepackage{mathptmx}
|
||||
\usepackage{times}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{float}
|
||||
\usepackage{hyperref}
|
||||
%\usepackage{setspace}
|
||||
%\usepackage{tikz}
|
||||
\usepackage{circuitikz}
|
||||
\usepackage{pgfplots}
|
||||
\usepackage{textcomp}
|
||||
%\usepgfplotslibrary{external}
|
||||
%\tikzexternalize
|
||||
%\usepackage[utf8]{inputenc}
|
||||
%\usepackage[english]{babel}
|
||||
%\usepackage{pgf}
|
||||
\usepackage{pgfpages}
|
||||
\usepackage[margin=0.4in]{geometry}
|
||||
\usepackage{lmodern}
|
||||
\usepackage{datetime}
|
||||
\usepackage{ragged2e}
|
||||
\input{border.tex}
|
||||
\pgfpagesuselayout{boxed}
|
||||
|
||||
\hyphenation{op-tical net-works semi-conduc-tor}% correct bad hyphenation here
|
||||
|
||||
\font\myfont=cmr12 at 15pt
|
||||
\title{\myfont Simulating Simple Electrostatic Capacitors}
|
||||
\author{Aidan Sharpe 916373346}
|
||||
|
||||
|
||||
\providecommand{\keywords}[1]{\textbf{\textit{Keywords---}} #1}
|
||||
\providecommand{\e}[1]{\ensuremath{\times 10^{#1}}}
|
||||
\setlength{\columnsep}{7mm}
|
||||
\pgfplotsset{compat=1.15}
|
||||
\begin{document}
|
||||
|
||||
\makeatletter
|
||||
\@twocolumnfalse
|
||||
\maketitle
|
||||
\@twocolumntrue
|
||||
\makeatother
|
||||
\begin{abstract}
|
||||
The primary goal of this lab was to understand the electric fields between differently charged conductors. Since the definition of a capacitor is two separated conductors of differing charge, capacitance was also predicted and measured. Along with a simple parallel plate model, coaxial conductors were also analyzed and found to change the characteristics of the electric field.
|
||||
\end{abstract}
|
||||
|
||||
\section{Introduction \& Methods}
|
||||
The idea of a charged object in a vacuum can be quite helpful when developing simple models and fundamental understandings. Unfortunately, this approach can only be taken so far before a system becomes \textit{oversimplified}. To better understand these complex interactions, more complex models must be made.
|
||||
|
||||
Parallel plate capacitor with square plates of side length 0.5[mm], and spacing 0.1[mm]. The bottom plate was defined as 0[V], and the top plate was given a charge, $5 \times 10^{-6}$[C]. Since the measurements are being taken with air between the plates, and air has a relative permittivity of 1.0006, for air, $\varepsilon = 8.859 \times 10^{-12}$. The capacitance was calculated by plugging the known values for area and distance into equation \ref{eqn:capacitance-parallel-plate}. Doing so yields the theoretical capacitance of $2.215\times 10^{-14}$ [F].
|
||||
|
||||
\begin{equation}
|
||||
C = {\varepsilon A \over d}
|
||||
\label{eqn:capacitance-parallel-plate}
|
||||
\end{equation}
|
||||
Where:\\
|
||||
$C$ is capacitance\\
|
||||
$A$ is the inside area of the plates\\
|
||||
$d$ is the distance between the plates\\
|
||||
$\varepsilon$ is the permittivity of the material between the plates.
|
||||
|
||||
\section{Results \& Analysis}
|
||||
\subsection{Air as a Dielectric}
|
||||
After setting up the capacitor, analysis began. First, as seen in figure \ref{fig:field-air-edge} and figure \ref{fig:field-air-center}, the electric field between the plates was analyzed at the edge of the plates and through the center of the area between the plates. It is immediately apparent that changing the location of measurement inside the region between the plates does not affect the results of the measurement. For this reason, we can determine that the electric field strength between the plates is constant. Additionally, the strength of the electric field outside the region between the plates drops off quickly and is very small above and below the plates.
|
||||
|
||||
\begin{figure}[h]
|
||||
\includegraphics[width=0.48\textwidth]{BackAir.png}
|
||||
\caption{Measuring electric field strength at the edge}
|
||||
\label{fig:field-air-edge}
|
||||
\end{figure}
|
||||
\begin{figure}[h]
|
||||
\includegraphics[width=0.48\textwidth]{CenterAir.png}
|
||||
\caption{Measuring electric field strength in the center of the capacitor}
|
||||
\label{fig:field-air-center}
|
||||
\end{figure}
|
||||
|
||||
Since one of the plates was charged and the other was set as a reference ground, there exists some voltage between the two plates. This voltage can be found using equation \ref{eqn:efield-line-voltage}. To calculate this voltage, the electric field strength was measured along a straight line from the center of one plate to the center of the other. The resulting voltage was 196[MV].
|
||||
|
||||
\begin{equation}
|
||||
V = \int\vec{E} \cdot d\vec{l}
|
||||
\label{eqn:efield-line-voltage}
|
||||
\end{equation}
|
||||
|
||||
To find the experimental capacitance, equation \ref{eqn:cap-charge-potential}. Using the predetermined charge of $5 \times 10^{-6}$[C] and the tool evaluated line integral for voltage, the experimental capacitance was determined to be $2.549 \times 10^{-14}$[F]. The assumption of a uniform electric field between the plates is likely the source of the error. Since the plates have thickness, modelling them as plane charges will cause some discrepancy.
|
||||
|
||||
\subsection{Changing the Dielectric}
|
||||
The region surrounding the plates was air in this context, however, changing the material between the plates will change the capacitance. However, changing this material into a conductor will short the plates and effectively ruin the capacitance. For this reason, the material was chosen to be diamond for its insulating and dielectric strengths. Diamond has a relative permittivity of 16.5. Therefore, it should be expected that the capacitance be multiplied by the same factor. Additionally, since capacitance is increasing and charge is remaining constant, the voltage between the plates should reduce by the same factor as well. Sure enough, the evaluated voltage between the plates is 11.86[MV], a factor of 16.53 smaller.
|
||||
|
||||
Similarly, since voltage is related to electric field strength by distance, and the distance is constant, the electric field strength should also decrease. This is verified by the test results shown in figure \ref{fig:diamond-dielectric}. With diamond as a dielectric, the maximum field strength was $1.192 \times 10^{11}$[V/m] compared to $2.004 \times 18^{11}$[V/m] with air as a dielectric.
|
||||
|
||||
\begin{figure}[h]
|
||||
\includegraphics[width=0.48\textwidth]{BackDiamond.png}
|
||||
\caption{Using diamond as a dielectric}
|
||||
\label{fig:diamond-dielectric}
|
||||
\end{figure}
|
||||
|
||||
\subsection{Changing the Form of the Conductors}
|
||||
Finally, the dielectric was reset to air, and for this test, the parallel plates were replaced with concentric conductors in the shape of a coaxial cable. Since the surface area of the inner conductor is smaller than the surface area of the outer conductor, the electric field cannot be uniform between them. As seen in figure \ref{fig:coax-efield}, the electric field is stronger around the inner conductor, and drops off until the surface of the outer conductor. It is also apparent that there is no electric field beyond the outer conductor, so it has some shielding effects. Additionally, equation \ref{eqn:capacitance-parallel-plate} only applies to parallel plate capacitors, the capacitance of the coaxial conductors was evaluated experimentally.
|
||||
|
||||
\begin{figure}[h]
|
||||
\includegraphics[width=0.48\textwidth]{Coax.png}
|
||||
\caption{Electric field between coaxial conductors}
|
||||
\label{fig:coax-efield}
|
||||
\end{figure}
|
||||
|
||||
The charge of the inner conductor was set to the same $5 \times 10^{-6}$[C] as before, and the outer conductor was defined as a reference ground. The radius of the inner conductor was 0.05[mm], the inner radius of the outer conductor was 0.1[mm], and the outer radius of the outer conductor was 0.15[mm], leaving a 0.05[mm] gap between the conductors. The line integral evaluated voltage was 248[MV] between the conductors. Again using equation \ref{eqn:efield-line-voltage}, the capacitance was calculated to be $2.016 \times 10^{-14}$[F].
|
||||
|
||||
\section{Conclusions}
|
||||
Using a parallel plate capacitor is quite limiting. Since capacitance is larger with high surface area, getting larger capacitance requires very large plates. Beyond the range of picofarads, other capacitor form factors are preferred for their compactness.
|
||||
|
||||
Additionally, parallel plate capacitors, are superb for creating a uniform electric field. However, they are also create electromagnetic disturbances in the surrounding region. This can be reduced with shielding, but adding this shielding will affect the quality and uniformity of the internal electric field. This behavior is exemplified by the coaxial cable. There are no disturbances surrounding the central conductor, but this comes at the cost of lost uniformity.
|
||||
|
||||
Overall, the primary takeaway is that the form factor makes a large contribution to a capacitors behavior. There are trade-offs to picking one design over another, so application must be considered.
|
||||
\end{document}
|
18
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-02/border.tex
Normal file
@ -0,0 +1,18 @@
|
||||
\pgfpagesdeclarelayout{boxed}
|
||||
{
|
||||
\edef\pgfpageoptionborder{0pt}
|
||||
}
|
||||
{
|
||||
\pgfpagesphysicalpageoptions
|
||||
{%
|
||||
logical pages=1,%
|
||||
}
|
||||
\pgfpageslogicalpageoptions{1}
|
||||
{
|
||||
border code=\pgfsetlinewidth{2pt}\pgfstroke,%
|
||||
border shrink=\pgfpageoptionborder,%
|
||||
resized width=.95\pgfphysicalwidth,%
|
||||
resized height=.95\pgfphysicalheight,%
|
||||
center=\pgfpoint{.5\pgfphysicalwidth}{.5\pgfphysicalheight}%
|
||||
}%
|
||||
}
|
30
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-03/Lab-03.aux
Normal file
@ -0,0 +1,30 @@
|
||||
\relax
|
||||
\providecommand\hyper@newdestlabel[2]{}
|
||||
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
|
||||
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
|
||||
\global\let\oldnewlabel\newlabel
|
||||
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
|
||||
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
|
||||
\AtEndDocument{\ifx\hyper@anchor\@undefined
|
||||
\let\newlabel\oldnewlabel
|
||||
\fi}
|
||||
\fi}
|
||||
\global\let\hyper@last\relax
|
||||
\gdef\HyperFirstAtBeginDocument#1{#1}
|
||||
\providecommand\HyField@AuxAddToFields[1]{}
|
||||
\providecommand\HyField@AuxAddToCoFields[2]{}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {I}Introduction \& Methods}{2}{section.1}\protected@file@percent }
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Final coil design}}{2}{figure.1}\protected@file@percent }
|
||||
\newlabel{fig:coil}{{1}{2}{Final coil design}{figure.1}{}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {II}Results \& Analysis}{2}{section.2}\protected@file@percent }
|
||||
\@writefile{lot}{\contentsline {table}{\numberline {I}{\ignorespaces Initial coil dimensions}}{2}{table.1}\protected@file@percent }
|
||||
\newlabel{tbl:coil-dimensions}{{I}{2}{Initial coil dimensions}{table.1}{}}
|
||||
\@writefile{lot}{\contentsline {table}{\numberline {II}{\ignorespaces Air box dimensions}}{2}{table.2}\protected@file@percent }
|
||||
\newlabel{tbl:box-dimensions}{{II}{2}{Air box dimensions}{table.2}{}}
|
||||
\newlabel{eqn:inductance}{{1}{2}{Results \& Analysis}{equation.2.1}{}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Inductance as it relates to trace width}}{2}{figure.2}\protected@file@percent }
|
||||
\newlabel{fig:inductance}{{2}{2}{Inductance as it relates to trace width}{figure.2}{}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {III}Conclusions}{2}{section.3}\protected@file@percent }
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Magnetic field around the coil}}{3}{figure.3}\protected@file@percent }
|
||||
\newlabel{fig:magnetic-field}{{3}{3}{Magnetic field around the coil}{figure.3}{}}
|
||||
\gdef \@abspage@last{2}
|
1330
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-03/Lab-03.log
Normal file
3
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-03/Lab-03.out
Normal file
@ -0,0 +1,3 @@
|
||||
\BOOKMARK [1][-]{section.1}{\376\377\000I\000n\000t\000r\000o\000d\000u\000c\000t\000i\000o\000n\000\040\000\046\000\040\000M\000e\000t\000h\000o\000d\000s}{}% 1
|
||||
\BOOKMARK [1][-]{section.2}{\376\377\000R\000e\000s\000u\000l\000t\000s\000\040\000\046\000\040\000A\000n\000a\000l\000y\000s\000i\000s}{}% 2
|
||||
\BOOKMARK [1][-]{section.3}{\376\377\000C\000o\000n\000c\000l\000u\000s\000i\000o\000n\000s}{}% 3
|
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-03/Lab-03.pdf
Normal file
140
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-03/Lab-03.tex
Normal file
@ -0,0 +1,140 @@
|
||||
\documentclass[conference]{IEEEtran}
|
||||
\usepackage[siunitx]{circuitikz}
|
||||
\usepackage{graphicx}
|
||||
%\usepackage{lipsum}
|
||||
\usepackage{color}
|
||||
\usepackage{enumitem}
|
||||
\usepackage{epsfig}
|
||||
\usepackage{mathptmx}
|
||||
\usepackage{times}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{float}
|
||||
\usepackage{hyperref}
|
||||
%\usepackage{setspace}
|
||||
%\usepackage{tikz}
|
||||
\usepackage{circuitikz}
|
||||
\usepackage{pgfplots}
|
||||
\usepackage{textcomp}
|
||||
%\usepgfplotslibrary{external}
|
||||
%\tikzexternalize
|
||||
%\usepackage[utf8]{inputenc}
|
||||
%\usepackage[english]{babel}
|
||||
%\usepackage{pgf}
|
||||
\usepackage{pgfpages}
|
||||
\usepackage[margin=0.4in]{geometry}
|
||||
\usepackage{lmodern}
|
||||
\usepackage{datetime}
|
||||
\usepackage{ragged2e}
|
||||
\input{border.tex}
|
||||
\pgfpagesuselayout{boxed}
|
||||
|
||||
\hyphenation{op-tical net-works semi-conduc-tor}% correct bad hyphenation here
|
||||
|
||||
\font\myfont=cmr12 at 15pt
|
||||
\title{\myfont Simulating Simple Electrostatic Capacitors}
|
||||
\author{Aidan Sharpe 916373346}
|
||||
|
||||
|
||||
\providecommand{\keywords}[1]{\textbf{\textit{Keywords---}} #1}
|
||||
\providecommand{\e}[1]{\ensuremath{\times 10^{#1}}}
|
||||
\setlength{\columnsep}{7mm}
|
||||
\pgfplotsset{compat=1.15}
|
||||
\begin{document}
|
||||
|
||||
\makeatletter
|
||||
\@twocolumnfalse
|
||||
\maketitle
|
||||
\@twocolumntrue
|
||||
\makeatother
|
||||
\begin{abstract}
|
||||
This lab focuses on measuring the inductance of a rectangular coil of wire. The coil is modeled to be representative of a standard circuit board coil. The inductance was measured parametrically to understand the impact of trace width.
|
||||
\end{abstract}
|
||||
|
||||
\section{Introduction \& Methods}
|
||||
Lab setup was probably the most time-consuming portion of the process. Before taking any measurements, the model circuit board coil had to be created. This was done by drawing a path for the trace to follow, and then dimension was provided to create a trace with a rectangular cross section.
|
||||
|
||||
Due to a simpler geometry, measuring a coil following a rectangular path is less computationally intensive than measuring one with a circular path. To work with the computational restrictions imposed by the virtual machine's limited resources, the rectangular path was the obvious choice. It also happens that most PCB design packages default to eight trace directions, so rectangular path coils are somewhat common in the real world.
|
||||
|
||||
Every dimension of the coil plays some role in its inductance---its reaction to a changing current. The coil, as seen in figure \ref{fig:coil} has the dimensions shown in table \ref{tbl:coil-dimensions}. Width and height are the width and height of the rectangular section of the coil, terminal is the length of the terminals, via is the vertical via distance for bringing the second terminal back outside the coil. Trace is the width of the trace, thickness is the thickness of the trace, dist is the distance between parallel traces, and pitch is the distance between the centers of parallel traces.
|
||||
|
||||
\begin{figure}[h]
|
||||
\includegraphics[width=0.48\textwidth]{coil.png}
|
||||
\caption{Final coil design}
|
||||
\label{fig:coil}
|
||||
\end{figure}
|
||||
|
||||
\begin{table}[h!]
|
||||
\caption{Initial coil dimensions}
|
||||
\begin{center}
|
||||
\begin{tabular}{c c c}
|
||||
Dimension & Magnitude & Units \\
|
||||
\hline
|
||||
Width & 4 & mm \\
|
||||
Height & 4 & mm \\
|
||||
Terminal & 700 & $\mu$m \\
|
||||
Via & 200 & $\mu$m \\
|
||||
Trace & 200 & $\mu$m \\
|
||||
Thickness & 50 & $\mu$m \\
|
||||
Dist & 100 & $\mu$m \\
|
||||
Pitch & trace + dist & -- \\
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\label{tbl:coil-dimensions}
|
||||
\end{table}
|
||||
|
||||
After constructing the coil, a box of air, just larger than the coil, was created. Getting the box to fit properly around the coil took some messing with, but the final positioning and dimensions cab be seen in table \ref{tbl:box-dimensions}. This box of air defined the region over which the magnetic field was analyzed.
|
||||
|
||||
|
||||
\begin{table}[h!]
|
||||
\caption{Air box dimensions}
|
||||
\begin{center}
|
||||
\begin{tabular}{c c c}
|
||||
Dimension & Magnitude & Units \\
|
||||
\hline
|
||||
X Position & -width/2 - trace & -- \\
|
||||
Y Position & -1.3 & mm \\
|
||||
Z Position & -1 & mm \\
|
||||
X Size & 2 $\times$ trace + width & -- \\
|
||||
Y Size & length + trace + terminal & -- \\
|
||||
Z Size & 2 & mm \\
|
||||
\end{tabular}
|
||||
\end{center}
|
||||
\label{tbl:box-dimensions}
|
||||
\end{table}
|
||||
|
||||
\section{Results \& Analysis}
|
||||
A 1[A] current was passed through the coil, and the magnetic field was analyzed inside the box of air. In doing so, the inductance of the coil could be found. Using the coil dimensions in table \ref{tbl:coil-dimensions}, the inductance was found to be 22.822[nH]. Given that it is a small coil with only two windings, a small, but non-zero inductance is expected.
|
||||
|
||||
Analyzing equation \ref{eqn:inductance}, the inductance of the coil is directly proportional to magnetic flux. Therefore, inductance can be increased by either making the loop area larger or by increasing the number of turns of the coil.
|
||||
|
||||
\begin{equation}
|
||||
L = {\Phi_M(i) \over i}
|
||||
\label{eqn:inductance}
|
||||
\end{equation}
|
||||
|
||||
The goal of this lab was to determine the effect that trace width had on inductance. Originally, the trace width was increased from 100[$\mu$m] to 300[$\mu$m] at 100[$\mu$m] intervals to decrease analysis time, but the result of this simulation was too low resolution to make out any distinct patterns. To mitigate this, the range was increased to extend up to 400[$\mu$m] with a finer step value of 10[$\mu$m]. This drastically increased the resolution, and the results can be seen in figure \ref{fig:inductance}.
|
||||
|
||||
\begin{figure}[h]
|
||||
\includegraphics[width=0.48\textwidth]{inductance.png}
|
||||
\caption{Inductance as it relates to trace width}
|
||||
\label{fig:inductance}
|
||||
\end{figure}
|
||||
|
||||
The magnetic field produced by the coil will add around parallel wires and cancel out between the wires. This means that as the coils get wider, the magnetic field has a smaller area to travel through. The net effects of the current in the coil can be seen in figure \ref{fig:magnetic-field}.
|
||||
|
||||
\begin{figure}[h]
|
||||
\includegraphics[width=0.48\textwidth]{magnetic-field.png}
|
||||
\caption{Magnetic field around the coil}
|
||||
\label{fig:magnetic-field}
|
||||
\end{figure}
|
||||
|
||||
\section{Conclusions}
|
||||
Looking closer at figure \ref{fig:inductance}, increasing the trace width had a positive effect up until about 230[$\mu$m] before levelling off and trending downwards. Since the coil is made of copper and not a perfect conductor, it has some resistance. Therefore, increasing the trace width will increase cross-sectional area and thereby decrease resistance. This possibly explains why the inductance increases as resistance goes down.
|
||||
|
||||
However, as the traces get wider without increasing the size of the coil, the area of magnetic flux must decrease. This is because the area that contributes the most to the magnetic flux is inside the coil. This combination of behavior could explain the increase and decrease of inductance as a function of trace width.
|
||||
|
||||
Making an inductor on a circuit board therefore poses a few challenges. Firstly, the current must be limited as the trace width impacts inductance. Second, the number of windings is limited by the area given to the coil. Typically, inductors are mounted components that use all three dimensions allotted. This is because they are defined by their geometry and can often be quite difficult to make compact.
|
||||
|
||||
The PCB inductor has its benefits, however. If the required inductance is small, it can be quite easy to put together a PCB inductor to use as a small antenna. Unfortunately, this design takes up a lot of board space and makes the center more or less unusable. For this reason, a better, more compact design should probably be used for most applications.
|
||||
\end{document}
|
18
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-03/border.tex
Normal file
@ -0,0 +1,18 @@
|
||||
\pgfpagesdeclarelayout{boxed}
|
||||
{
|
||||
\edef\pgfpageoptionborder{0pt}
|
||||
}
|
||||
{
|
||||
\pgfpagesphysicalpageoptions
|
||||
{%
|
||||
logical pages=1,%
|
||||
}
|
||||
\pgfpageslogicalpageoptions{1}
|
||||
{
|
||||
border code=\pgfsetlinewidth{2pt}\pgfstroke,%
|
||||
border shrink=\pgfpageoptionborder,%
|
||||
resized width=.95\pgfphysicalwidth,%
|
||||
resized height=.95\pgfphysicalheight,%
|
||||
center=\pgfpoint{.5\pgfphysicalwidth}{.5\pgfphysicalheight}%
|
||||
}%
|
||||
}
|
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-03/coil.png
Normal file
After Width: | Height: | Size: 134 KiB |
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-03/inductance.png
Normal file
After Width: | Height: | Size: 55 KiB |
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-03/magnetic-field.png
Normal file
After Width: | Height: | Size: 261 KiB |
8471
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-04/Coil.step
Normal file
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-04/Coil.stpZ
Normal file
After Width: | Height: | Size: 112 KiB |
1193
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-04/Components-TechDraw.svg
Normal file
After Width: | Height: | Size: 185 KiB |
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-04/CurrentPlot.png
Normal file
After Width: | Height: | Size: 30 KiB |
470
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-04/Lab-04-Band.step
Normal file
@ -0,0 +1,470 @@
|
||||
ISO-10303-21;
|
||||
HEADER;
|
||||
FILE_DESCRIPTION(('FreeCAD Model'),'2;1');
|
||||
FILE_NAME('Open CASCADE Shape Model','2023-10-17T10:56:57',(''),(''),
|
||||
'Open CASCADE STEP processor 7.6','FreeCAD','Unknown');
|
||||
FILE_SCHEMA(('AUTOMOTIVE_DESIGN { 1 0 10303 214 1 1 1 1 }'));
|
||||
ENDSEC;
|
||||
DATA;
|
||||
#1 = APPLICATION_PROTOCOL_DEFINITION('international standard',
|
||||
'automotive_design',2000,#2);
|
||||
#2 = APPLICATION_CONTEXT(
|
||||
'core data for automotive mechanical design processes');
|
||||
#3 = SHAPE_DEFINITION_REPRESENTATION(#4,#10);
|
||||
#4 = PRODUCT_DEFINITION_SHAPE('','',#5);
|
||||
#5 = PRODUCT_DEFINITION('design','',#6,#9);
|
||||
#6 = PRODUCT_DEFINITION_FORMATION('','',#7);
|
||||
#7 = PRODUCT('Band','Band','',(#8));
|
||||
#8 = PRODUCT_CONTEXT('',#2,'mechanical');
|
||||
#9 = PRODUCT_DEFINITION_CONTEXT('part definition',#2,'design');
|
||||
#10 = ADVANCED_BREP_SHAPE_REPRESENTATION('',(#11,#15),#429);
|
||||
#11 = AXIS2_PLACEMENT_3D('',#12,#13,#14);
|
||||
#12 = CARTESIAN_POINT('',(0.,0.,0.));
|
||||
#13 = DIRECTION('',(0.,0.,1.));
|
||||
#14 = DIRECTION('',(1.,0.,-0.));
|
||||
#15 = MANIFOLD_SOLID_BREP('',#16);
|
||||
#16 = CLOSED_SHELL('',(#17,#57,#88,#119,#150,#181,#212,#243,#274,#305,
|
||||
#336,#367,#389,#409));
|
||||
#17 = ADVANCED_FACE('',(#18),#52,.F.);
|
||||
#18 = FACE_BOUND('',#19,.F.);
|
||||
#19 = EDGE_LOOP('',(#20,#30,#38,#46));
|
||||
#20 = ORIENTED_EDGE('',*,*,#21,.T.);
|
||||
#21 = EDGE_CURVE('',#22,#24,#26,.T.);
|
||||
#22 = VERTEX_POINT('',#23);
|
||||
#23 = CARTESIAN_POINT('',(0.353553390593,-0.353553390593,0.));
|
||||
#24 = VERTEX_POINT('',#25);
|
||||
#25 = CARTESIAN_POINT('',(0.353553390593,-0.353553390593,25.));
|
||||
#26 = LINE('',#27,#28);
|
||||
#27 = CARTESIAN_POINT('',(0.353553390593,-0.353553390593,0.));
|
||||
#28 = VECTOR('',#29,1.);
|
||||
#29 = DIRECTION('',(0.,0.,1.));
|
||||
#30 = ORIENTED_EDGE('',*,*,#31,.T.);
|
||||
#31 = EDGE_CURVE('',#24,#32,#34,.T.);
|
||||
#32 = VERTEX_POINT('',#33);
|
||||
#33 = CARTESIAN_POINT('',(0.482962913145,-0.129409522551,25.));
|
||||
#34 = LINE('',#35,#36);
|
||||
#35 = CARTESIAN_POINT('',(0.353553390593,-0.353553390593,25.));
|
||||
#36 = VECTOR('',#37,1.);
|
||||
#37 = DIRECTION('',(0.5,0.866025403784,0.));
|
||||
#38 = ORIENTED_EDGE('',*,*,#39,.F.);
|
||||
#39 = EDGE_CURVE('',#40,#32,#42,.T.);
|
||||
#40 = VERTEX_POINT('',#41);
|
||||
#41 = CARTESIAN_POINT('',(0.482962913145,-0.129409522551,0.));
|
||||
#42 = LINE('',#43,#44);
|
||||
#43 = CARTESIAN_POINT('',(0.482962913145,-0.129409522551,0.));
|
||||
#44 = VECTOR('',#45,1.);
|
||||
#45 = DIRECTION('',(0.,0.,1.));
|
||||
#46 = ORIENTED_EDGE('',*,*,#47,.F.);
|
||||
#47 = EDGE_CURVE('',#22,#40,#48,.T.);
|
||||
#48 = LINE('',#49,#50);
|
||||
#49 = CARTESIAN_POINT('',(0.353553390593,-0.353553390593,0.));
|
||||
#50 = VECTOR('',#51,1.);
|
||||
#51 = DIRECTION('',(0.5,0.866025403784,0.));
|
||||
#52 = PLANE('',#53);
|
||||
#53 = AXIS2_PLACEMENT_3D('',#54,#55,#56);
|
||||
#54 = CARTESIAN_POINT('',(0.353553390593,-0.353553390593,0.));
|
||||
#55 = DIRECTION('',(-0.866025403784,0.5,0.));
|
||||
#56 = DIRECTION('',(0.5,0.866025403784,0.));
|
||||
#57 = ADVANCED_FACE('',(#58),#83,.F.);
|
||||
#58 = FACE_BOUND('',#59,.F.);
|
||||
#59 = EDGE_LOOP('',(#60,#61,#69,#77));
|
||||
#60 = ORIENTED_EDGE('',*,*,#39,.T.);
|
||||
#61 = ORIENTED_EDGE('',*,*,#62,.T.);
|
||||
#62 = EDGE_CURVE('',#32,#63,#65,.T.);
|
||||
#63 = VERTEX_POINT('',#64);
|
||||
#64 = CARTESIAN_POINT('',(0.482962913145,0.129409522551,25.));
|
||||
#65 = LINE('',#66,#67);
|
||||
#66 = CARTESIAN_POINT('',(0.482962913145,-0.129409522551,25.));
|
||||
#67 = VECTOR('',#68,1.);
|
||||
#68 = DIRECTION('',(0.,1.,0.));
|
||||
#69 = ORIENTED_EDGE('',*,*,#70,.F.);
|
||||
#70 = EDGE_CURVE('',#71,#63,#73,.T.);
|
||||
#71 = VERTEX_POINT('',#72);
|
||||
#72 = CARTESIAN_POINT('',(0.482962913145,0.129409522551,0.));
|
||||
#73 = LINE('',#74,#75);
|
||||
#74 = CARTESIAN_POINT('',(0.482962913145,0.129409522551,0.));
|
||||
#75 = VECTOR('',#76,1.);
|
||||
#76 = DIRECTION('',(0.,0.,1.));
|
||||
#77 = ORIENTED_EDGE('',*,*,#78,.F.);
|
||||
#78 = EDGE_CURVE('',#40,#71,#79,.T.);
|
||||
#79 = LINE('',#80,#81);
|
||||
#80 = CARTESIAN_POINT('',(0.482962913145,-0.129409522551,0.));
|
||||
#81 = VECTOR('',#82,1.);
|
||||
#82 = DIRECTION('',(0.,1.,0.));
|
||||
#83 = PLANE('',#84);
|
||||
#84 = AXIS2_PLACEMENT_3D('',#85,#86,#87);
|
||||
#85 = CARTESIAN_POINT('',(0.482962913145,-0.129409522551,0.));
|
||||
#86 = DIRECTION('',(-1.,0.,0.));
|
||||
#87 = DIRECTION('',(0.,1.,0.));
|
||||
#88 = ADVANCED_FACE('',(#89),#114,.F.);
|
||||
#89 = FACE_BOUND('',#90,.F.);
|
||||
#90 = EDGE_LOOP('',(#91,#92,#100,#108));
|
||||
#91 = ORIENTED_EDGE('',*,*,#70,.T.);
|
||||
#92 = ORIENTED_EDGE('',*,*,#93,.T.);
|
||||
#93 = EDGE_CURVE('',#63,#94,#96,.T.);
|
||||
#94 = VERTEX_POINT('',#95);
|
||||
#95 = CARTESIAN_POINT('',(0.353553390593,0.353553390593,25.));
|
||||
#96 = LINE('',#97,#98);
|
||||
#97 = CARTESIAN_POINT('',(0.482962913145,0.129409522551,25.));
|
||||
#98 = VECTOR('',#99,1.);
|
||||
#99 = DIRECTION('',(-0.5,0.866025403784,0.));
|
||||
#100 = ORIENTED_EDGE('',*,*,#101,.F.);
|
||||
#101 = EDGE_CURVE('',#102,#94,#104,.T.);
|
||||
#102 = VERTEX_POINT('',#103);
|
||||
#103 = CARTESIAN_POINT('',(0.353553390593,0.353553390593,0.));
|
||||
#104 = LINE('',#105,#106);
|
||||
#105 = CARTESIAN_POINT('',(0.353553390593,0.353553390593,0.));
|
||||
#106 = VECTOR('',#107,1.);
|
||||
#107 = DIRECTION('',(0.,0.,1.));
|
||||
#108 = ORIENTED_EDGE('',*,*,#109,.F.);
|
||||
#109 = EDGE_CURVE('',#71,#102,#110,.T.);
|
||||
#110 = LINE('',#111,#112);
|
||||
#111 = CARTESIAN_POINT('',(0.482962913145,0.129409522551,0.));
|
||||
#112 = VECTOR('',#113,1.);
|
||||
#113 = DIRECTION('',(-0.5,0.866025403784,0.));
|
||||
#114 = PLANE('',#115);
|
||||
#115 = AXIS2_PLACEMENT_3D('',#116,#117,#118);
|
||||
#116 = CARTESIAN_POINT('',(0.482962913145,0.129409522551,0.));
|
||||
#117 = DIRECTION('',(-0.866025403784,-0.5,0.));
|
||||
#118 = DIRECTION('',(-0.5,0.866025403784,0.));
|
||||
#119 = ADVANCED_FACE('',(#120),#145,.F.);
|
||||
#120 = FACE_BOUND('',#121,.F.);
|
||||
#121 = EDGE_LOOP('',(#122,#123,#131,#139));
|
||||
#122 = ORIENTED_EDGE('',*,*,#101,.T.);
|
||||
#123 = ORIENTED_EDGE('',*,*,#124,.T.);
|
||||
#124 = EDGE_CURVE('',#94,#125,#127,.T.);
|
||||
#125 = VERTEX_POINT('',#126);
|
||||
#126 = CARTESIAN_POINT('',(0.129409522551,0.482962913145,25.));
|
||||
#127 = LINE('',#128,#129);
|
||||
#128 = CARTESIAN_POINT('',(0.353553390593,0.353553390593,25.));
|
||||
#129 = VECTOR('',#130,1.);
|
||||
#130 = DIRECTION('',(-0.866025403784,0.5,0.));
|
||||
#131 = ORIENTED_EDGE('',*,*,#132,.F.);
|
||||
#132 = EDGE_CURVE('',#133,#125,#135,.T.);
|
||||
#133 = VERTEX_POINT('',#134);
|
||||
#134 = CARTESIAN_POINT('',(0.129409522551,0.482962913145,0.));
|
||||
#135 = LINE('',#136,#137);
|
||||
#136 = CARTESIAN_POINT('',(0.129409522551,0.482962913145,0.));
|
||||
#137 = VECTOR('',#138,1.);
|
||||
#138 = DIRECTION('',(0.,0.,1.));
|
||||
#139 = ORIENTED_EDGE('',*,*,#140,.F.);
|
||||
#140 = EDGE_CURVE('',#102,#133,#141,.T.);
|
||||
#141 = LINE('',#142,#143);
|
||||
#142 = CARTESIAN_POINT('',(0.353553390593,0.353553390593,0.));
|
||||
#143 = VECTOR('',#144,1.);
|
||||
#144 = DIRECTION('',(-0.866025403784,0.5,0.));
|
||||
#145 = PLANE('',#146);
|
||||
#146 = AXIS2_PLACEMENT_3D('',#147,#148,#149);
|
||||
#147 = CARTESIAN_POINT('',(0.353553390593,0.353553390593,0.));
|
||||
#148 = DIRECTION('',(-0.5,-0.866025403784,0.));
|
||||
#149 = DIRECTION('',(-0.866025403784,0.5,0.));
|
||||
#150 = ADVANCED_FACE('',(#151),#176,.F.);
|
||||
#151 = FACE_BOUND('',#152,.F.);
|
||||
#152 = EDGE_LOOP('',(#153,#154,#162,#170));
|
||||
#153 = ORIENTED_EDGE('',*,*,#132,.T.);
|
||||
#154 = ORIENTED_EDGE('',*,*,#155,.T.);
|
||||
#155 = EDGE_CURVE('',#125,#156,#158,.T.);
|
||||
#156 = VERTEX_POINT('',#157);
|
||||
#157 = CARTESIAN_POINT('',(-0.129409522551,0.482962913145,25.));
|
||||
#158 = LINE('',#159,#160);
|
||||
#159 = CARTESIAN_POINT('',(0.129409522551,0.482962913145,25.));
|
||||
#160 = VECTOR('',#161,1.);
|
||||
#161 = DIRECTION('',(-1.,0.,0.));
|
||||
#162 = ORIENTED_EDGE('',*,*,#163,.F.);
|
||||
#163 = EDGE_CURVE('',#164,#156,#166,.T.);
|
||||
#164 = VERTEX_POINT('',#165);
|
||||
#165 = CARTESIAN_POINT('',(-0.129409522551,0.482962913145,0.));
|
||||
#166 = LINE('',#167,#168);
|
||||
#167 = CARTESIAN_POINT('',(-0.129409522551,0.482962913145,0.));
|
||||
#168 = VECTOR('',#169,1.);
|
||||
#169 = DIRECTION('',(0.,0.,1.));
|
||||
#170 = ORIENTED_EDGE('',*,*,#171,.F.);
|
||||
#171 = EDGE_CURVE('',#133,#164,#172,.T.);
|
||||
#172 = LINE('',#173,#174);
|
||||
#173 = CARTESIAN_POINT('',(0.129409522551,0.482962913145,0.));
|
||||
#174 = VECTOR('',#175,1.);
|
||||
#175 = DIRECTION('',(-1.,0.,0.));
|
||||
#176 = PLANE('',#177);
|
||||
#177 = AXIS2_PLACEMENT_3D('',#178,#179,#180);
|
||||
#178 = CARTESIAN_POINT('',(0.129409522551,0.482962913145,0.));
|
||||
#179 = DIRECTION('',(0.,-1.,0.));
|
||||
#180 = DIRECTION('',(-1.,0.,0.));
|
||||
#181 = ADVANCED_FACE('',(#182),#207,.F.);
|
||||
#182 = FACE_BOUND('',#183,.F.);
|
||||
#183 = EDGE_LOOP('',(#184,#185,#193,#201));
|
||||
#184 = ORIENTED_EDGE('',*,*,#163,.T.);
|
||||
#185 = ORIENTED_EDGE('',*,*,#186,.T.);
|
||||
#186 = EDGE_CURVE('',#156,#187,#189,.T.);
|
||||
#187 = VERTEX_POINT('',#188);
|
||||
#188 = CARTESIAN_POINT('',(-0.353553390593,0.353553390593,25.));
|
||||
#189 = LINE('',#190,#191);
|
||||
#190 = CARTESIAN_POINT('',(-0.129409522551,0.482962913145,25.));
|
||||
#191 = VECTOR('',#192,1.);
|
||||
#192 = DIRECTION('',(-0.866025403784,-0.5,0.));
|
||||
#193 = ORIENTED_EDGE('',*,*,#194,.F.);
|
||||
#194 = EDGE_CURVE('',#195,#187,#197,.T.);
|
||||
#195 = VERTEX_POINT('',#196);
|
||||
#196 = CARTESIAN_POINT('',(-0.353553390593,0.353553390593,0.));
|
||||
#197 = LINE('',#198,#199);
|
||||
#198 = CARTESIAN_POINT('',(-0.353553390593,0.353553390593,0.));
|
||||
#199 = VECTOR('',#200,1.);
|
||||
#200 = DIRECTION('',(0.,0.,1.));
|
||||
#201 = ORIENTED_EDGE('',*,*,#202,.F.);
|
||||
#202 = EDGE_CURVE('',#164,#195,#203,.T.);
|
||||
#203 = LINE('',#204,#205);
|
||||
#204 = CARTESIAN_POINT('',(-0.129409522551,0.482962913145,0.));
|
||||
#205 = VECTOR('',#206,1.);
|
||||
#206 = DIRECTION('',(-0.866025403784,-0.5,0.));
|
||||
#207 = PLANE('',#208);
|
||||
#208 = AXIS2_PLACEMENT_3D('',#209,#210,#211);
|
||||
#209 = CARTESIAN_POINT('',(-0.129409522551,0.482962913145,0.));
|
||||
#210 = DIRECTION('',(0.5,-0.866025403784,0.));
|
||||
#211 = DIRECTION('',(-0.866025403784,-0.5,0.));
|
||||
#212 = ADVANCED_FACE('',(#213),#238,.F.);
|
||||
#213 = FACE_BOUND('',#214,.F.);
|
||||
#214 = EDGE_LOOP('',(#215,#216,#224,#232));
|
||||
#215 = ORIENTED_EDGE('',*,*,#194,.T.);
|
||||
#216 = ORIENTED_EDGE('',*,*,#217,.T.);
|
||||
#217 = EDGE_CURVE('',#187,#218,#220,.T.);
|
||||
#218 = VERTEX_POINT('',#219);
|
||||
#219 = CARTESIAN_POINT('',(-0.482962913145,0.129409522551,25.));
|
||||
#220 = LINE('',#221,#222);
|
||||
#221 = CARTESIAN_POINT('',(-0.353553390593,0.353553390593,25.));
|
||||
#222 = VECTOR('',#223,1.);
|
||||
#223 = DIRECTION('',(-0.5,-0.866025403784,0.));
|
||||
#224 = ORIENTED_EDGE('',*,*,#225,.F.);
|
||||
#225 = EDGE_CURVE('',#226,#218,#228,.T.);
|
||||
#226 = VERTEX_POINT('',#227);
|
||||
#227 = CARTESIAN_POINT('',(-0.482962913145,0.129409522551,0.));
|
||||
#228 = LINE('',#229,#230);
|
||||
#229 = CARTESIAN_POINT('',(-0.482962913145,0.129409522551,0.));
|
||||
#230 = VECTOR('',#231,1.);
|
||||
#231 = DIRECTION('',(0.,0.,1.));
|
||||
#232 = ORIENTED_EDGE('',*,*,#233,.F.);
|
||||
#233 = EDGE_CURVE('',#195,#226,#234,.T.);
|
||||
#234 = LINE('',#235,#236);
|
||||
#235 = CARTESIAN_POINT('',(-0.353553390593,0.353553390593,0.));
|
||||
#236 = VECTOR('',#237,1.);
|
||||
#237 = DIRECTION('',(-0.5,-0.866025403784,0.));
|
||||
#238 = PLANE('',#239);
|
||||
#239 = AXIS2_PLACEMENT_3D('',#240,#241,#242);
|
||||
#240 = CARTESIAN_POINT('',(-0.353553390593,0.353553390593,0.));
|
||||
#241 = DIRECTION('',(0.866025403784,-0.5,0.));
|
||||
#242 = DIRECTION('',(-0.5,-0.866025403784,0.));
|
||||
#243 = ADVANCED_FACE('',(#244),#269,.F.);
|
||||
#244 = FACE_BOUND('',#245,.F.);
|
||||
#245 = EDGE_LOOP('',(#246,#247,#255,#263));
|
||||
#246 = ORIENTED_EDGE('',*,*,#225,.T.);
|
||||
#247 = ORIENTED_EDGE('',*,*,#248,.T.);
|
||||
#248 = EDGE_CURVE('',#218,#249,#251,.T.);
|
||||
#249 = VERTEX_POINT('',#250);
|
||||
#250 = CARTESIAN_POINT('',(-0.482962913145,-0.129409522551,25.));
|
||||
#251 = LINE('',#252,#253);
|
||||
#252 = CARTESIAN_POINT('',(-0.482962913145,0.129409522551,25.));
|
||||
#253 = VECTOR('',#254,1.);
|
||||
#254 = DIRECTION('',(-2.1E-16,-1.,0.));
|
||||
#255 = ORIENTED_EDGE('',*,*,#256,.F.);
|
||||
#256 = EDGE_CURVE('',#257,#249,#259,.T.);
|
||||
#257 = VERTEX_POINT('',#258);
|
||||
#258 = CARTESIAN_POINT('',(-0.482962913145,-0.129409522551,0.));
|
||||
#259 = LINE('',#260,#261);
|
||||
#260 = CARTESIAN_POINT('',(-0.482962913145,-0.129409522551,0.));
|
||||
#261 = VECTOR('',#262,1.);
|
||||
#262 = DIRECTION('',(0.,0.,1.));
|
||||
#263 = ORIENTED_EDGE('',*,*,#264,.F.);
|
||||
#264 = EDGE_CURVE('',#226,#257,#265,.T.);
|
||||
#265 = LINE('',#266,#267);
|
||||
#266 = CARTESIAN_POINT('',(-0.482962913145,0.129409522551,0.));
|
||||
#267 = VECTOR('',#268,1.);
|
||||
#268 = DIRECTION('',(-2.1E-16,-1.,0.));
|
||||
#269 = PLANE('',#270);
|
||||
#270 = AXIS2_PLACEMENT_3D('',#271,#272,#273);
|
||||
#271 = CARTESIAN_POINT('',(-0.482962913145,0.129409522551,0.));
|
||||
#272 = DIRECTION('',(1.,-2.1E-16,0.));
|
||||
#273 = DIRECTION('',(-2.1E-16,-1.,0.));
|
||||
#274 = ADVANCED_FACE('',(#275),#300,.F.);
|
||||
#275 = FACE_BOUND('',#276,.F.);
|
||||
#276 = EDGE_LOOP('',(#277,#278,#286,#294));
|
||||
#277 = ORIENTED_EDGE('',*,*,#256,.T.);
|
||||
#278 = ORIENTED_EDGE('',*,*,#279,.T.);
|
||||
#279 = EDGE_CURVE('',#249,#280,#282,.T.);
|
||||
#280 = VERTEX_POINT('',#281);
|
||||
#281 = CARTESIAN_POINT('',(-0.353553390593,-0.353553390593,25.));
|
||||
#282 = LINE('',#283,#284);
|
||||
#283 = CARTESIAN_POINT('',(-0.482962913145,-0.129409522551,25.));
|
||||
#284 = VECTOR('',#285,1.);
|
||||
#285 = DIRECTION('',(0.5,-0.866025403784,0.));
|
||||
#286 = ORIENTED_EDGE('',*,*,#287,.F.);
|
||||
#287 = EDGE_CURVE('',#288,#280,#290,.T.);
|
||||
#288 = VERTEX_POINT('',#289);
|
||||
#289 = CARTESIAN_POINT('',(-0.353553390593,-0.353553390593,0.));
|
||||
#290 = LINE('',#291,#292);
|
||||
#291 = CARTESIAN_POINT('',(-0.353553390593,-0.353553390593,0.));
|
||||
#292 = VECTOR('',#293,1.);
|
||||
#293 = DIRECTION('',(0.,0.,1.));
|
||||
#294 = ORIENTED_EDGE('',*,*,#295,.F.);
|
||||
#295 = EDGE_CURVE('',#257,#288,#296,.T.);
|
||||
#296 = LINE('',#297,#298);
|
||||
#297 = CARTESIAN_POINT('',(-0.482962913145,-0.129409522551,0.));
|
||||
#298 = VECTOR('',#299,1.);
|
||||
#299 = DIRECTION('',(0.5,-0.866025403784,0.));
|
||||
#300 = PLANE('',#301);
|
||||
#301 = AXIS2_PLACEMENT_3D('',#302,#303,#304);
|
||||
#302 = CARTESIAN_POINT('',(-0.482962913145,-0.129409522551,0.));
|
||||
#303 = DIRECTION('',(0.866025403784,0.5,0.));
|
||||
#304 = DIRECTION('',(0.5,-0.866025403784,0.));
|
||||
#305 = ADVANCED_FACE('',(#306),#331,.F.);
|
||||
#306 = FACE_BOUND('',#307,.F.);
|
||||
#307 = EDGE_LOOP('',(#308,#309,#317,#325));
|
||||
#308 = ORIENTED_EDGE('',*,*,#287,.T.);
|
||||
#309 = ORIENTED_EDGE('',*,*,#310,.T.);
|
||||
#310 = EDGE_CURVE('',#280,#311,#313,.T.);
|
||||
#311 = VERTEX_POINT('',#312);
|
||||
#312 = CARTESIAN_POINT('',(-0.129409522551,-0.482962913145,25.));
|
||||
#313 = LINE('',#314,#315);
|
||||
#314 = CARTESIAN_POINT('',(-0.353553390593,-0.353553390593,25.));
|
||||
#315 = VECTOR('',#316,1.);
|
||||
#316 = DIRECTION('',(0.866025403784,-0.5,0.));
|
||||
#317 = ORIENTED_EDGE('',*,*,#318,.F.);
|
||||
#318 = EDGE_CURVE('',#319,#311,#321,.T.);
|
||||
#319 = VERTEX_POINT('',#320);
|
||||
#320 = CARTESIAN_POINT('',(-0.129409522551,-0.482962913145,0.));
|
||||
#321 = LINE('',#322,#323);
|
||||
#322 = CARTESIAN_POINT('',(-0.129409522551,-0.482962913145,0.));
|
||||
#323 = VECTOR('',#324,1.);
|
||||
#324 = DIRECTION('',(0.,0.,1.));
|
||||
#325 = ORIENTED_EDGE('',*,*,#326,.F.);
|
||||
#326 = EDGE_CURVE('',#288,#319,#327,.T.);
|
||||
#327 = LINE('',#328,#329);
|
||||
#328 = CARTESIAN_POINT('',(-0.353553390593,-0.353553390593,0.));
|
||||
#329 = VECTOR('',#330,1.);
|
||||
#330 = DIRECTION('',(0.866025403784,-0.5,0.));
|
||||
#331 = PLANE('',#332);
|
||||
#332 = AXIS2_PLACEMENT_3D('',#333,#334,#335);
|
||||
#333 = CARTESIAN_POINT('',(-0.353553390593,-0.353553390593,0.));
|
||||
#334 = DIRECTION('',(0.5,0.866025403784,0.));
|
||||
#335 = DIRECTION('',(0.866025403784,-0.5,0.));
|
||||
#336 = ADVANCED_FACE('',(#337),#362,.F.);
|
||||
#337 = FACE_BOUND('',#338,.F.);
|
||||
#338 = EDGE_LOOP('',(#339,#340,#348,#356));
|
||||
#339 = ORIENTED_EDGE('',*,*,#318,.T.);
|
||||
#340 = ORIENTED_EDGE('',*,*,#341,.T.);
|
||||
#341 = EDGE_CURVE('',#311,#342,#344,.T.);
|
||||
#342 = VERTEX_POINT('',#343);
|
||||
#343 = CARTESIAN_POINT('',(0.129409522551,-0.482962913145,25.));
|
||||
#344 = LINE('',#345,#346);
|
||||
#345 = CARTESIAN_POINT('',(-0.129409522551,-0.482962913145,25.));
|
||||
#346 = VECTOR('',#347,1.);
|
||||
#347 = DIRECTION('',(1.,-4.3E-16,0.));
|
||||
#348 = ORIENTED_EDGE('',*,*,#349,.F.);
|
||||
#349 = EDGE_CURVE('',#350,#342,#352,.T.);
|
||||
#350 = VERTEX_POINT('',#351);
|
||||
#351 = CARTESIAN_POINT('',(0.129409522551,-0.482962913145,0.));
|
||||
#352 = LINE('',#353,#354);
|
||||
#353 = CARTESIAN_POINT('',(0.129409522551,-0.482962913145,0.));
|
||||
#354 = VECTOR('',#355,1.);
|
||||
#355 = DIRECTION('',(0.,0.,1.));
|
||||
#356 = ORIENTED_EDGE('',*,*,#357,.F.);
|
||||
#357 = EDGE_CURVE('',#319,#350,#358,.T.);
|
||||
#358 = LINE('',#359,#360);
|
||||
#359 = CARTESIAN_POINT('',(-0.129409522551,-0.482962913145,0.));
|
||||
#360 = VECTOR('',#361,1.);
|
||||
#361 = DIRECTION('',(1.,-4.3E-16,0.));
|
||||
#362 = PLANE('',#363);
|
||||
#363 = AXIS2_PLACEMENT_3D('',#364,#365,#366);
|
||||
#364 = CARTESIAN_POINT('',(-0.129409522551,-0.482962913145,0.));
|
||||
#365 = DIRECTION('',(4.3E-16,1.,0.));
|
||||
#366 = DIRECTION('',(1.,-4.3E-16,0.));
|
||||
#367 = ADVANCED_FACE('',(#368),#384,.F.);
|
||||
#368 = FACE_BOUND('',#369,.F.);
|
||||
#369 = EDGE_LOOP('',(#370,#371,#377,#378));
|
||||
#370 = ORIENTED_EDGE('',*,*,#349,.T.);
|
||||
#371 = ORIENTED_EDGE('',*,*,#372,.T.);
|
||||
#372 = EDGE_CURVE('',#342,#24,#373,.T.);
|
||||
#373 = LINE('',#374,#375);
|
||||
#374 = CARTESIAN_POINT('',(0.129409522551,-0.482962913145,25.));
|
||||
#375 = VECTOR('',#376,1.);
|
||||
#376 = DIRECTION('',(0.866025403784,0.5,0.));
|
||||
#377 = ORIENTED_EDGE('',*,*,#21,.F.);
|
||||
#378 = ORIENTED_EDGE('',*,*,#379,.F.);
|
||||
#379 = EDGE_CURVE('',#350,#22,#380,.T.);
|
||||
#380 = LINE('',#381,#382);
|
||||
#381 = CARTESIAN_POINT('',(0.129409522551,-0.482962913145,0.));
|
||||
#382 = VECTOR('',#383,1.);
|
||||
#383 = DIRECTION('',(0.866025403784,0.5,0.));
|
||||
#384 = PLANE('',#385);
|
||||
#385 = AXIS2_PLACEMENT_3D('',#386,#387,#388);
|
||||
#386 = CARTESIAN_POINT('',(0.129409522551,-0.482962913145,0.));
|
||||
#387 = DIRECTION('',(-0.5,0.866025403784,0.));
|
||||
#388 = DIRECTION('',(0.866025403784,0.5,0.));
|
||||
#389 = ADVANCED_FACE('',(#390),#404,.F.);
|
||||
#390 = FACE_BOUND('',#391,.F.);
|
||||
#391 = EDGE_LOOP('',(#392,#393,#394,#395,#396,#397,#398,#399,#400,#401,
|
||||
#402,#403));
|
||||
#392 = ORIENTED_EDGE('',*,*,#47,.T.);
|
||||
#393 = ORIENTED_EDGE('',*,*,#78,.T.);
|
||||
#394 = ORIENTED_EDGE('',*,*,#109,.T.);
|
||||
#395 = ORIENTED_EDGE('',*,*,#140,.T.);
|
||||
#396 = ORIENTED_EDGE('',*,*,#171,.T.);
|
||||
#397 = ORIENTED_EDGE('',*,*,#202,.T.);
|
||||
#398 = ORIENTED_EDGE('',*,*,#233,.T.);
|
||||
#399 = ORIENTED_EDGE('',*,*,#264,.T.);
|
||||
#400 = ORIENTED_EDGE('',*,*,#295,.T.);
|
||||
#401 = ORIENTED_EDGE('',*,*,#326,.T.);
|
||||
#402 = ORIENTED_EDGE('',*,*,#357,.T.);
|
||||
#403 = ORIENTED_EDGE('',*,*,#379,.T.);
|
||||
#404 = PLANE('',#405);
|
||||
#405 = AXIS2_PLACEMENT_3D('',#406,#407,#408);
|
||||
#406 = CARTESIAN_POINT('',(0.,-3.E-17,0.));
|
||||
#407 = DIRECTION('',(0.,0.,1.));
|
||||
#408 = DIRECTION('',(1.,0.,0.));
|
||||
#409 = ADVANCED_FACE('',(#410),#424,.T.);
|
||||
#410 = FACE_BOUND('',#411,.T.);
|
||||
#411 = EDGE_LOOP('',(#412,#413,#414,#415,#416,#417,#418,#419,#420,#421,
|
||||
#422,#423));
|
||||
#412 = ORIENTED_EDGE('',*,*,#31,.T.);
|
||||
#413 = ORIENTED_EDGE('',*,*,#62,.T.);
|
||||
#414 = ORIENTED_EDGE('',*,*,#93,.T.);
|
||||
#415 = ORIENTED_EDGE('',*,*,#124,.T.);
|
||||
#416 = ORIENTED_EDGE('',*,*,#155,.T.);
|
||||
#417 = ORIENTED_EDGE('',*,*,#186,.T.);
|
||||
#418 = ORIENTED_EDGE('',*,*,#217,.T.);
|
||||
#419 = ORIENTED_EDGE('',*,*,#248,.T.);
|
||||
#420 = ORIENTED_EDGE('',*,*,#279,.T.);
|
||||
#421 = ORIENTED_EDGE('',*,*,#310,.T.);
|
||||
#422 = ORIENTED_EDGE('',*,*,#341,.T.);
|
||||
#423 = ORIENTED_EDGE('',*,*,#372,.T.);
|
||||
#424 = PLANE('',#425);
|
||||
#425 = AXIS2_PLACEMENT_3D('',#426,#427,#428);
|
||||
#426 = CARTESIAN_POINT('',(0.,-3.E-17,25.));
|
||||
#427 = DIRECTION('',(0.,0.,1.));
|
||||
#428 = DIRECTION('',(1.,0.,0.));
|
||||
#429 = ( GEOMETRIC_REPRESENTATION_CONTEXT(3)
|
||||
GLOBAL_UNCERTAINTY_ASSIGNED_CONTEXT((#433)) GLOBAL_UNIT_ASSIGNED_CONTEXT
|
||||
((#430,#431,#432)) REPRESENTATION_CONTEXT('Context #1',
|
||||
'3D Context with UNIT and UNCERTAINTY') );
|
||||
#430 = ( LENGTH_UNIT() NAMED_UNIT(*) SI_UNIT(.MILLI.,.METRE.) );
|
||||
#431 = ( NAMED_UNIT(*) PLANE_ANGLE_UNIT() SI_UNIT($,.RADIAN.) );
|
||||
#432 = ( NAMED_UNIT(*) SI_UNIT($,.STERADIAN.) SOLID_ANGLE_UNIT() );
|
||||
#433 = UNCERTAINTY_MEASURE_WITH_UNIT(LENGTH_MEASURE(1.E-07),#430,
|
||||
'distance_accuracy_value','confusion accuracy');
|
||||
#434 = PRODUCT_RELATED_PRODUCT_CATEGORY('part',$,(#7));
|
||||
#435 = MECHANICAL_DESIGN_GEOMETRIC_PRESENTATION_REPRESENTATION('',(#436)
|
||||
,#429);
|
||||
#436 = STYLED_ITEM('color',(#437),#15);
|
||||
#437 = PRESENTATION_STYLE_ASSIGNMENT((#438,#446));
|
||||
#438 = SURFACE_STYLE_USAGE(.BOTH.,#439);
|
||||
#439 = SURFACE_SIDE_STYLE('',(#440,#444));
|
||||
#440 = SURFACE_STYLE_FILL_AREA(#441);
|
||||
#441 = FILL_AREA_STYLE('',(#442));
|
||||
#442 = FILL_AREA_STYLE_COLOUR('',#443);
|
||||
#443 = COLOUR_RGB('',0.666666687201,1.,1.);
|
||||
#444 = SURFACE_STYLE_RENDERING_WITH_PROPERTIES(.NORMAL_SHADING.,#443,(
|
||||
#445));
|
||||
#445 = SURFACE_STYLE_TRANSPARENT(0.850000023842);
|
||||
#446 = CURVE_STYLE('',#447,POSITIVE_LENGTH_MEASURE(0.1),#448);
|
||||
#447 = DRAUGHTING_PRE_DEFINED_CURVE_FONT('continuous');
|
||||
#448 = COLOUR_RGB('',9.803921802644E-02,9.803921802644E-02,
|
||||
9.803921802644E-02);
|
||||
ENDSEC;
|
||||
END-ISO-10303-21;
|
5653
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-04/Lab-04-Coil-Square.step
Normal file
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-04/Lab-04.FCStd
Normal file
789
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-04/Magnet.step
Normal file
@ -0,0 +1,789 @@
|
||||
ISO-10303-21;
|
||||
HEADER;
|
||||
FILE_DESCRIPTION(('FreeCAD Model'),'2;1');
|
||||
FILE_NAME('Open CASCADE Shape Model','2023-10-16T17:56:47',(''),(''),
|
||||
'Open CASCADE STEP processor 7.6','FreeCAD','Unknown');
|
||||
FILE_SCHEMA(('AUTOMOTIVE_DESIGN { 1 0 10303 214 1 1 1 1 }'));
|
||||
ENDSEC;
|
||||
DATA;
|
||||
#1 = APPLICATION_PROTOCOL_DEFINITION('international standard',
|
||||
'automotive_design',2000,#2);
|
||||
#2 = APPLICATION_CONTEXT(
|
||||
'core data for automotive mechanical design processes');
|
||||
#3 = SHAPE_DEFINITION_REPRESENTATION(#4,#10);
|
||||
#4 = PRODUCT_DEFINITION_SHAPE('','',#5);
|
||||
#5 = PRODUCT_DEFINITION('design','',#6,#9);
|
||||
#6 = PRODUCT_DEFINITION_FORMATION('','',#7);
|
||||
#7 = PRODUCT('Magnet','Magnet','',(#8));
|
||||
#8 = PRODUCT_CONTEXT('',#2,'mechanical');
|
||||
#9 = PRODUCT_DEFINITION_CONTEXT('part definition',#2,'design');
|
||||
#10 = ADVANCED_BREP_SHAPE_REPRESENTATION('',(#11,#15),#657);
|
||||
#11 = AXIS2_PLACEMENT_3D('',#12,#13,#14);
|
||||
#12 = CARTESIAN_POINT('',(0.,0.,0.));
|
||||
#13 = DIRECTION('',(0.,0.,1.));
|
||||
#14 = DIRECTION('',(1.,0.,-0.));
|
||||
#15 = MANIFOLD_SOLID_BREP('',#16);
|
||||
#16 = CLOSED_SHELL('',(#17,#137,#213,#289,#365,#441,#517,#588,#635,#646)
|
||||
);
|
||||
#17 = ADVANCED_FACE('',(#18),#32,.F.);
|
||||
#18 = FACE_BOUND('',#19,.F.);
|
||||
#19 = EDGE_LOOP('',(#20,#55,#83,#111));
|
||||
#20 = ORIENTED_EDGE('',*,*,#21,.T.);
|
||||
#21 = EDGE_CURVE('',#22,#24,#26,.T.);
|
||||
#22 = VERTEX_POINT('',#23);
|
||||
#23 = CARTESIAN_POINT('',(0.230969883127,9.567085809315E-02,0.));
|
||||
#24 = VERTEX_POINT('',#25);
|
||||
#25 = CARTESIAN_POINT('',(0.230969883127,9.567085809315E-02,1.));
|
||||
#26 = SURFACE_CURVE('',#27,(#31,#43),.PCURVE_S1.);
|
||||
#27 = LINE('',#28,#29);
|
||||
#28 = CARTESIAN_POINT('',(0.230969883127,9.567085809315E-02,0.));
|
||||
#29 = VECTOR('',#30,1.);
|
||||
#30 = DIRECTION('',(0.,0.,1.));
|
||||
#31 = PCURVE('',#32,#37);
|
||||
#32 = PLANE('',#33);
|
||||
#33 = AXIS2_PLACEMENT_3D('',#34,#35,#36);
|
||||
#34 = CARTESIAN_POINT('',(0.230969883127,9.567085809315E-02,0.));
|
||||
#35 = DIRECTION('',(-0.707106781183,-0.70710678119,0.));
|
||||
#36 = DIRECTION('',(-0.70710678119,0.707106781183,0.));
|
||||
#37 = DEFINITIONAL_REPRESENTATION('',(#38),#42);
|
||||
#38 = LINE('',#39,#40);
|
||||
#39 = CARTESIAN_POINT('',(0.,0.));
|
||||
#40 = VECTOR('',#41,1.);
|
||||
#41 = DIRECTION('',(0.,-1.));
|
||||
#42 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#43 = PCURVE('',#44,#49);
|
||||
#44 = PLANE('',#45);
|
||||
#45 = AXIS2_PLACEMENT_3D('',#46,#47,#48);
|
||||
#46 = CARTESIAN_POINT('',(0.230969883127,-9.567085809325E-02,0.));
|
||||
#47 = DIRECTION('',(-1.,2.187469040342E-13,0.));
|
||||
#48 = DIRECTION('',(2.187469040342E-13,1.,0.));
|
||||
#49 = DEFINITIONAL_REPRESENTATION('',(#50),#54);
|
||||
#50 = LINE('',#51,#52);
|
||||
#51 = CARTESIAN_POINT('',(0.191341716186,0.));
|
||||
#52 = VECTOR('',#53,1.);
|
||||
#53 = DIRECTION('',(0.,-1.));
|
||||
#54 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#55 = ORIENTED_EDGE('',*,*,#56,.T.);
|
||||
#56 = EDGE_CURVE('',#24,#57,#59,.T.);
|
||||
#57 = VERTEX_POINT('',#58);
|
||||
#58 = CARTESIAN_POINT('',(9.567085809065E-02,0.230969883128,1.));
|
||||
#59 = SURFACE_CURVE('',#60,(#64,#71),.PCURVE_S1.);
|
||||
#60 = LINE('',#61,#62);
|
||||
#61 = CARTESIAN_POINT('',(0.230969883127,9.567085809315E-02,1.));
|
||||
#62 = VECTOR('',#63,1.);
|
||||
#63 = DIRECTION('',(-0.70710678119,0.707106781183,0.));
|
||||
#64 = PCURVE('',#32,#65);
|
||||
#65 = DEFINITIONAL_REPRESENTATION('',(#66),#70);
|
||||
#66 = LINE('',#67,#68);
|
||||
#67 = CARTESIAN_POINT('',(0.,-1.));
|
||||
#68 = VECTOR('',#69,1.);
|
||||
#69 = DIRECTION('',(1.,0.));
|
||||
#70 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#71 = PCURVE('',#72,#77);
|
||||
#72 = PLANE('',#73);
|
||||
#73 = AXIS2_PLACEMENT_3D('',#74,#75,#76);
|
||||
#74 = CARTESIAN_POINT('',(-4.236136062336E-14,-8.958895138361E-14,1.));
|
||||
#75 = DIRECTION('',(0.,0.,1.));
|
||||
#76 = DIRECTION('',(1.,0.,0.));
|
||||
#77 = DEFINITIONAL_REPRESENTATION('',(#78),#82);
|
||||
#78 = LINE('',#79,#80);
|
||||
#79 = CARTESIAN_POINT('',(0.230969883127,9.567085809324E-02));
|
||||
#80 = VECTOR('',#81,1.);
|
||||
#81 = DIRECTION('',(-0.70710678119,0.707106781183));
|
||||
#82 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#83 = ORIENTED_EDGE('',*,*,#84,.F.);
|
||||
#84 = EDGE_CURVE('',#85,#57,#87,.T.);
|
||||
#85 = VERTEX_POINT('',#86);
|
||||
#86 = CARTESIAN_POINT('',(9.567085809065E-02,0.230969883128,0.));
|
||||
#87 = SURFACE_CURVE('',#88,(#92,#99),.PCURVE_S1.);
|
||||
#88 = LINE('',#89,#90);
|
||||
#89 = CARTESIAN_POINT('',(9.567085809065E-02,0.230969883128,0.));
|
||||
#90 = VECTOR('',#91,1.);
|
||||
#91 = DIRECTION('',(0.,0.,1.));
|
||||
#92 = PCURVE('',#32,#93);
|
||||
#93 = DEFINITIONAL_REPRESENTATION('',(#94),#98);
|
||||
#94 = LINE('',#95,#96);
|
||||
#95 = CARTESIAN_POINT('',(0.191341716181,0.));
|
||||
#96 = VECTOR('',#97,1.);
|
||||
#97 = DIRECTION('',(0.,-1.));
|
||||
#98 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#99 = PCURVE('',#100,#105);
|
||||
#100 = PLANE('',#101);
|
||||
#101 = AXIS2_PLACEMENT_3D('',#102,#103,#104);
|
||||
#102 = CARTESIAN_POINT('',(9.567085809065E-02,0.230969883128,0.));
|
||||
#103 = DIRECTION('',(0.,-1.,0.));
|
||||
#104 = DIRECTION('',(-1.,0.,0.));
|
||||
#105 = DEFINITIONAL_REPRESENTATION('',(#106),#110);
|
||||
#106 = LINE('',#107,#108);
|
||||
#107 = CARTESIAN_POINT('',(0.,-0.));
|
||||
#108 = VECTOR('',#109,1.);
|
||||
#109 = DIRECTION('',(0.,-1.));
|
||||
#110 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#111 = ORIENTED_EDGE('',*,*,#112,.F.);
|
||||
#112 = EDGE_CURVE('',#22,#85,#113,.T.);
|
||||
#113 = SURFACE_CURVE('',#114,(#118,#125),.PCURVE_S1.);
|
||||
#114 = LINE('',#115,#116);
|
||||
#115 = CARTESIAN_POINT('',(0.230969883127,9.567085809315E-02,0.));
|
||||
#116 = VECTOR('',#117,1.);
|
||||
#117 = DIRECTION('',(-0.70710678119,0.707106781183,0.));
|
||||
#118 = PCURVE('',#32,#119);
|
||||
#119 = DEFINITIONAL_REPRESENTATION('',(#120),#124);
|
||||
#120 = LINE('',#121,#122);
|
||||
#121 = CARTESIAN_POINT('',(0.,0.));
|
||||
#122 = VECTOR('',#123,1.);
|
||||
#123 = DIRECTION('',(1.,0.));
|
||||
#124 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#125 = PCURVE('',#126,#131);
|
||||
#126 = PLANE('',#127);
|
||||
#127 = AXIS2_PLACEMENT_3D('',#128,#129,#130);
|
||||
#128 = CARTESIAN_POINT('',(-4.236136062336E-14,-8.958895138361E-14,0.));
|
||||
#129 = DIRECTION('',(0.,0.,1.));
|
||||
#130 = DIRECTION('',(1.,0.,0.));
|
||||
#131 = DEFINITIONAL_REPRESENTATION('',(#132),#136);
|
||||
#132 = LINE('',#133,#134);
|
||||
#133 = CARTESIAN_POINT('',(0.230969883127,9.567085809324E-02));
|
||||
#134 = VECTOR('',#135,1.);
|
||||
#135 = DIRECTION('',(-0.70710678119,0.707106781183));
|
||||
#136 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#137 = ADVANCED_FACE('',(#138),#100,.F.);
|
||||
#138 = FACE_BOUND('',#139,.F.);
|
||||
#139 = EDGE_LOOP('',(#140,#141,#164,#192));
|
||||
#140 = ORIENTED_EDGE('',*,*,#84,.T.);
|
||||
#141 = ORIENTED_EDGE('',*,*,#142,.T.);
|
||||
#142 = EDGE_CURVE('',#57,#143,#145,.T.);
|
||||
#143 = VERTEX_POINT('',#144);
|
||||
#144 = CARTESIAN_POINT('',(-9.567085809065E-02,0.230969883128,1.));
|
||||
#145 = SURFACE_CURVE('',#146,(#150,#157),.PCURVE_S1.);
|
||||
#146 = LINE('',#147,#148);
|
||||
#147 = CARTESIAN_POINT('',(9.567085809065E-02,0.230969883128,1.));
|
||||
#148 = VECTOR('',#149,1.);
|
||||
#149 = DIRECTION('',(-1.,0.,0.));
|
||||
#150 = PCURVE('',#100,#151);
|
||||
#151 = DEFINITIONAL_REPRESENTATION('',(#152),#156);
|
||||
#152 = LINE('',#153,#154);
|
||||
#153 = CARTESIAN_POINT('',(0.,-1.));
|
||||
#154 = VECTOR('',#155,1.);
|
||||
#155 = DIRECTION('',(1.,0.));
|
||||
#156 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#157 = PCURVE('',#72,#158);
|
||||
#158 = DEFINITIONAL_REPRESENTATION('',(#159),#163);
|
||||
#159 = LINE('',#160,#161);
|
||||
#160 = CARTESIAN_POINT('',(9.567085809069E-02,0.230969883128));
|
||||
#161 = VECTOR('',#162,1.);
|
||||
#162 = DIRECTION('',(-1.,0.));
|
||||
#163 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#164 = ORIENTED_EDGE('',*,*,#165,.F.);
|
||||
#165 = EDGE_CURVE('',#166,#143,#168,.T.);
|
||||
#166 = VERTEX_POINT('',#167);
|
||||
#167 = CARTESIAN_POINT('',(-9.567085809065E-02,0.230969883128,0.));
|
||||
#168 = SURFACE_CURVE('',#169,(#173,#180),.PCURVE_S1.);
|
||||
#169 = LINE('',#170,#171);
|
||||
#170 = CARTESIAN_POINT('',(-9.567085809065E-02,0.230969883128,0.));
|
||||
#171 = VECTOR('',#172,1.);
|
||||
#172 = DIRECTION('',(0.,0.,1.));
|
||||
#173 = PCURVE('',#100,#174);
|
||||
#174 = DEFINITIONAL_REPRESENTATION('',(#175),#179);
|
||||
#175 = LINE('',#176,#177);
|
||||
#176 = CARTESIAN_POINT('',(0.191341716181,0.));
|
||||
#177 = VECTOR('',#178,1.);
|
||||
#178 = DIRECTION('',(0.,-1.));
|
||||
#179 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#180 = PCURVE('',#181,#186);
|
||||
#181 = PLANE('',#182);
|
||||
#182 = AXIS2_PLACEMENT_3D('',#183,#184,#185);
|
||||
#183 = CARTESIAN_POINT('',(-9.567085809065E-02,0.230969883128,0.));
|
||||
#184 = DIRECTION('',(0.70710678119,-0.707106781183,0.));
|
||||
#185 = DIRECTION('',(-0.707106781183,-0.70710678119,0.));
|
||||
#186 = DEFINITIONAL_REPRESENTATION('',(#187),#191);
|
||||
#187 = LINE('',#188,#189);
|
||||
#188 = CARTESIAN_POINT('',(0.,0.));
|
||||
#189 = VECTOR('',#190,1.);
|
||||
#190 = DIRECTION('',(0.,-1.));
|
||||
#191 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#192 = ORIENTED_EDGE('',*,*,#193,.F.);
|
||||
#193 = EDGE_CURVE('',#85,#166,#194,.T.);
|
||||
#194 = SURFACE_CURVE('',#195,(#199,#206),.PCURVE_S1.);
|
||||
#195 = LINE('',#196,#197);
|
||||
#196 = CARTESIAN_POINT('',(9.567085809065E-02,0.230969883128,0.));
|
||||
#197 = VECTOR('',#198,1.);
|
||||
#198 = DIRECTION('',(-1.,0.,0.));
|
||||
#199 = PCURVE('',#100,#200);
|
||||
#200 = DEFINITIONAL_REPRESENTATION('',(#201),#205);
|
||||
#201 = LINE('',#202,#203);
|
||||
#202 = CARTESIAN_POINT('',(0.,-0.));
|
||||
#203 = VECTOR('',#204,1.);
|
||||
#204 = DIRECTION('',(1.,0.));
|
||||
#205 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#206 = PCURVE('',#126,#207);
|
||||
#207 = DEFINITIONAL_REPRESENTATION('',(#208),#212);
|
||||
#208 = LINE('',#209,#210);
|
||||
#209 = CARTESIAN_POINT('',(9.567085809069E-02,0.230969883128));
|
||||
#210 = VECTOR('',#211,1.);
|
||||
#211 = DIRECTION('',(-1.,0.));
|
||||
#212 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#213 = ADVANCED_FACE('',(#214),#181,.F.);
|
||||
#214 = FACE_BOUND('',#215,.F.);
|
||||
#215 = EDGE_LOOP('',(#216,#217,#240,#268));
|
||||
#216 = ORIENTED_EDGE('',*,*,#165,.T.);
|
||||
#217 = ORIENTED_EDGE('',*,*,#218,.T.);
|
||||
#218 = EDGE_CURVE('',#143,#219,#221,.T.);
|
||||
#219 = VERTEX_POINT('',#220);
|
||||
#220 = CARTESIAN_POINT('',(-0.230969883129,9.567085808825E-02,1.));
|
||||
#221 = SURFACE_CURVE('',#222,(#226,#233),.PCURVE_S1.);
|
||||
#222 = LINE('',#223,#224);
|
||||
#223 = CARTESIAN_POINT('',(-9.567085809065E-02,0.230969883128,1.));
|
||||
#224 = VECTOR('',#225,1.);
|
||||
#225 = DIRECTION('',(-0.707106781183,-0.70710678119,0.));
|
||||
#226 = PCURVE('',#181,#227);
|
||||
#227 = DEFINITIONAL_REPRESENTATION('',(#228),#232);
|
||||
#228 = LINE('',#229,#230);
|
||||
#229 = CARTESIAN_POINT('',(0.,-1.));
|
||||
#230 = VECTOR('',#231,1.);
|
||||
#231 = DIRECTION('',(1.,-0.));
|
||||
#232 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#233 = PCURVE('',#72,#234);
|
||||
#234 = DEFINITIONAL_REPRESENTATION('',(#235),#239);
|
||||
#235 = LINE('',#236,#237);
|
||||
#236 = CARTESIAN_POINT('',(-9.567085809061E-02,0.230969883128));
|
||||
#237 = VECTOR('',#238,1.);
|
||||
#238 = DIRECTION('',(-0.707106781183,-0.70710678119));
|
||||
#239 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#240 = ORIENTED_EDGE('',*,*,#241,.F.);
|
||||
#241 = EDGE_CURVE('',#242,#219,#244,.T.);
|
||||
#242 = VERTEX_POINT('',#243);
|
||||
#243 = CARTESIAN_POINT('',(-0.230969883129,9.567085808825E-02,0.));
|
||||
#244 = SURFACE_CURVE('',#245,(#249,#256),.PCURVE_S1.);
|
||||
#245 = LINE('',#246,#247);
|
||||
#246 = CARTESIAN_POINT('',(-0.230969883129,9.567085808825E-02,0.));
|
||||
#247 = VECTOR('',#248,1.);
|
||||
#248 = DIRECTION('',(0.,0.,1.));
|
||||
#249 = PCURVE('',#181,#250);
|
||||
#250 = DEFINITIONAL_REPRESENTATION('',(#251),#255);
|
||||
#251 = LINE('',#252,#253);
|
||||
#252 = CARTESIAN_POINT('',(0.191341716186,-0.));
|
||||
#253 = VECTOR('',#254,1.);
|
||||
#254 = DIRECTION('',(0.,-1.));
|
||||
#255 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#256 = PCURVE('',#257,#262);
|
||||
#257 = PLANE('',#258);
|
||||
#258 = AXIS2_PLACEMENT_3D('',#259,#260,#261);
|
||||
#259 = CARTESIAN_POINT('',(-0.230969883129,9.567085808825E-02,0.));
|
||||
#260 = DIRECTION('',(1.,1.037727769769E-11,0.));
|
||||
#261 = DIRECTION('',(1.037727769769E-11,-1.,0.));
|
||||
#262 = DEFINITIONAL_REPRESENTATION('',(#263),#267);
|
||||
#263 = LINE('',#264,#265);
|
||||
#264 = CARTESIAN_POINT('',(1.387778780781E-17,0.));
|
||||
#265 = VECTOR('',#266,1.);
|
||||
#266 = DIRECTION('',(0.,-1.));
|
||||
#267 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#268 = ORIENTED_EDGE('',*,*,#269,.F.);
|
||||
#269 = EDGE_CURVE('',#166,#242,#270,.T.);
|
||||
#270 = SURFACE_CURVE('',#271,(#275,#282),.PCURVE_S1.);
|
||||
#271 = LINE('',#272,#273);
|
||||
#272 = CARTESIAN_POINT('',(-9.567085809065E-02,0.230969883128,0.));
|
||||
#273 = VECTOR('',#274,1.);
|
||||
#274 = DIRECTION('',(-0.707106781183,-0.70710678119,0.));
|
||||
#275 = PCURVE('',#181,#276);
|
||||
#276 = DEFINITIONAL_REPRESENTATION('',(#277),#281);
|
||||
#277 = LINE('',#278,#279);
|
||||
#278 = CARTESIAN_POINT('',(0.,0.));
|
||||
#279 = VECTOR('',#280,1.);
|
||||
#280 = DIRECTION('',(1.,-0.));
|
||||
#281 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#282 = PCURVE('',#126,#283);
|
||||
#283 = DEFINITIONAL_REPRESENTATION('',(#284),#288);
|
||||
#284 = LINE('',#285,#286);
|
||||
#285 = CARTESIAN_POINT('',(-9.567085809061E-02,0.230969883128));
|
||||
#286 = VECTOR('',#287,1.);
|
||||
#287 = DIRECTION('',(-0.707106781183,-0.70710678119));
|
||||
#288 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#289 = ADVANCED_FACE('',(#290),#257,.F.);
|
||||
#290 = FACE_BOUND('',#291,.F.);
|
||||
#291 = EDGE_LOOP('',(#292,#293,#316,#344));
|
||||
#292 = ORIENTED_EDGE('',*,*,#241,.T.);
|
||||
#293 = ORIENTED_EDGE('',*,*,#294,.T.);
|
||||
#294 = EDGE_CURVE('',#219,#295,#297,.T.);
|
||||
#295 = VERTEX_POINT('',#296);
|
||||
#296 = CARTESIAN_POINT('',(-0.230969883127,-9.567085809304E-02,1.));
|
||||
#297 = SURFACE_CURVE('',#298,(#302,#309),.PCURVE_S1.);
|
||||
#298 = LINE('',#299,#300);
|
||||
#299 = CARTESIAN_POINT('',(-0.230969883129,9.567085808825E-02,1.));
|
||||
#300 = VECTOR('',#301,1.);
|
||||
#301 = DIRECTION('',(1.037727769769E-11,-1.,0.));
|
||||
#302 = PCURVE('',#257,#303);
|
||||
#303 = DEFINITIONAL_REPRESENTATION('',(#304),#308);
|
||||
#304 = LINE('',#305,#306);
|
||||
#305 = CARTESIAN_POINT('',(0.,-1.));
|
||||
#306 = VECTOR('',#307,1.);
|
||||
#307 = DIRECTION('',(1.,0.));
|
||||
#308 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#309 = PCURVE('',#72,#310);
|
||||
#310 = DEFINITIONAL_REPRESENTATION('',(#311),#315);
|
||||
#311 = LINE('',#312,#313);
|
||||
#312 = CARTESIAN_POINT('',(-0.230969883129,9.567085808834E-02));
|
||||
#313 = VECTOR('',#314,1.);
|
||||
#314 = DIRECTION('',(1.037727769769E-11,-1.));
|
||||
#315 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#316 = ORIENTED_EDGE('',*,*,#317,.F.);
|
||||
#317 = EDGE_CURVE('',#318,#295,#320,.T.);
|
||||
#318 = VERTEX_POINT('',#319);
|
||||
#319 = CARTESIAN_POINT('',(-0.230969883127,-9.567085809304E-02,0.));
|
||||
#320 = SURFACE_CURVE('',#321,(#325,#332),.PCURVE_S1.);
|
||||
#321 = LINE('',#322,#323);
|
||||
#322 = CARTESIAN_POINT('',(-0.230969883127,-9.567085809304E-02,0.));
|
||||
#323 = VECTOR('',#324,1.);
|
||||
#324 = DIRECTION('',(0.,0.,1.));
|
||||
#325 = PCURVE('',#257,#326);
|
||||
#326 = DEFINITIONAL_REPRESENTATION('',(#327),#331);
|
||||
#327 = LINE('',#328,#329);
|
||||
#328 = CARTESIAN_POINT('',(0.191341716181,0.));
|
||||
#329 = VECTOR('',#330,1.);
|
||||
#330 = DIRECTION('',(0.,-1.));
|
||||
#331 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#332 = PCURVE('',#333,#338);
|
||||
#333 = PLANE('',#334);
|
||||
#334 = AXIS2_PLACEMENT_3D('',#335,#336,#337);
|
||||
#335 = CARTESIAN_POINT('',(-0.230969883127,-9.567085809304E-02,0.));
|
||||
#336 = DIRECTION('',(0.707106781183,0.70710678119,0.));
|
||||
#337 = DIRECTION('',(0.70710678119,-0.707106781183,0.));
|
||||
#338 = DEFINITIONAL_REPRESENTATION('',(#339),#343);
|
||||
#339 = LINE('',#340,#341);
|
||||
#340 = CARTESIAN_POINT('',(0.,0.));
|
||||
#341 = VECTOR('',#342,1.);
|
||||
#342 = DIRECTION('',(0.,-1.));
|
||||
#343 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#344 = ORIENTED_EDGE('',*,*,#345,.F.);
|
||||
#345 = EDGE_CURVE('',#242,#318,#346,.T.);
|
||||
#346 = SURFACE_CURVE('',#347,(#351,#358),.PCURVE_S1.);
|
||||
#347 = LINE('',#348,#349);
|
||||
#348 = CARTESIAN_POINT('',(-0.230969883129,9.567085808825E-02,0.));
|
||||
#349 = VECTOR('',#350,1.);
|
||||
#350 = DIRECTION('',(1.037727769769E-11,-1.,0.));
|
||||
#351 = PCURVE('',#257,#352);
|
||||
#352 = DEFINITIONAL_REPRESENTATION('',(#353),#357);
|
||||
#353 = LINE('',#354,#355);
|
||||
#354 = CARTESIAN_POINT('',(0.,0.));
|
||||
#355 = VECTOR('',#356,1.);
|
||||
#356 = DIRECTION('',(1.,0.));
|
||||
#357 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#358 = PCURVE('',#126,#359);
|
||||
#359 = DEFINITIONAL_REPRESENTATION('',(#360),#364);
|
||||
#360 = LINE('',#361,#362);
|
||||
#361 = CARTESIAN_POINT('',(-0.230969883129,9.567085808834E-02));
|
||||
#362 = VECTOR('',#363,1.);
|
||||
#363 = DIRECTION('',(1.037727769769E-11,-1.));
|
||||
#364 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#365 = ADVANCED_FACE('',(#366),#333,.F.);
|
||||
#366 = FACE_BOUND('',#367,.F.);
|
||||
#367 = EDGE_LOOP('',(#368,#369,#392,#420));
|
||||
#368 = ORIENTED_EDGE('',*,*,#317,.T.);
|
||||
#369 = ORIENTED_EDGE('',*,*,#370,.T.);
|
||||
#370 = EDGE_CURVE('',#295,#371,#373,.T.);
|
||||
#371 = VERTEX_POINT('',#372);
|
||||
#372 = CARTESIAN_POINT('',(-9.567085809075E-02,-0.230969883128,1.));
|
||||
#373 = SURFACE_CURVE('',#374,(#378,#385),.PCURVE_S1.);
|
||||
#374 = LINE('',#375,#376);
|
||||
#375 = CARTESIAN_POINT('',(-0.230969883127,-9.567085809304E-02,1.));
|
||||
#376 = VECTOR('',#377,1.);
|
||||
#377 = DIRECTION('',(0.70710678119,-0.707106781183,0.));
|
||||
#378 = PCURVE('',#333,#379);
|
||||
#379 = DEFINITIONAL_REPRESENTATION('',(#380),#384);
|
||||
#380 = LINE('',#381,#382);
|
||||
#381 = CARTESIAN_POINT('',(0.,-1.));
|
||||
#382 = VECTOR('',#383,1.);
|
||||
#383 = DIRECTION('',(1.,0.));
|
||||
#384 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#385 = PCURVE('',#72,#386);
|
||||
#386 = DEFINITIONAL_REPRESENTATION('',(#387),#391);
|
||||
#387 = LINE('',#388,#389);
|
||||
#388 = CARTESIAN_POINT('',(-0.230969883127,-9.567085809296E-02));
|
||||
#389 = VECTOR('',#390,1.);
|
||||
#390 = DIRECTION('',(0.70710678119,-0.707106781183));
|
||||
#391 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#392 = ORIENTED_EDGE('',*,*,#393,.F.);
|
||||
#393 = EDGE_CURVE('',#394,#371,#396,.T.);
|
||||
#394 = VERTEX_POINT('',#395);
|
||||
#395 = CARTESIAN_POINT('',(-9.567085809075E-02,-0.230969883128,0.));
|
||||
#396 = SURFACE_CURVE('',#397,(#401,#408),.PCURVE_S1.);
|
||||
#397 = LINE('',#398,#399);
|
||||
#398 = CARTESIAN_POINT('',(-9.567085809075E-02,-0.230969883128,0.));
|
||||
#399 = VECTOR('',#400,1.);
|
||||
#400 = DIRECTION('',(0.,0.,1.));
|
||||
#401 = PCURVE('',#333,#402);
|
||||
#402 = DEFINITIONAL_REPRESENTATION('',(#403),#407);
|
||||
#403 = LINE('',#404,#405);
|
||||
#404 = CARTESIAN_POINT('',(0.191341716181,0.));
|
||||
#405 = VECTOR('',#406,1.);
|
||||
#406 = DIRECTION('',(0.,-1.));
|
||||
#407 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#408 = PCURVE('',#409,#414);
|
||||
#409 = PLANE('',#410);
|
||||
#410 = AXIS2_PLACEMENT_3D('',#411,#412,#413);
|
||||
#411 = CARTESIAN_POINT('',(-9.567085809075E-02,-0.230969883128,0.));
|
||||
#412 = DIRECTION('',(4.376388657088E-13,1.,0.));
|
||||
#413 = DIRECTION('',(1.,-4.376388657088E-13,0.));
|
||||
#414 = DEFINITIONAL_REPRESENTATION('',(#415),#419);
|
||||
#415 = LINE('',#416,#417);
|
||||
#416 = CARTESIAN_POINT('',(0.,0.));
|
||||
#417 = VECTOR('',#418,1.);
|
||||
#418 = DIRECTION('',(0.,-1.));
|
||||
#419 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#420 = ORIENTED_EDGE('',*,*,#421,.F.);
|
||||
#421 = EDGE_CURVE('',#318,#394,#422,.T.);
|
||||
#422 = SURFACE_CURVE('',#423,(#427,#434),.PCURVE_S1.);
|
||||
#423 = LINE('',#424,#425);
|
||||
#424 = CARTESIAN_POINT('',(-0.230969883127,-9.567085809304E-02,0.));
|
||||
#425 = VECTOR('',#426,1.);
|
||||
#426 = DIRECTION('',(0.70710678119,-0.707106781183,0.));
|
||||
#427 = PCURVE('',#333,#428);
|
||||
#428 = DEFINITIONAL_REPRESENTATION('',(#429),#433);
|
||||
#429 = LINE('',#430,#431);
|
||||
#430 = CARTESIAN_POINT('',(0.,0.));
|
||||
#431 = VECTOR('',#432,1.);
|
||||
#432 = DIRECTION('',(1.,0.));
|
||||
#433 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#434 = PCURVE('',#126,#435);
|
||||
#435 = DEFINITIONAL_REPRESENTATION('',(#436),#440);
|
||||
#436 = LINE('',#437,#438);
|
||||
#437 = CARTESIAN_POINT('',(-0.230969883127,-9.567085809296E-02));
|
||||
#438 = VECTOR('',#439,1.);
|
||||
#439 = DIRECTION('',(0.70710678119,-0.707106781183));
|
||||
#440 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#441 = ADVANCED_FACE('',(#442),#409,.F.);
|
||||
#442 = FACE_BOUND('',#443,.F.);
|
||||
#443 = EDGE_LOOP('',(#444,#445,#468,#496));
|
||||
#444 = ORIENTED_EDGE('',*,*,#393,.T.);
|
||||
#445 = ORIENTED_EDGE('',*,*,#446,.T.);
|
||||
#446 = EDGE_CURVE('',#371,#447,#449,.T.);
|
||||
#447 = VERTEX_POINT('',#448);
|
||||
#448 = CARTESIAN_POINT('',(9.567085809055E-02,-0.230969883128,1.));
|
||||
#449 = SURFACE_CURVE('',#450,(#454,#461),.PCURVE_S1.);
|
||||
#450 = LINE('',#451,#452);
|
||||
#451 = CARTESIAN_POINT('',(-9.567085809075E-02,-0.230969883128,1.));
|
||||
#452 = VECTOR('',#453,1.);
|
||||
#453 = DIRECTION('',(1.,-4.376388657088E-13,0.));
|
||||
#454 = PCURVE('',#409,#455);
|
||||
#455 = DEFINITIONAL_REPRESENTATION('',(#456),#460);
|
||||
#456 = LINE('',#457,#458);
|
||||
#457 = CARTESIAN_POINT('',(0.,-1.));
|
||||
#458 = VECTOR('',#459,1.);
|
||||
#459 = DIRECTION('',(1.,0.));
|
||||
#460 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#461 = PCURVE('',#72,#462);
|
||||
#462 = DEFINITIONAL_REPRESENTATION('',(#463),#467);
|
||||
#463 = LINE('',#464,#465);
|
||||
#464 = CARTESIAN_POINT('',(-9.567085809071E-02,-0.230969883128));
|
||||
#465 = VECTOR('',#466,1.);
|
||||
#466 = DIRECTION('',(1.,-4.376388657088E-13));
|
||||
#467 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#468 = ORIENTED_EDGE('',*,*,#469,.F.);
|
||||
#469 = EDGE_CURVE('',#470,#447,#472,.T.);
|
||||
#470 = VERTEX_POINT('',#471);
|
||||
#471 = CARTESIAN_POINT('',(9.567085809055E-02,-0.230969883128,0.));
|
||||
#472 = SURFACE_CURVE('',#473,(#477,#484),.PCURVE_S1.);
|
||||
#473 = LINE('',#474,#475);
|
||||
#474 = CARTESIAN_POINT('',(9.567085809055E-02,-0.230969883128,0.));
|
||||
#475 = VECTOR('',#476,1.);
|
||||
#476 = DIRECTION('',(0.,0.,1.));
|
||||
#477 = PCURVE('',#409,#478);
|
||||
#478 = DEFINITIONAL_REPRESENTATION('',(#479),#483);
|
||||
#479 = LINE('',#480,#481);
|
||||
#480 = CARTESIAN_POINT('',(0.191341716181,0.));
|
||||
#481 = VECTOR('',#482,1.);
|
||||
#482 = DIRECTION('',(0.,-1.));
|
||||
#483 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#484 = PCURVE('',#485,#490);
|
||||
#485 = PLANE('',#486);
|
||||
#486 = AXIS2_PLACEMENT_3D('',#487,#488,#489);
|
||||
#487 = CARTESIAN_POINT('',(9.567085809055E-02,-0.230969883128,0.));
|
||||
#488 = DIRECTION('',(-0.707106781182,0.707106781191,0.));
|
||||
#489 = DIRECTION('',(0.707106781191,0.707106781182,0.));
|
||||
#490 = DEFINITIONAL_REPRESENTATION('',(#491),#495);
|
||||
#491 = LINE('',#492,#493);
|
||||
#492 = CARTESIAN_POINT('',(0.,0.));
|
||||
#493 = VECTOR('',#494,1.);
|
||||
#494 = DIRECTION('',(0.,-1.));
|
||||
#495 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#496 = ORIENTED_EDGE('',*,*,#497,.F.);
|
||||
#497 = EDGE_CURVE('',#394,#470,#498,.T.);
|
||||
#498 = SURFACE_CURVE('',#499,(#503,#510),.PCURVE_S1.);
|
||||
#499 = LINE('',#500,#501);
|
||||
#500 = CARTESIAN_POINT('',(-9.567085809075E-02,-0.230969883128,0.));
|
||||
#501 = VECTOR('',#502,1.);
|
||||
#502 = DIRECTION('',(1.,-4.376388657088E-13,0.));
|
||||
#503 = PCURVE('',#409,#504);
|
||||
#504 = DEFINITIONAL_REPRESENTATION('',(#505),#509);
|
||||
#505 = LINE('',#506,#507);
|
||||
#506 = CARTESIAN_POINT('',(0.,0.));
|
||||
#507 = VECTOR('',#508,1.);
|
||||
#508 = DIRECTION('',(1.,0.));
|
||||
#509 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#510 = PCURVE('',#126,#511);
|
||||
#511 = DEFINITIONAL_REPRESENTATION('',(#512),#516);
|
||||
#512 = LINE('',#513,#514);
|
||||
#513 = CARTESIAN_POINT('',(-9.567085809071E-02,-0.230969883128));
|
||||
#514 = VECTOR('',#515,1.);
|
||||
#515 = DIRECTION('',(1.,-4.376388657088E-13));
|
||||
#516 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#517 = ADVANCED_FACE('',(#518),#485,.F.);
|
||||
#518 = FACE_BOUND('',#519,.F.);
|
||||
#519 = EDGE_LOOP('',(#520,#521,#544,#567));
|
||||
#520 = ORIENTED_EDGE('',*,*,#469,.T.);
|
||||
#521 = ORIENTED_EDGE('',*,*,#522,.T.);
|
||||
#522 = EDGE_CURVE('',#447,#523,#525,.T.);
|
||||
#523 = VERTEX_POINT('',#524);
|
||||
#524 = CARTESIAN_POINT('',(0.230969883127,-9.567085809325E-02,1.));
|
||||
#525 = SURFACE_CURVE('',#526,(#530,#537),.PCURVE_S1.);
|
||||
#526 = LINE('',#527,#528);
|
||||
#527 = CARTESIAN_POINT('',(9.567085809055E-02,-0.230969883128,1.));
|
||||
#528 = VECTOR('',#529,1.);
|
||||
#529 = DIRECTION('',(0.707106781191,0.707106781182,0.));
|
||||
#530 = PCURVE('',#485,#531);
|
||||
#531 = DEFINITIONAL_REPRESENTATION('',(#532),#536);
|
||||
#532 = LINE('',#533,#534);
|
||||
#533 = CARTESIAN_POINT('',(0.,-1.));
|
||||
#534 = VECTOR('',#535,1.);
|
||||
#535 = DIRECTION('',(1.,0.));
|
||||
#536 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#537 = PCURVE('',#72,#538);
|
||||
#538 = DEFINITIONAL_REPRESENTATION('',(#539),#543);
|
||||
#539 = LINE('',#540,#541);
|
||||
#540 = CARTESIAN_POINT('',(9.567085809059E-02,-0.230969883128));
|
||||
#541 = VECTOR('',#542,1.);
|
||||
#542 = DIRECTION('',(0.707106781191,0.707106781182));
|
||||
#543 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#544 = ORIENTED_EDGE('',*,*,#545,.F.);
|
||||
#545 = EDGE_CURVE('',#546,#523,#548,.T.);
|
||||
#546 = VERTEX_POINT('',#547);
|
||||
#547 = CARTESIAN_POINT('',(0.230969883127,-9.567085809325E-02,0.));
|
||||
#548 = SURFACE_CURVE('',#549,(#553,#560),.PCURVE_S1.);
|
||||
#549 = LINE('',#550,#551);
|
||||
#550 = CARTESIAN_POINT('',(0.230969883127,-9.567085809325E-02,0.));
|
||||
#551 = VECTOR('',#552,1.);
|
||||
#552 = DIRECTION('',(0.,0.,1.));
|
||||
#553 = PCURVE('',#485,#554);
|
||||
#554 = DEFINITIONAL_REPRESENTATION('',(#555),#559);
|
||||
#555 = LINE('',#556,#557);
|
||||
#556 = CARTESIAN_POINT('',(0.191341716181,0.));
|
||||
#557 = VECTOR('',#558,1.);
|
||||
#558 = DIRECTION('',(0.,-1.));
|
||||
#559 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#560 = PCURVE('',#44,#561);
|
||||
#561 = DEFINITIONAL_REPRESENTATION('',(#562),#566);
|
||||
#562 = LINE('',#563,#564);
|
||||
#563 = CARTESIAN_POINT('',(0.,0.));
|
||||
#564 = VECTOR('',#565,1.);
|
||||
#565 = DIRECTION('',(0.,-1.));
|
||||
#566 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#567 = ORIENTED_EDGE('',*,*,#568,.F.);
|
||||
#568 = EDGE_CURVE('',#470,#546,#569,.T.);
|
||||
#569 = SURFACE_CURVE('',#570,(#574,#581),.PCURVE_S1.);
|
||||
#570 = LINE('',#571,#572);
|
||||
#571 = CARTESIAN_POINT('',(9.567085809055E-02,-0.230969883128,0.));
|
||||
#572 = VECTOR('',#573,1.);
|
||||
#573 = DIRECTION('',(0.707106781191,0.707106781182,0.));
|
||||
#574 = PCURVE('',#485,#575);
|
||||
#575 = DEFINITIONAL_REPRESENTATION('',(#576),#580);
|
||||
#576 = LINE('',#577,#578);
|
||||
#577 = CARTESIAN_POINT('',(0.,0.));
|
||||
#578 = VECTOR('',#579,1.);
|
||||
#579 = DIRECTION('',(1.,0.));
|
||||
#580 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#581 = PCURVE('',#126,#582);
|
||||
#582 = DEFINITIONAL_REPRESENTATION('',(#583),#587);
|
||||
#583 = LINE('',#584,#585);
|
||||
#584 = CARTESIAN_POINT('',(9.567085809059E-02,-0.230969883128));
|
||||
#585 = VECTOR('',#586,1.);
|
||||
#586 = DIRECTION('',(0.707106781191,0.707106781182));
|
||||
#587 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#588 = ADVANCED_FACE('',(#589),#44,.F.);
|
||||
#589 = FACE_BOUND('',#590,.F.);
|
||||
#590 = EDGE_LOOP('',(#591,#592,#613,#614));
|
||||
#591 = ORIENTED_EDGE('',*,*,#545,.T.);
|
||||
#592 = ORIENTED_EDGE('',*,*,#593,.T.);
|
||||
#593 = EDGE_CURVE('',#523,#24,#594,.T.);
|
||||
#594 = SURFACE_CURVE('',#595,(#599,#606),.PCURVE_S1.);
|
||||
#595 = LINE('',#596,#597);
|
||||
#596 = CARTESIAN_POINT('',(0.230969883127,-9.567085809325E-02,1.));
|
||||
#597 = VECTOR('',#598,1.);
|
||||
#598 = DIRECTION('',(2.187469040342E-13,1.,0.));
|
||||
#599 = PCURVE('',#44,#600);
|
||||
#600 = DEFINITIONAL_REPRESENTATION('',(#601),#605);
|
||||
#601 = LINE('',#602,#603);
|
||||
#602 = CARTESIAN_POINT('',(0.,-1.));
|
||||
#603 = VECTOR('',#604,1.);
|
||||
#604 = DIRECTION('',(1.,0.));
|
||||
#605 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#606 = PCURVE('',#72,#607);
|
||||
#607 = DEFINITIONAL_REPRESENTATION('',(#608),#612);
|
||||
#608 = LINE('',#609,#610);
|
||||
#609 = CARTESIAN_POINT('',(0.230969883127,-9.567085809316E-02));
|
||||
#610 = VECTOR('',#611,1.);
|
||||
#611 = DIRECTION('',(2.187469040342E-13,1.));
|
||||
#612 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#613 = ORIENTED_EDGE('',*,*,#21,.F.);
|
||||
#614 = ORIENTED_EDGE('',*,*,#615,.F.);
|
||||
#615 = EDGE_CURVE('',#546,#22,#616,.T.);
|
||||
#616 = SURFACE_CURVE('',#617,(#621,#628),.PCURVE_S1.);
|
||||
#617 = LINE('',#618,#619);
|
||||
#618 = CARTESIAN_POINT('',(0.230969883127,-9.567085809325E-02,0.));
|
||||
#619 = VECTOR('',#620,1.);
|
||||
#620 = DIRECTION('',(2.187469040342E-13,1.,0.));
|
||||
#621 = PCURVE('',#44,#622);
|
||||
#622 = DEFINITIONAL_REPRESENTATION('',(#623),#627);
|
||||
#623 = LINE('',#624,#625);
|
||||
#624 = CARTESIAN_POINT('',(0.,0.));
|
||||
#625 = VECTOR('',#626,1.);
|
||||
#626 = DIRECTION('',(1.,0.));
|
||||
#627 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#628 = PCURVE('',#126,#629);
|
||||
#629 = DEFINITIONAL_REPRESENTATION('',(#630),#634);
|
||||
#630 = LINE('',#631,#632);
|
||||
#631 = CARTESIAN_POINT('',(0.230969883127,-9.567085809316E-02));
|
||||
#632 = VECTOR('',#633,1.);
|
||||
#633 = DIRECTION('',(2.187469040342E-13,1.));
|
||||
#634 = ( GEOMETRIC_REPRESENTATION_CONTEXT(2)
|
||||
PARAMETRIC_REPRESENTATION_CONTEXT() REPRESENTATION_CONTEXT('2D SPACE',''
|
||||
) );
|
||||
#635 = ADVANCED_FACE('',(#636),#126,.F.);
|
||||
#636 = FACE_BOUND('',#637,.F.);
|
||||
#637 = EDGE_LOOP('',(#638,#639,#640,#641,#642,#643,#644,#645));
|
||||
#638 = ORIENTED_EDGE('',*,*,#112,.T.);
|
||||
#639 = ORIENTED_EDGE('',*,*,#193,.T.);
|
||||
#640 = ORIENTED_EDGE('',*,*,#269,.T.);
|
||||
#641 = ORIENTED_EDGE('',*,*,#345,.T.);
|
||||
#642 = ORIENTED_EDGE('',*,*,#421,.T.);
|
||||
#643 = ORIENTED_EDGE('',*,*,#497,.T.);
|
||||
#644 = ORIENTED_EDGE('',*,*,#568,.T.);
|
||||
#645 = ORIENTED_EDGE('',*,*,#615,.T.);
|
||||
#646 = ADVANCED_FACE('',(#647),#72,.T.);
|
||||
#647 = FACE_BOUND('',#648,.T.);
|
||||
#648 = EDGE_LOOP('',(#649,#650,#651,#652,#653,#654,#655,#656));
|
||||
#649 = ORIENTED_EDGE('',*,*,#56,.T.);
|
||||
#650 = ORIENTED_EDGE('',*,*,#142,.T.);
|
||||
#651 = ORIENTED_EDGE('',*,*,#218,.T.);
|
||||
#652 = ORIENTED_EDGE('',*,*,#294,.T.);
|
||||
#653 = ORIENTED_EDGE('',*,*,#370,.T.);
|
||||
#654 = ORIENTED_EDGE('',*,*,#446,.T.);
|
||||
#655 = ORIENTED_EDGE('',*,*,#522,.T.);
|
||||
#656 = ORIENTED_EDGE('',*,*,#593,.T.);
|
||||
#657 = ( GEOMETRIC_REPRESENTATION_CONTEXT(3)
|
||||
GLOBAL_UNCERTAINTY_ASSIGNED_CONTEXT((#661)) GLOBAL_UNIT_ASSIGNED_CONTEXT
|
||||
((#658,#659,#660)) REPRESENTATION_CONTEXT('Context #1',
|
||||
'3D Context with UNIT and UNCERTAINTY') );
|
||||
#658 = ( LENGTH_UNIT() NAMED_UNIT(*) SI_UNIT(.MILLI.,.METRE.) );
|
||||
#659 = ( NAMED_UNIT(*) PLANE_ANGLE_UNIT() SI_UNIT($,.RADIAN.) );
|
||||
#660 = ( NAMED_UNIT(*) SI_UNIT($,.STERADIAN.) SOLID_ANGLE_UNIT() );
|
||||
#661 = UNCERTAINTY_MEASURE_WITH_UNIT(LENGTH_MEASURE(1.E-07),#658,
|
||||
'distance_accuracy_value','confusion accuracy');
|
||||
#662 = PRODUCT_RELATED_PRODUCT_CATEGORY('part',$,(#7));
|
||||
#663 = MECHANICAL_DESIGN_GEOMETRIC_PRESENTATION_REPRESENTATION('',(#664)
|
||||
,#657);
|
||||
#664 = STYLED_ITEM('color',(#665),#15);
|
||||
#665 = PRESENTATION_STYLE_ASSIGNMENT((#666,#672));
|
||||
#666 = SURFACE_STYLE_USAGE(.BOTH.,#667);
|
||||
#667 = SURFACE_SIDE_STYLE('',(#668));
|
||||
#668 = SURFACE_STYLE_FILL_AREA(#669);
|
||||
#669 = FILL_AREA_STYLE('',(#670));
|
||||
#670 = FILL_AREA_STYLE_COLOUR('',#671);
|
||||
#671 = DRAUGHTING_PRE_DEFINED_COLOUR('black');
|
||||
#672 = CURVE_STYLE('',#673,POSITIVE_LENGTH_MEASURE(0.1),#674);
|
||||
#673 = DRAUGHTING_PRE_DEFINED_CURVE_FONT('continuous');
|
||||
#674 = COLOUR_RGB('',9.803921802644E-02,9.803921802644E-02,
|
||||
9.803921802644E-02);
|
||||
ENDSEC;
|
||||
END-ISO-10303-21;
|
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-04/Magnetic-Field.png
Normal file
After Width: | Height: | Size: 43 KiB |
18
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-04/border.tex
Normal file
@ -0,0 +1,18 @@
|
||||
\pgfpagesdeclarelayout{boxed}
|
||||
{
|
||||
\edef\pgfpageoptionborder{0pt}
|
||||
}
|
||||
{
|
||||
\pgfpagesphysicalpageoptions
|
||||
{%
|
||||
logical pages=1,%
|
||||
}
|
||||
\pgfpageslogicalpageoptions{1}
|
||||
{
|
||||
border code=\pgfsetlinewidth{2pt}\pgfstroke,%
|
||||
border shrink=\pgfpageoptionborder,%
|
||||
resized width=.95\pgfphysicalwidth,%
|
||||
resized height=.95\pgfphysicalheight,%
|
||||
center=\pgfpoint{.5\pgfphysicalwidth}{.5\pgfphysicalheight}%
|
||||
}%
|
||||
}
|
26
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-04/end.aux
Normal file
@ -0,0 +1,26 @@
|
||||
\relax
|
||||
\providecommand\hyper@newdestlabel[2]{}
|
||||
\@setckpt{end}{
|
||||
\setcounter{page}{2}
|
||||
\setcounter{equation}{0}
|
||||
\setcounter{enumi}{0}
|
||||
\setcounter{enumii}{0}
|
||||
\setcounter{enumiii}{0}
|
||||
\setcounter{enumiv}{0}
|
||||
\setcounter{footnote}{0}
|
||||
\setcounter{mpfootnote}{0}
|
||||
\setcounter{section}{3}
|
||||
\setcounter{subsection}{0}
|
||||
\setcounter{subsubsection}{0}
|
||||
\setcounter{paragraph}{0}
|
||||
\setcounter{IEEEsubequation}{0}
|
||||
\setcounter{figure}{0}
|
||||
\setcounter{table}{0}
|
||||
\setcounter{IEEEbiography}{0}
|
||||
\setcounter{parentequation}{0}
|
||||
\setcounter{float@type}{4}
|
||||
\setcounter{section@level}{1}
|
||||
\setcounter{Item}{0}
|
||||
\setcounter{Hfootnote}{0}
|
||||
\setcounter{bookmark@seq@number}{3}
|
||||
}
|
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-04/lab-04-combined.pdf
Normal file
25
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-04/lab-04.aux
Normal file
@ -0,0 +1,25 @@
|
||||
\relax
|
||||
\providecommand\hyper@newdestlabel[2]{}
|
||||
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
|
||||
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
|
||||
\global\let\oldnewlabel\newlabel
|
||||
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
|
||||
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
|
||||
\AtEndDocument{\ifx\hyper@anchor\@undefined
|
||||
\let\newlabel\oldnewlabel
|
||||
\fi}
|
||||
\fi}
|
||||
\global\let\hyper@last\relax
|
||||
\gdef\HyperFirstAtBeginDocument#1{#1}
|
||||
\providecommand\HyField@AuxAddToFields[1]{}
|
||||
\providecommand\HyField@AuxAddToCoFields[2]{}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {I}Introduction \& Setup}{2}{section.1}\protected@file@percent }
|
||||
\newlabel{eqn:faraday-law}{{1}{2}{Introduction \& Setup}{equation.1.1}{}}
|
||||
\newlabel{eqn:solenoid-emf}{{2}{2}{Introduction \& Setup}{equation.1.2}{}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {II}Results \& Analysis}{2}{section.2}\protected@file@percent }
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Magnetic field vectors in the region}}{2}{figure.1}\protected@file@percent }
|
||||
\newlabel{fig:magnetic-field}{{1}{2}{Magnetic field vectors in the region}{figure.1}{}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Current through the coil over time}}{2}{figure.2}\protected@file@percent }
|
||||
\newlabel{fig:coil-current}{{2}{2}{Current through the coil over time}{figure.2}{}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {III}Conclusion}{3}{section.3}\protected@file@percent }
|
||||
\gdef \@abspage@last{2}
|
1342
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-04/lab-04.log
Normal file
3
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-04/lab-04.out
Normal file
@ -0,0 +1,3 @@
|
||||
\BOOKMARK [1][-]{section.1}{\376\377\000I\000n\000t\000r\000o\000d\000u\000c\000t\000i\000o\000n\000\040\000\046\000\040\000S\000e\000t\000u\000p}{}% 1
|
||||
\BOOKMARK [1][-]{section.2}{\376\377\000R\000e\000s\000u\000l\000t\000s\000\040\000\046\000\040\000A\000n\000a\000l\000y\000s\000i\000s}{}% 2
|
||||
\BOOKMARK [1][-]{section.3}{\376\377\000C\000o\000n\000c\000l\000u\000s\000i\000o\000n}{}% 3
|
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-04/lab-04.pdf
Normal file
99
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-04/lab-04.tex
Normal file
@ -0,0 +1,99 @@
|
||||
\documentclass[conference]{IEEEtran}
|
||||
\usepackage[siunitx]{circuitikz}
|
||||
\usepackage{graphicx}
|
||||
%\usepackage{lipsum}
|
||||
\usepackage{color}
|
||||
\usepackage{enumitem}
|
||||
\usepackage{epsfig}
|
||||
\usepackage{mathptmx}
|
||||
\usepackage{times}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{amssymb}
|
||||
\usepackage{float}
|
||||
\usepackage{hyperref}
|
||||
%\usepackage{setspace}
|
||||
%\usepackage{tikz}
|
||||
\usepackage{circuitikz}
|
||||
\usepackage{pgfplots}
|
||||
\usepackage{textcomp}
|
||||
%\usepgfplotslibrary{external}
|
||||
%\tikzexternalize
|
||||
%\usepackage[utf8]{inputenc}
|
||||
%\usepackage[english]{babel}
|
||||
%\usepackage{pgf}
|
||||
\usepackage[final]{pdfpages}
|
||||
\usepackage{pgfpages}
|
||||
\usepackage[margin=0.4in]{geometry}
|
||||
\usepackage{lmodern}
|
||||
\usepackage{datetime}
|
||||
\usepackage{ragged2e}
|
||||
\input{border.tex}
|
||||
\pgfpagesuselayout{boxed}
|
||||
|
||||
\hyphenation{op-tical net-works semi-conduc-tor}% correct bad hyphenation here
|
||||
|
||||
\font\myfont=cmr12 at 15pt
|
||||
\title{\myfont Simulating Simple Electrostatic Capacitors}
|
||||
\author{Aidan Sharpe 916373346}
|
||||
|
||||
|
||||
\providecommand{\keywords}[1]{\textbf{\textit{Keywords---}} #1}
|
||||
\providecommand{\e}[1]{\ensuremath{\times 10^{#1}}}
|
||||
\setlength{\columnsep}{7mm}
|
||||
\pgfplotsset{compat=1.15}
|
||||
\begin{document}
|
||||
\makeatletter
|
||||
\@twocolumnfalse
|
||||
\maketitle
|
||||
\@twocolumntrue
|
||||
\makeatother
|
||||
\begin{abstract}
|
||||
This lab applies Faraday's Law of Induction, which states that a changing magnetic field induces an EMF voltage in a conductor. In this specific case, the changing magnetic field was supplied by a permanent magnet with a constant, non-zero velocity moving through the center of a copper coil. The ends of the coil were connected through a resistor, which allowed the induced voltage to create a current by Ohm's law.
|
||||
\end{abstract}
|
||||
|
||||
\section{Introduction \& Setup}
|
||||
This lab started as far from the simulation software as possible, locally in FreeCAD. While it is possible (and encouraged for most) to model a system directly in the simulation software, it is finicky at best. Furthermore, the documentation for it is almost as proprietary as the software itself. For this reason, it made sense to use an external tool for design purposes. The technical drawings are included after the appendix.
|
||||
|
||||
All components were exported from FreeCAD into the simulation software, positioned properly and the simulation was set up. Currents were measured at the ends of the coil, and the magnet was moved along a path starting below the coil and ending above it. A 100$\Omega$ resistor was placed in series with the coil, so current could be measured through the coil.
|
||||
|
||||
The magnet started 2[mm] below the coil and traveled upwards at 500[mm/s] for 10[ms]. The speed was initially 10[mm/s], but this needed to be increased as the magnet only travelled 0.1[mm]. This was so slow that the magnet did not even reach the bottom of the coil before the simulation ended. 500[mm/s] seemed like the most reasonable speed since it would travel a full 5[mm] over the course of the simulation. At this speed, the magnet travels from -2[mm] to +3[mm], which is above the top of the coil.
|
||||
|
||||
The importance of it travelling through the coil is that the magnetic field is strongest close to the magnet, so it is critical to get the magnet as close as possible to the coil to see the best induction effects. The induced currents are in accordance with Faraday's Law of Induction seen in equation \ref{eqn:faraday-law}. For a coil of wire, the effects of Faraday's law are multiplied scaled up with each winding. The voltage across a coil with $N$ windings and magnetic flux, $\Phi_B$, through the center is given by equation \ref{eqn:solenoid-emf}. Therefore, by Ohm's Law, the current through the inductor is just the voltage given by equation \ref{eqn:solenoid-emf} divided by 100$\Omega$.
|
||||
|
||||
\begin{equation}
|
||||
\nabla \times \vec{E} = -{\partial \vec{B} \over \partial t}
|
||||
\label{eqn:faraday-law}
|
||||
\end{equation}
|
||||
|
||||
\begin{equation}
|
||||
\mathcal{E} = -N {d\Phi_B \over dt}
|
||||
\label{eqn:solenoid-emf}
|
||||
\end{equation}
|
||||
|
||||
\section{Results \& Analysis}
|
||||
Passing the magnet through the coil creates a changing magnetic field from the coil's perspective. From the magnet's perspective field is static, and the coil is moving towards it. Therefore, when the animation is played, the magnetic field appears to move upwards at the same rate as the magnet. The shape of the magnetic field around the magnet, passing through the coils is seen in figure \ref{fig:magnetic-field}. The magnetic field is originating from the magnet, curling back on itself, and then terminating back at the magnet. This makes sense, since all magnets have a north and south pole, with the magnetic field lines travelling between them.
|
||||
|
||||
\begin{figure}[h]
|
||||
\includegraphics[width=0.48\textwidth]{Magnetic-Field.png}
|
||||
\caption{Magnetic field vectors in the region}
|
||||
\label{fig:magnetic-field}
|
||||
\end{figure}
|
||||
|
||||
As seen in figure \ref{fig:coil-current}, there are two spikes in current. As the magnet approaches the coil, it makes sense that the magnetic field increases rapidly. It also makes sense, that as the magnet leaves the coil, around 9[ms] or so, the current will decrease. However the dropout in the middle, may be unexpected. Faraday's Law of Induction relates voltage to the time rate of change of the magnetic field, and not directly to its strength. Following this line of thought, it must be that the most change in magnetic field strength happens when the magnet is either entering or leaving the coil.
|
||||
|
||||
\begin{figure}[h]
|
||||
\includegraphics[width=0.48\textwidth]{CurrentPlot.png}
|
||||
\caption{Current through the coil over time}
|
||||
\label{fig:coil-current}
|
||||
\end{figure}
|
||||
|
||||
\section{Conclusion}
|
||||
The drop in current while the magnet is in the coil was quite unexpected at first, but after recalling Faraday's Law of Induction, the results made more sense. Since the change in magnetic field is highest when the magnet is approaching or receding from the coil, it makes sense that spikes in current occur here. However, when the magnet is centered in the coil, the magnetic field is symmetric with respect to the coil. For this reason, magnetic field changes very little at this point, and in a perfectly symmetric system, the current would probably go to zero. Thinking back to one dimensional kinematics, at the apex of a projectile being thrown straight into the air, the instantaneous velocity goes to zero.
|
||||
|
||||
Measuring the time rate of change of the magnetic flux is analogous to projectile motion in this way. Think about it as the magnetic field strength reaching a maximum in the coil before decreasing and going to zero at $t=\infty$. Since the strength reaches a maximum, the rate of change of strength is by definition, zero.
|
||||
|
||||
The voltage across the coil can be recovered since the resistor has a known value of 100$\Omega$. Simply by scaling the current results by a factor of 100 will yield the EMF voltage of the coil.
|
||||
Finally, by working backwards from Faraday's Law of Induction, since the number of coils is known to be $N=5$, by taking the negative of the integral of the EMF voltage with respect to time, the magnetic flux through the coil can be extrapolated.
|
||||
|
||||
By knowing, the current, voltage, and magnetic flux of the coil with respect to time, much is learned about the system as a whole, and even more information, such as inductance characteristics, can be derived.
|
||||
\end{document}
|
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-06/Lab 6 - Numerical.pdf
Normal file
1
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-06/Lab-06
Normal file
@ -0,0 +1 @@
|
||||
# Created by Octave 8.4.0, Mon Nov 27 11:05:07 2023 EST <sharpe@dhcp-150-250-217-15>
|
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-06/Lab_6_EEMags.pdf
Normal file
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-06/Part1.png
Normal file
After Width: | Height: | Size: 46 KiB |
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-06/Part2-3D-EField.png
Normal file
After Width: | Height: | Size: 42 KiB |
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-06/Part2-3D-Potential.png
Normal file
After Width: | Height: | Size: 60 KiB |
After Width: | Height: | Size: 18 KiB |
After Width: | Height: | Size: 22 KiB |
After Width: | Height: | Size: 37 KiB |
After Width: | Height: | Size: 174 KiB |
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-06/Part3-3D-EField.png
Normal file
After Width: | Height: | Size: 129 KiB |
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-06/Part3-Potential.png
Normal file
After Width: | Height: | Size: 94 KiB |
After Width: | Height: | Size: 23 KiB |
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-06/Part4-Potential.png
Normal file
After Width: | Height: | Size: 34 KiB |
After Width: | Height: | Size: 18 KiB |
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-06/Part5-EField.png
Normal file
After Width: | Height: | Size: 38 KiB |
BIN
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-06/Part5-Potential.png
Normal file
After Width: | Height: | Size: 24 KiB |
129
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-06/cemLaplace01.m
Normal file
@ -0,0 +1,129 @@
|
||||
% cemLaplace01.m
|
||||
% Solution of Laplace's equation
|
||||
|
||||
clear all
|
||||
close all
|
||||
clc
|
||||
tic
|
||||
|
||||
% INPUTS ================================================================
|
||||
% Number of XY grid points (integer)
|
||||
Nx = 10; Ny = 10;
|
||||
% Range for X and Y values [minX maxX minY maxY minZ maxZ]
|
||||
XY = [0 2 0 1];
|
||||
% tolerance for ending iterations
|
||||
tol = 0.1;
|
||||
% number of iteriations
|
||||
maxN = 50;
|
||||
% limits for electric field plot
|
||||
minXL = 0 ; maxXL = 2;
|
||||
minYL = 0; maxYL = 1;
|
||||
|
||||
% Boundary values for the potential
|
||||
V0 = 10;
|
||||
V = zeros(Ny,Nx);
|
||||
V(:,1) = 20;
|
||||
V(:,end) = 10;
|
||||
V(1,:) = -5;
|
||||
V(end,:) = -10;
|
||||
|
||||
% SETUP ==================================================================
|
||||
|
||||
minX = XY(1); maxX = XY(2);
|
||||
minY = XY(3); maxY = XY(4);
|
||||
x = linspace(minX, maxX,Nx);
|
||||
y = linspace(minY, maxY,Ny);
|
||||
[xx, yy] = meshgrid(x,y);
|
||||
hx = x(2) - x(1); hy = y(2) - y(1);
|
||||
Kx = hx^2/(2*(hx^2+hy^2)); Ky = hy^2/(2*(hx^2+hy^2));
|
||||
|
||||
|
||||
|
||||
% CALCULATIONS ===========================================================
|
||||
|
||||
% dSum difference in sum of squares / n number of iterations
|
||||
dSum = 1; n = 0; cc = 0;
|
||||
|
||||
while n < maxN
|
||||
%while dSum > tol
|
||||
sum1 = sum(sum(V.^2));
|
||||
|
||||
for ny = 2: Ny-1
|
||||
|
||||
for nx = 2: Nx-1
|
||||
V(ny,nx) = Ky * (V(ny,nx+1) + V(ny,nx-1)) + Kx * (V(ny+1,nx) + V(ny-1,nx));
|
||||
% end
|
||||
|
||||
% V(ny,nx) = Ky * (V(ny,nx+1) + V(ny,nx-1)) + Kx * (V(ny+1,nx) + V(ny-1,nx));
|
||||
end
|
||||
% V(ny,Nx) = Ky * (V(ny,Nx) + V(ny,Nx-2)) + Kx * (V(ny+1,Nx) + V(ny-1,Nx));
|
||||
end
|
||||
|
||||
sum2 = sum(sum(V.^2));
|
||||
dSum = abs(sum2 - sum1);
|
||||
n = n + 1; cc = cc+1;
|
||||
end
|
||||
% electric field
|
||||
[Exx, Eyy] = gradient(V,hx,hy);
|
||||
Exx = -Exx; Eyy = -Eyy;
|
||||
E = sqrt(Exx.^2 + Eyy.^2);
|
||||
|
||||
% GRAPHICS ===============================================================
|
||||
|
||||
figure(1) % VECTOR FIELD V -----------------------------------------
|
||||
set(gcf,'units','normalized','position',[0.05 0.5 0.4 0.35]);
|
||||
surf(xx(1:5:end,1:5:end),yy(1:5:end,1:5:end),V(1:5:end,1:5:end));
|
||||
xlabel('x [m]'); ylabel('y [m]'); zlabel('V [ V ]');
|
||||
set(gca,'fontsize',14)
|
||||
rotate3d
|
||||
box on
|
||||
axis tight
|
||||
colorbar
|
||||
view(43,54);
|
||||
|
||||
figure(2)
|
||||
set(gcf,'units','normalized','position',[0.5 0.5 0.4 0.35]);
|
||||
c = 1; yStep = zeros(1,8);
|
||||
for n = 1 : round(Ny/15): round(Ny/2)
|
||||
xP = xx(n,:); yP = V(n,:);
|
||||
plot(xP,yP,'b','linewidth',1.2);
|
||||
hold on
|
||||
c = c+1;
|
||||
yStep(c) = yy(c,1);
|
||||
|
||||
end
|
||||
tt = num2str(yStep,2);
|
||||
text(0.2,95,'y =');
|
||||
text(0.4,95,tt,'fontsize',13)
|
||||
xlabel('x [m]'); ylabel('V [ V ]');
|
||||
set(gca,'fontsize',16)
|
||||
|
||||
figure(3)
|
||||
set(gcf,'units','normalized','position',[0.05 0.05 0.4 0.35]);
|
||||
index1 = 1 : Nx; index2 = 1 : Ny;
|
||||
p1 = xx(index1, index2); p2 = yy(index1, index2);
|
||||
p3 = Exx(index1, index2); p4 = Eyy(index1, index2);
|
||||
h = quiver(p1,p2,p3,p4);
|
||||
set(h,'color',[0 0 1],'linewidth',2)
|
||||
xlabel('x [m]'); ylabel('y [m]');
|
||||
set(gca,'xLim',[minXL, maxXL]);
|
||||
set(gca,'yLim',[minYL, maxYL]);
|
||||
|
||||
figure(4)
|
||||
set(gcf,'units','normalized','position',[0.5 0.05 0.4 0.35]);
|
||||
surf(xx,yy,E);
|
||||
shading interp
|
||||
xlabel('x [m]'); ylabel('y [m]'); zlabel('|E| [ V/m ]');
|
||||
set(gca,'fontsize',14)
|
||||
set(gca,'zTick',[0 1000 2000]);
|
||||
rotate3d
|
||||
box on
|
||||
axis tight
|
||||
colorbar
|
||||
view(43,54);
|
||||
|
||||
|
||||
cc
|
||||
V
|
||||
|
||||
toc
|
204
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-06/cemLaplace02.m
Normal file
@ -0,0 +1,204 @@
|
||||
% cemLaplace01.m
|
||||
|
||||
% Solution of Laplace's equation
|
||||
clear
|
||||
clc
|
||||
tic
|
||||
|
||||
% INPUTS ================================================================
|
||||
% Number of XY grid points (integer)
|
||||
Nx = 101; Ny = 101;
|
||||
% Range for X and Y values [minX maxX minY maxY minZ maxZ]
|
||||
XY = [0 4 -1 1];
|
||||
% Boundary potential
|
||||
|
||||
% tolerance for ending iterations
|
||||
tol = 1;
|
||||
% limits for electric field plot
|
||||
minXL = 0; maxXL = XY(2);
|
||||
minYL = 0; maxYL = XY(4);
|
||||
|
||||
% boundary values for the potential
|
||||
V0 = 100; V1 = -5; V2 = -10;
|
||||
V = zeros(Ny,Nx);
|
||||
V(:,1) = V0;
|
||||
% V(:,end) = 0;
|
||||
% V(1,:) = 0;
|
||||
% V(end,:) = 0;
|
||||
|
||||
% linearly increasing potentials on boundaries
|
||||
%enter INPUT details in setup
|
||||
|
||||
|
||||
% SETUP ==================================================================
|
||||
|
||||
minX = XY(1); maxX = XY(2);
|
||||
minY = XY(3); maxY = XY(4);
|
||||
x = linspace(minX, maxX,Nx);
|
||||
y = linspace(minY, maxY,Ny);
|
||||
[xx, yy] = meshgrid(x,y);
|
||||
hx = x(2) - x(1); hy = y(2) - y(1);
|
||||
Kx = hx^2/(2*(hx^2+hy^2)); Ky = hy^2/(2*(hx^2+hy^2));
|
||||
|
||||
% V(:,1) = V0 .* cos(2*pi*y/(4*maxY));
|
||||
|
||||
% linearly increasing potentials on boundaries
|
||||
m1 = 20/maxY; m2 = 20/maxX; m3 = 30/maxY; m4 = 10/maxX;
|
||||
b1 = 0; b2 = 20; b3 = 10; b4 = 0;
|
||||
|
||||
V(:,1) = m1 .* y + b1;
|
||||
V(:,end) = m3 .* y + b3;
|
||||
V(end,:) = m2 .* x + b2;
|
||||
V(1,:) = m4 .* x + b4;
|
||||
|
||||
% CALCULATIONS ===========================================================
|
||||
|
||||
% dSum difference in sum of squares / n number of iterations
|
||||
dSum = 10; n = 0;
|
||||
|
||||
while dSum > tol
|
||||
sum1 = sum(sum(V.^2));
|
||||
|
||||
for ny = 2: Ny-1
|
||||
for nx = 2: Nx-1
|
||||
V(ny,nx) = Ky * (V(ny,nx+1) + V(ny,nx-1)) + Kx * (V(ny+1,nx) + V(ny-1,nx));
|
||||
end
|
||||
% uncomment the next line of code if you need to calculate this column of values
|
||||
% V(ny,Nx) = Ky * (V(ny,Nx) + V(ny,Nx-2)) + Kx * (V(ny+1,Nx) + V(ny-1,Nx));
|
||||
end
|
||||
|
||||
sum2 = sum(sum(V.^2));
|
||||
dSum = abs(sum2 - sum1);
|
||||
n = n+1;
|
||||
dSum
|
||||
end
|
||||
% electric field
|
||||
[Exx, Eyy] = gradient(V,hx,hy);
|
||||
Exx = -Exx; Eyy = -Eyy;
|
||||
E = sqrt(Exx.^2 + Eyy.^2);
|
||||
|
||||
|
||||
% exact solution for boundary conditions
|
||||
% left boundary V0, other boundaries V = 0
|
||||
% Vexact = (2*V0/pi) .* atan(sin(pi*y(51)/maxX)./sinh(pi*x/maxX));
|
||||
% Vexact = (2*V0/pi) .* atan(1./sinh(pi*x/maxX));
|
||||
|
||||
|
||||
% linearly increasing potentials on boundaries
|
||||
m1 = 20/maxY; m2 = 20/maxX; m3 = 30/maxY; m4 = 10/maxX;
|
||||
b1 = 0; b2 = 20; b3 = 10; b4 = 0;
|
||||
|
||||
V(:,1) = m1 .* y + b1;
|
||||
V(:,end) = m3 .* y + b3;
|
||||
V(end,:) = m2 .* x + b2;
|
||||
V(1,:) = m4 .* x + b4;
|
||||
|
||||
% GRAPHICS ===============================================================
|
||||
|
||||
figure(1) % VECTOR FIELD V -----------------------------------------
|
||||
set(gcf,'units','normalized','position',[0.02 0.52 0.3 0.32]);
|
||||
surf(xx(1:5:end,1:5:end),yy(1:5:end,1:5:end),V(1:5:end,1:5:end));
|
||||
xlabel('x [m]'); ylabel('y [m]'); zlabel('V [ V ]');
|
||||
title('potential','fontweight','normal');
|
||||
set(gca,'fontsize',14);
|
||||
rotate3d
|
||||
box on
|
||||
axis tight
|
||||
colorbar
|
||||
view(55,49);
|
||||
% set(gca,'ZTick',[0 5 10]);
|
||||
|
||||
%%
|
||||
figure(2)
|
||||
set(gcf,'units','normalized','position',[0.65 0.52 0.3 0.32]);
|
||||
c = 0; yStep = zeros(1,6);
|
||||
|
||||
for n = 1:10:51
|
||||
xP = xx(n,:); yP = V(n,:);
|
||||
plot(xP,yP,'b','linewidth',1.2);
|
||||
hold on
|
||||
c = c+1;
|
||||
yStep(c) = yy(n,1);
|
||||
|
||||
end
|
||||
tt = num2str(yStep,2);
|
||||
tm1 = 'y = ';
|
||||
tm2 = tt;
|
||||
tm = [tm1 tm2];
|
||||
xlabel('x [m]'); ylabel('V [ V ]');
|
||||
set(gca,'fontsize',16)
|
||||
h_title = title(tm);
|
||||
set(h_title,'fontsize',12,'FontWeight','normal');
|
||||
|
||||
|
||||
% hold on
|
||||
% plot(x,Vexact,'r');
|
||||
|
||||
%%
|
||||
figure(3)
|
||||
set(gcf,'units','normalized','position',[0.65 0.1 0.3 0.32]);
|
||||
|
||||
hold on
|
||||
sx = x(5);
|
||||
for sy = -1 : 0.1 : 1
|
||||
h = streamline(xx,yy,Exx,Eyy,sx,sy);
|
||||
set(h,'linewidth',2,'color',[1 0 1]);
|
||||
end
|
||||
|
||||
|
||||
index1 = 10 : 1: Nx; index2 = 10 : 1 : Ny;
|
||||
p1 = xx(index1, index2); p2 = yy(index1, index2);
|
||||
p3 = Exx(index1, index2); p4 = Eyy(index1, index2);
|
||||
h = quiver(p1,p2,p3,p4);
|
||||
set(h,'color',[0 0 1],'linewidth',2)
|
||||
xlabel('x [m]'); ylabel('y [m]');
|
||||
|
||||
title('electric field','fontweight','normal');
|
||||
hold on
|
||||
axis equal
|
||||
set(gca,'xLim',[minX,maxX]);
|
||||
set(gca,'yLim',[minY,maxY]);
|
||||
set(gca,'xTick',minX:1:maxX);
|
||||
set(gca,'yTick',minY:1:maxY);
|
||||
set(gca,'fontsize',14)
|
||||
box on
|
||||
|
||||
%%
|
||||
figure(4)
|
||||
set(gcf,'units','normalized','position',[0.02 0.1 0.3 0.32]);
|
||||
surf(xx,yy,E);
|
||||
shading interp
|
||||
xlabel('x [m]'); ylabel('y [m]'); zlabel('|E| [ V/m ]');
|
||||
set(gca,'fontsize',14)
|
||||
%set(gca,'zTick',[0 1000 2000]);
|
||||
rotate3d
|
||||
box on
|
||||
axis tight
|
||||
colorbar
|
||||
view(43,54);
|
||||
title('electric field','fontweight','normal');
|
||||
|
||||
figure(5)
|
||||
set(gcf,'units','normalized','position',[0.33 0.52 0.3 0.32]);
|
||||
contourf(xx,yy,V,16);
|
||||
shading interp
|
||||
xlabel('x [m]'); ylabel('y [m]');
|
||||
title('potential','fontweight','normal');
|
||||
set(gca,'fontsize',14)
|
||||
box on
|
||||
colorbar
|
||||
axis equal
|
||||
|
||||
figure(6)
|
||||
set(gcf,'units','normalized','position',[0.33 0.1 0.3 0.32]);
|
||||
contourf(xx,yy,E,32);
|
||||
shading interp
|
||||
xlabel('x [m]'); ylabel('y [m]');
|
||||
title('electric field','fontweight','normal');
|
||||
set(gca,'fontsize',14)
|
||||
box on
|
||||
colorbar
|
||||
axis equal
|
||||
|
||||
|
||||
toc
|
68
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-06/cemLaplace03.m
Normal file
@ -0,0 +1,68 @@
|
||||
% cemLaplace01.m
|
||||
|
||||
% Solution of Laplace's equation
|
||||
clear
|
||||
clf
|
||||
tic
|
||||
|
||||
% INPUTS ================================================================
|
||||
|
||||
% Number of XY grid points (integer)
|
||||
Nx = 5;
|
||||
% Range for X and Y values [minX maxX minY maxY minZ maxZ]
|
||||
XY = [0 5];
|
||||
% Boundary potential
|
||||
V0 = 100;
|
||||
% tolerance for ending iterations
|
||||
tol = 0.1;
|
||||
|
||||
% SETUP ==================================================================
|
||||
|
||||
V = zeros(Nx,1);
|
||||
minX = XY(1); maxX = XY(2);
|
||||
x = linspace(minX, maxX,Nx);
|
||||
hx = x(2) - x(1);
|
||||
V(1) = V0; V(Nx) = 0;
|
||||
|
||||
% CALCULATIONS ===========================================================
|
||||
|
||||
% dSum difference in sum of squares / n number of iterations
|
||||
dSum = 10; n = 0;
|
||||
while dSum > tol
|
||||
sum1 = sum(sum(V.^2));
|
||||
|
||||
for nx = 2: Nx-1
|
||||
V(nx) = 0.5*(V(nx+1) + V(nx-1));
|
||||
end
|
||||
sum2 = sum(sum(V.^2));
|
||||
dSum = abs(sum2 - sum1);
|
||||
n = n+1;
|
||||
end
|
||||
|
||||
% exact solution
|
||||
VT = -(V0/maxX)*x + V0;
|
||||
|
||||
% electric field
|
||||
E = -gradient(V,hx);
|
||||
|
||||
% GRAPHICS ===============================================================
|
||||
|
||||
figure(1)
|
||||
set(gcf,'units','normalized','position',[0.05 0.2 0.3 0.4]);
|
||||
subplot(2,1,1)
|
||||
plot(x,V,'b','lineWidth',2);
|
||||
hold on
|
||||
plot(x,VT,'r','lineWidth',2);
|
||||
%set(gca,'xLim',[minX, maxX]);
|
||||
%set(gca,'yLim',[minY, maxY]);
|
||||
xlabel('x [ m ]'); ylabel('V [ V ]');
|
||||
set(gca,'fontsize',14)
|
||||
|
||||
subplot(2,1,2)
|
||||
plot(x,E,'b','lineWidth',2)
|
||||
set(gca,'yLim',[0, 25]);
|
||||
xlabel('x [ m ]'); ylabel('E [ V / m ]');
|
||||
set(gca,'fontsize',14)
|
||||
|
||||
% =======================================================================
|
||||
toc
|
40
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-06/lab-06.aux
Normal file
@ -0,0 +1,40 @@
|
||||
\relax
|
||||
\providecommand\hyper@newdestlabel[2]{}
|
||||
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
|
||||
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
|
||||
\global\let\oldnewlabel\newlabel
|
||||
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
|
||||
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
|
||||
\AtEndDocument{\ifx\hyper@anchor\@undefined
|
||||
\let\newlabel\oldnewlabel
|
||||
\fi}
|
||||
\fi}
|
||||
\global\let\hyper@last\relax
|
||||
\gdef\HyperFirstAtBeginDocument#1{#1}
|
||||
\providecommand\HyField@AuxAddToFields[1]{}
|
||||
\providecommand\HyField@AuxAddToCoFields[2]{}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {I}Introduction and Background}{1}{section.1}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {II}Part 1}{1}{section.2}\protected@file@percent }
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Approximated and actual electrostatic potential}}{1}{figure.1}\protected@file@percent }
|
||||
\newlabel{fig:part-1}{{1}{1}{Approximated and actual electrostatic potential}{figure.1}{}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {III}Part 2}{1}{section.3}\protected@file@percent }
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Electric potential between the plates}}{1}{figure.2}\protected@file@percent }
|
||||
\newlabel{fig:part-2-potential}{{2}{1}{Electric potential between the plates}{figure.2}{}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {IV}Part 3}{1}{section.4}\protected@file@percent }
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Electric field strength between the plates}}{2}{figure.3}\protected@file@percent }
|
||||
\newlabel{fig:part-2-efield}{{3}{2}{Electric field strength between the plates}{figure.3}{}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Electric field inside the rectangle}}{2}{figure.4}\protected@file@percent }
|
||||
\newlabel{fig:part-3-efield}{{4}{2}{Electric field inside the rectangle}{figure.4}{}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {V}Part 4}{2}{section.5}\protected@file@percent }
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Potential inside the rectangle}}{2}{figure.5}\protected@file@percent }
|
||||
\newlabel{fig:part-3-potential}{{5}{2}{Potential inside the rectangle}{figure.5}{}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Electric field inside the new rectangle}}{2}{figure.6}\protected@file@percent }
|
||||
\newlabel{fig:part-4-efield}{{6}{2}{Electric field inside the new rectangle}{figure.6}{}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Electric potential inside the new rectangle}}{3}{figure.7}\protected@file@percent }
|
||||
\newlabel{fig:part-4-potential}{{7}{3}{Electric potential inside the new rectangle}{figure.7}{}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {VI}Part 5}{3}{section.6}\protected@file@percent }
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces The electric field inside a rectangle with non-constant boundary potential}}{3}{figure.8}\protected@file@percent }
|
||||
\newlabel{fig:part-5-efield}{{8}{3}{The electric field inside a rectangle with non-constant boundary potential}{figure.8}{}}
|
||||
\@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces The electric potential of a rectangle with non-constant potential}}{3}{figure.9}\protected@file@percent }
|
||||
\newlabel{fig:part-5-potential}{{9}{3}{The electric potential of a rectangle with non-constant potential}{figure.9}{}}
|
||||
\gdef \@abspage@last{3}
|
1402
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-06/lab-06.log
Normal file
6
5th-Semester-Fall-2023/EEMAGS/Labs/Lab-06/lab-06.out
Normal file
@ -0,0 +1,6 @@
|
||||
\BOOKMARK [1][-]{section.1}{\376\377\000I\000n\000t\000r\000o\000d\000u\000c\000t\000i\000o\000n\000\040\000a\000n\000d\000\040\000B\000a\000c\000k\000g\000r\000o\000u\000n\000d}{}% 1
|
||||
\BOOKMARK [1][-]{section.2}{\376\377\000P\000a\000r\000t\000\040\0001}{}% 2
|
||||
\BOOKMARK [1][-]{section.3}{\376\377\000P\000a\000r\000t\000\040\0002}{}% 3
|
||||
\BOOKMARK [1][-]{section.4}{\376\377\000P\000a\000r\000t\000\040\0003}{}% 4
|
||||
\BOOKMARK [1][-]{section.5}{\376\377\000P\000a\000r\000t\000\040\0004}{}% 5
|
||||
\BOOKMARK [1][-]{section.6}{\376\377\000P\000a\000r\000t\000\040\0005}{}% 6
|