5th semester files
This commit is contained in:
476
5th-Semester-Fall-2023/EEMAGS/Notes/Chapter1.md
Normal file
476
5th-Semester-Fall-2023/EEMAGS/Notes/Chapter1.md
Normal file
@ -0,0 +1,476 @@
|
||||
# Chapter 1
|
||||
|
||||
## 1.1 Vector Analysis
|
||||
|
||||
#### Scalar
|
||||
A measure described by one real number. Examples include temperature, size, and mass. A scalar is a $1 \times 1$ matrix.
|
||||
|
||||
#### Vector
|
||||
A measure described by more than one real number (direction and magnitude). Examples include force, velocity, and it's derivatives. Vectors are often described by $n \times 1$ or $1 \times n$ matricies.
|
||||
|
||||
#### Unit Vector
|
||||
A unit (direction or normalized) vector is signified with a $\hat{ }$ symbol. Common unit vectors include $\hat{x}$, $\hat{y}$, and $\hat{z}$. The normalized version of any vector is defined as:
|
||||
$$\hat{a} = \frac{\vec{A}}{\lVert\vec{A}\rVert}$$
|
||||
|
||||
#### Dot Product
|
||||
The dot product is a measure of how *parallel* two vectors are, scaled by the magnitudes of the two vectors. To compute it, find the sum of the products of the like components of two vectors. It is also defined as the product of the magnitudes of the vectors normalized by the cosine of the angle between them. It is defined as:
|
||||
$$W = \vec{F} \cdot \vec{r} = \lVert\vec{F}\rVert\lVert\vec{r}\rVert \cos{\alpha}$$
|
||||
|
||||
#### Cross Product
|
||||
The cross product is a measure of how *perpendicular* two vectors are. This operation yeilds a vector quantity *orthoganal* to both original vectors. The direction vector for the cross product is $\hat{a}_c$, and its magnitude is the product of the magnitudes and the sine of the angle between them. It is defined as:
|
||||
$$\vec{C} = \vec{A} \times \vec{B} = \lVert\vec{A}\rVert \lVert\vec{B}\rVert \sin(\alpha) \hat{a}_c = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$
|
||||
|
||||
#### Right Hand Rule
|
||||
The right hand rule is a quick way to find $\hat{a}_c$.
|
||||
$$\overrightarrow{thumb} = \overrightarrow{pointer} \times \overrightarrow{middle}$$
|
||||
|
||||
#### Cartesian to Cylindrical
|
||||
$$\vec{A} = 4\hat{x} + 4\hat{y} - 2\hat{z}$$
|
||||
$$r = \sqrt{x^2 + y^2}$$
|
||||
$$\varphi = \arctan\left(\frac{y}{x}\right)$$
|
||||
$$z = z$$
|
||||
$$\vec{A} = A_\rho \hat{\rho} + A_\varphi \hat{\varphi} + A_z \hat{z}$$
|
||||
$$A_\rho = A_x \cos(\varphi) + A_y\sin(\varphi) = 4\sqrt{2}$$
|
||||
$$A_\varphi = -A_x\sin(\varphi) + A_y\cos(\varphi) = 0$$
|
||||
$$A_z = A_z = -2$$
|
||||
|
||||
## 1.2 Vector Calculus
|
||||
The differential along some path, $d\vec{l}$, is defined as:
|
||||
$$d\vec{l} = dx\hat{x} + dy\hat{y} + dz\hat{z} = d\vec{x} + d\vec{y} + d\vec{z}$$
|
||||
|
||||
|
||||
#### The "Del" $\left(\nabla\right)$ operator
|
||||
The gradient of the scalar field $\left(\nabla f\right)$.
|
||||
$$\nabla = \frac{\partial}{\partial x} \hat{x} + \frac{\partial}{\partial y} \hat{y} + \frac{\partial}{\partial z} \hat{z}$$
|
||||
$$df = \nabla f \cdot d\vec{l} = \left(\frac{\partial f}{\partial x}\right)dx + \left(\frac{\partial f}{\partial y}\right)dy + \left(\frac{\partial f}{\partial z}\right)dz$$
|
||||
|
||||
### Directional Derivative:
|
||||
The *directional derivative* is used to find the change of a function along some infinatesimal direction and is defined as:
|
||||
$$\Delta \varphi = {\nabla}_l \varphi \cdot \Delta \vec{l}$$
|
||||
$$\therefore {\nabla}_l \varphi = \frac{\Delta \varphi}{\delta \vec{l}} = \frac{d \varphi}{d \vec{l}} = \nabla \varphi \cdot \frac{\vec{l}}{\lVert\vec{l}\rVert}$$
|
||||
|
||||
|
||||
#### Example 1.1
|
||||
A function, $f(x,y,z) = x^2 y^2 + xyz$. Find $\nabla f$.
|
||||
$$f(x,y,z) = f(r)$$
|
||||
$$r = \sqrt{x^2 + y^2 + z^2}$$
|
||||
$$\nabla f = (2xy^2)\hat{x} + (2x^2y + xz)\hat{y} + xy\hat{z}$$
|
||||
|
||||
#### Example 1.2
|
||||
Consider a function, $w = x^2y^2 + xyz$. Find $\nabla_l w$ at $(2, -1, 0)$ in the direction, $\vec{l} = 3\hat{x} + 4\hat{y} + 12\hat{z}$.
|
||||
$$\lVert\vec{l}\rVert = \sqrt{3^2 + 4^2 + 12^2} = 13$$
|
||||
$${\nabla}_l w = \nabla w \cdot \frac{\vec{l}}{\lVert\vec{l}\rVert}$$
|
||||
Solving at $(2, -1, 0)$:
|
||||
$$\nabla w = 2(2)(-1)^2\hat{x} + 2(2)^2(-1)\hat{y} + 2(-1)\hat{z} = 4\hat{x} - 8\hat{y} - 2\hat{z}$$
|
||||
$${\nabla}_l w= (4\hat{x} - 8\hat{y} - 2\hat{z}) \cdot \left(\frac{3}{13}\hat{x} + \frac{4}{13}\hat{y} + \frac{12}{13}\hat{z}\right) = \frac{-44}{13}$$
|
||||
|
||||
### Divergence and Curl
|
||||
#### Divergence of a Vector Field
|
||||
The divergence of a vector field is a measure of outward flux. It is defined as:
|
||||
$$\nabla \cdot f = \left( \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right) \cdot (f_x + f_y + f_z) = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z}$$
|
||||
|
||||
If $\nabla \cdot \vec{A} = 0$, there is no divergence.
|
||||
|
||||
#### Curl of a Vector Field
|
||||
The curl of a vector field is a measure of circulation in each infinatesimally small region of the field. It is defined as:
|
||||
$$\nabla \times f = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_x & f_y & f_z \\ \end{vmatrix} = \left< \frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z}, \frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial x}, \frac{\partial f_y}{\partial z} - \frac{\partial f_x}{\partial z} \right>$$
|
||||
|
||||
#### Solenoidal Field
|
||||
A solenoidal field is a vector field without divergence, defined as:
|
||||
$$\nabla \cdot \vec{f} = 0$$
|
||||
|
||||
#### Conservative / Rotational Field
|
||||
A conservative field is a vector field without curl, defined as:
|
||||
$$\nabla \times \vec{f} = 0$$
|
||||
|
||||
#### Example 1.3
|
||||
Consider the vector field, $\vec{F} = k \hat{x}$, where both the direction and magnitude are uniform in all space.
|
||||
$$\nabla \cdot \vec{F} = 0$$
|
||||
$$\nabla \times \vec{F} = 0$$
|
||||
|
||||
#### Example 1.4
|
||||
Consider the vector field, $\vec{F} = k \hat{r}$, where magnitude is constant and direction is away from a central point.
|
||||
$$\hat{r} = \sqrt{\hat{x}^2 + \hat{y}^2 + \hat{z}^2}$$
|
||||
$$\nabla \cdot \vec{F} = \sqrt{3} k$$
|
||||
$$\nabla \times \vec{F} = 0$$
|
||||
|
||||
#### Example 1.5
|
||||
Consider the vector field, $\vec{F} = k \times \hat{r}$, where magnitude is uniform and the direction is perpendicular to the distance from a central point for all space.
|
||||
$$\nabla \cdot \vec{F} = 0$$
|
||||
$$\nabla \times \vec{F} = 2k$$
|
||||
|
||||
### Curl and Divergence Identities
|
||||
1. The Laplacian: can operate on a scalar or vector field
|
||||
$$\nabla \cdot (\nabla f) = \nabla^2 f$$
|
||||
$$\frac{\partial^2 f}{\partial x} + \frac{\partial^2 f}{\partial y} + \frac{\partial^2 f}{\partial z}$$
|
||||
2. The curl of a gradient is $0$
|
||||
$$\nabla \times (\nabla f) = 0$$
|
||||
3. The gradient of divergence is a scalar
|
||||
$$\nabla (\nabla \cdot \vec{f})$$
|
||||
4. The divergence of curl is $0$
|
||||
$$\nabla \cdot (\nabla \times \vec{v}) = 0$$
|
||||
5. Curl of curl
|
||||
$$\nabla \times (\nabla \times \vec{A}) = \nabla(\nabla \cdot \vec{A}) - \nabla^2 \vec{A}$$
|
||||
|
||||
### The Line Integral
|
||||
The line integral is the integral of the tangential component of a vector field along a path.
|
||||
|
||||
The line integral is defined as:
|
||||
$$\int \vec{A} \cdot d\vec{l} = \int \lVert \vec{A} \rVert \cos(\alpha) \lVert d\vec{l} \rVert$$
|
||||
|
||||
Where:
|
||||
|
||||
- $\vec{A}$ is some vector field
|
||||
|
||||
- $d\vec{l} = dx\hat{x} + dy\hat{y} + dz\hat{z}$
|
||||
|
||||
If the path of the integral is a closed curve, it is said to be the circulation of $\vec{A}$ around $\vec{l}$, defined as:
|
||||
|
||||
$$\oint_c \vec{A} \cdot d\vec{l}$$
|
||||
|
||||
#### Example 1.6
|
||||
Calculate the circulation of $\vec{F}$ around the path.
|
||||
|
||||
$\vec{F} = x^2 \hat{x} - xy\hat{y} - y^2\hat{z}$
|
||||
|
||||
Circulation of $\vec{F}$ around the path:
|
||||
$$\oint \vec{F} \cdot d \vec{l} = \int_1 + \int_2 + \int_3 + \int_4$$
|
||||
|
||||
##### Path 1
|
||||
Straight line from $(1,0,0)$ to $(0,0,0)$
|
||||
|
||||
$x$ varies, $z=0$, $y=0$.
|
||||
|
||||
Plug into $\vec{F}$:
|
||||
$$\vec{F}_1 = x^2\hat{x} - x(0)\hat{y} - (0)^2\hat{z} = x^2\hat{x}$$
|
||||
|
||||
Since $x$ varies at some rate, $dx$ exists, and since $y$ and $z$ are constant, $dy$ and $dz$ are both $0$.
|
||||
|
||||
Plug into $d\vec{l}$:
|
||||
$$d\vec{l} = dx\hat{x} + (0)\hat{y} + (0)\hat{z} = dx\hat{x}$$
|
||||
$$\int \vec{F}_1 \cdot d\vec{l}_1 = \int x^2\hat{x} \cdot dx\hat{x} = \int x^2dx$$
|
||||
|
||||
For this specific path:
|
||||
$$\int_{1}^{0} x^2dx = \left. \frac{x^3}{3} \right\vert_1^0 = 0 - \frac{1}{3} = -\frac{1}{3}$$
|
||||
|
||||
##### Path 2
|
||||
Straight line from $(0,0,0)$ to $(0,1,0)$
|
||||
|
||||
$y$ varies, $x=0$, $z=0$
|
||||
|
||||
Plug into $\vec{F}$:
|
||||
$$\vec{F}_2 = (0)^2\hat{x} - (0)y\hat{y} - y^2\hat{z} = -y^2\hat{z}$$
|
||||
|
||||
Since $y$ varies at some rate, $dy$ exists, but since $x$ and $z$ are constant, $dx$ and $dz$ are both $0$.
|
||||
|
||||
Plug into $d\vec{l}$:
|
||||
$$d\vec{l}_2 = (0)\hat{x} + dy\hat{y} + (0)\hat{z} = dy\hat{y}$$
|
||||
$$\int \vec{F}_2 \cdot d\vec{l} = \int -y^2\hat{z} \cdot dy\hat{y} = \int\limits_0^1 0 = 0$$
|
||||
|
||||
##### Path 3
|
||||
Straight line from $(0,1,0)$ to $(1,1,1)$
|
||||
|
||||
$x$ and $z$ vary at the same rate and always have the same value, $y=1$
|
||||
|
||||
### Surface Integrals
|
||||
$\hat{n}$ is the unit normal vector of a surface.
|
||||
|
||||
The total *flux* crossing an area, $\Delta s$, is given by the function:
|
||||
$$\Delta s \left[ \lVert \vec{F} \rVert \cos(\alpha)\right] = \vec{F} \cdot \hat{n} \Delta s$$
|
||||
|
||||
Total flux is defined as:
|
||||
$$\sum_{i=1}^N \vec{F}_i \cos(\alpha_i) \Delta s_i = \int_s \vec{F} \cdot d\vec{s}$$
|
||||
|
||||
#### Gradient Theorem
|
||||
The line integral through a gradient field is the difference of the values a the end points.
|
||||
|
||||
$$\int\limits_{r_1}^{r_2} \nabla \varphi \cdot d\vec{l} = \varphi(r_2) - \varphi(r_1)$$
|
||||
|
||||
$$\oint \nabla \varphi \cdot d\vec{l} = 0$$
|
||||
|
||||
#### Divergence Theorem
|
||||
The divergence in some volume is the same as the flux through its surface.
|
||||
|
||||
$$\iiint_{vol} \nabla \cdot \vec{A} d\tau = \oiint \vec{A} \cdot d\vec{s}$$
|
||||
|
||||
#### Stokes Theorem
|
||||
The curl in some region is the same as the circulation of the region's border.
|
||||
$$\iint_A (\nabla \times \vec{A}) \cdot d\vec{s} = \oint \vec{A} \cdot d\vec{l}$$
|
||||
|
||||
## 1.3 Coulomb's Law
|
||||
Initial observation:
|
||||
$$\vec{F} \propto q_1 q_2$$
|
||||
|
||||
Vacuum Permittivity:
|
||||
$$\varepsilon_0 = 8.854 \times 10^{-12}$$
|
||||
|
||||
Coulomb's Constant:
|
||||
$$k = \frac{1}{4 \pi \varepsilon_0} = 9 \times 10^{-9}$$
|
||||
|
||||
Coulomb's Law:
|
||||
$$\vec{F} = k \frac{q_1 q_2}{r^2} \hat{a}_{1 2}$$
|
||||
|
||||
Superposition of Coulomb's Law:
|
||||
$$\vec{F}_{Net} = \sum_{i=1}^{N} k_i \frac{Q q_i}{r_i^2} \hat{r}$$
|
||||
|
||||
**Note**: $k_i$ depends on material properties. When in a vacuum, $k_i = k$.
|
||||
|
||||
#### Example 1.7
|
||||
Two point charges, $q_1$ and $q_2$ are spaced 2cm apart on the x-axis. A third charge, $q_3$ is placed between the first two with a distance $x_1$ between it and $q_1$ and $x_2$ between it and $q_2$ such that $q_3$ is in static equilibrium.
|
||||
|
||||
Known:
|
||||
$$\vec{F}_{1 3} + \vec{F}_{2 3} = 0$$
|
||||
By Coulomb's Law:
|
||||
$$\vec{F}_{1 3} = \frac{k_1 q_3 q_1}{r_{1 3}^2} \hat{z}$$
|
||||
$$\vec{F}_{2 3} = -\frac{k_2 q_3 q_2}{r_{1 3}^2} \hat{z}$$
|
||||
$$\therefore \vec{F}_{1 3} + \vec{F}_{2 3} = k q_3 \left( \frac{q_1}{r_{1 3}^2} - \frac{q_2}{r_{2 3}^2} \right)\hat{z} = 0$$
|
||||
$$\therefore \frac{q_1}{r_{1 3}^2} - \frac{q_2}{r_{2 3}^2} = 0$$
|
||||
|
||||
Solve for $r_{1 3}$:
|
||||
$$r_{1 3} = \pm r_{2 3}\sqrt{\frac{q_1}{q_2}}$$
|
||||
|
||||
Known:
|
||||
$$r_{1 3} + r_{2 3} = 2$$
|
||||
$$\therefore r_{2 3} = 2 - r_{1 3}$$
|
||||
|
||||
Plug into first equation:
|
||||
$$r_{1 3} = \pm (2 - r_{1 3}) \sqrt{\frac{q_1}{q_2}}$$
|
||||
|
||||
Expand:
|
||||
$$r_{1 3} = \pm \left(2 \sqrt{\frac{q_1}{q_2}} - r_{1 3}\sqrt{\frac{q_1}{q_2}} \right)$$
|
||||
$$\therefore r_{1 3} \left(1 \pm \sqrt{\frac{q_1}{q_2}} \right) = \pm 2\sqrt{\frac{q_1}{q_2}}$$
|
||||
$$\therefore r_{1 3} = \pm 2\sqrt{\frac{q_1}{q_2}} \left( 1 \pm \sqrt{\frac{q_1}{q_2}} \right)^{-1}$$
|
||||
|
||||
### Electric Field Intensity
|
||||
Call a test charge at the point of measurement $Q_2$.
|
||||
|
||||
Coulomb's Law:
|
||||
$$\vec{F}_{1 2} = \frac{Q_1 Q_2}{4 \pi \varepsilon_0 R^2} \hat{a}_{1 2}$$
|
||||
|
||||
The electric field intensisty:
|
||||
$$\vec{E}_{1 2} = \frac{\vec{F}_{1 2}}{Q_1}$$
|
||||
$$\vec{E} = \frac{Q_1}{4 \pi \varepsilon_0 r^2} \hat{a}_{1 2}$$
|
||||
$$\vec{E}_{NET} = \sum_{i=0}^{N} \frac{k_i Q_i}{R_i^2} \hat{a}_{R_i}$$
|
||||
|
||||
Force due to electric field:
|
||||
$$\vec{F} = q \vec{E}$$
|
||||
|
||||
#### Electric field
|
||||
Always in the same direction as the electric field force.
|
||||
|
||||
#### Electric field of a dipole
|
||||
At a point equidistant to each pole:
|
||||
$$\lVert \vec{r}_1 \rVert = \lVert \vec{r_2} \rVert = r$$
|
||||
|
||||
By Coulomb's Law:
|
||||
$$\vec{E}_1 = \frac{kq}{r^2} \hat{r}_1$$
|
||||
$$\vec{E}_2 = \frac{kq}{r^2} \hat{r}_2$$
|
||||
$$\therefore \lVert \vec{E}_1 \rVert = \lVert \vec{E}_2 \rVert$$
|
||||
|
||||
In terms of the component distances:
|
||||
$$r^2 = a^2 + y^2$$
|
||||
$$\therefore E = \frac{kq}{a^2 + y^2}$$
|
||||
|
||||
$$\vec{E}_{NET_y} = \vec{E}_{1_y} + \vec{E}_{2_y} = 2E\cos{\theta}$$
|
||||
|
||||
By definition:
|
||||
$$\cos(\theta) = \frac{a}{r}$$
|
||||
$$\therefore \vec{E}_{NET_y} = \frac{2kq}{a^2 + y^2} \frac{a}{\sqrt{a^2 + y^2}}\hat{y}$$
|
||||
$$\vec{E}_{NET_y} = 2 \frac{kqa}{(x^2 + y^2)^{3/2}} \hat{y}$$
|
||||
|
||||
If $y \gg a$ (far field):
|
||||
$$\vec{E}_{NET} = 2 \frac{kqa}{y^3}$$
|
||||
|
||||
**Takeaway**:
|
||||
$$\vec{E}_{monopole} \propto \frac{1}{r^2}$$
|
||||
$$\vec{E}_{dipole} \propto \frac{1}{r^3}$$
|
||||
|
||||
#### Charge Densities
|
||||
$\lambda$ - Linear charge density
|
||||
|
||||
$\sigma$ - Surface charge density
|
||||
|
||||
$\rho$ - Volume charge density
|
||||
|
||||
Electric flux density:
|
||||
$$\vec{D} = \varepsilon_0 \vec{E}$$
|
||||
|
||||
Where:
|
||||
$$\vec{E} = \lim_{\Delta q \to 0} \frac{k \sum_i \Delta q_i}{\lVert \vec{r}_i \rVert ^2} \hat{r}_i = \int \frac{k}{\lVert \vec{r}_i \rVert ^2} dq$$
|
||||
|
||||
#### Example 1.8
|
||||
A straight line segment of length $L$ with uniform charge density $\lambda$ extends from the origin in the $\hat{x}$ direction. Find the strength of the electric field, $\vec{E}$ at some arbitrary point, $p$ along the ray from the origin in the $\hat{z}$ direction.
|
||||
|
||||
The distance along the line segment in the $\hat{x}$ direction is denoted as $x$, and the distance from the origin to point $p$ is denoted as $z$. The vector, $\vec{r}$ has length $\sqrt{x^2 + z^2}$ and makes an angle $\theta$ with the ray in the $-\hat{z}$ direction.
|
||||
|
||||
The contribution $d\vec{E}$ to the total electric field, $\vec{E}$, at point $p$ is defined as:
|
||||
$$d\vec{E} = \frac{k dq}{\lVert \vec{r} \rVert ^2} \hat{r}$$
|
||||
|
||||
For a linear charge distribution:
|
||||
$$dq = \lambda dl$$
|
||||
The distance, $r$, to each $x$ alond the line:
|
||||
$$\lVert \vec{r} \rVert ^2 = x^2 + z^2$$
|
||||
The components of the $\vec{E}$-field at point $p$:
|
||||
$$d\vec{E}_x = \lVert d\vec{E} \rVert \sin(\theta) \hat{x}$$
|
||||
$$d\vec{E}_z = \lVert d\vec{E} \rVert \cos(\theta) \hat{z}$$
|
||||
|
||||
## Gauss's Law
|
||||
|
||||
## E-Flux Density
|
||||
|
||||
## EMF
|
||||
Measured in *volts*, electromotive force (EMF), is denoted by $\mathcal{E}$. The value for EMF is defined as:
|
||||
$$\mathcal{E} = \oint \vec{E} \cdot d \vec{l} = -\frac{d}{dt} \int_s B_z(t) \cdot ds = -\frac{d}{dt}\psi_m$$
|
||||
|
||||
Where:
|
||||
|
||||
$$\psi_m = \int_s \vec{B} \cdot d\vec{s}$$
|
||||
|
||||
A perfectly conducting ring with radius, $\rho_0$, centered on the origin in the x-y plane.
|
||||
|
||||
The charge distribution:
|
||||
$$\rho = \rho_0 + \rho_0 \sin(\omega t)$$
|
||||
$$\vec{B}(t) = B_0 \cos(\omega t)\hat{z}$$
|
||||
$$\mathcal{E} = \oint \vec{E} \cdot d\vec{l} = \iint\limits_{\phi R} B_0 \cos(\omega t) dr d\phi$$
|
||||
|
||||
Where:
|
||||
|
||||
$\varphi: [0, 2\pi]$
|
||||
|
||||
$R: [0, \rho(t)]$
|
||||
|
||||
Therefore:
|
||||
$$\psi_m = (B_0 \cos(\omega t) \hat{z})(2\pi \rho(t))$$
|
||||
|
||||
$$\mathcal{E} = -\frac{d}{dt} B_0 2\pi \cos(\omega t)(\rho_0 + \rho_0\sin(\omega t))$$
|
||||
|
||||
### Filling in some Gaps
|
||||
$$\vec{F} = -\nabla \vec{u}$$
|
||||
Where: $\vec{u}$ is potential.
|
||||
|
||||
$$\vec{E} = -\nabla \vec{v}$$
|
||||
Where: $\vec{v}$ is electric potential.
|
||||
|
||||
$$W = \vec{F} \cdot \vec{d} = q\vec{E} \cdot \vec{d}$$
|
||||
|
||||
Work done by the $\vec{E}$-field on a charge will reduce the electric potential:
|
||||
|
||||
$$-\Delta u = u_B - u_A = -\Delta W = -qEd$$
|
||||
|
||||
The total change is:
|
||||
|
||||
$$\Delta u = -q \int\limits_A^B \vec{E} \cdot d\vec{l}$$
|
||||
|
||||
$$\therefore \frac{\Delta u}{q} = \int\limits_A^B \vec{E} \cdot d\vec{l} = \Delta V$$
|
||||
|
||||
$$W = q \int \vec{E} \cdot d\vec{l}$$
|
||||
|
||||
$$V(r) = \frac{kq}{r}$$
|
||||
|
||||
For $N$ discrete charges,
|
||||
$$V = \sum\limits_{i=1}^{N} \frac{k q_i}{r_i}$$
|
||||
|
||||
In cartesian coordinates:
|
||||
|
||||
$$\vec{F} = F_x\hat{i} + F_y\hat{j} + F_z\hat{z}$$
|
||||
|
||||
Where:
|
||||
|
||||
$F_x = \frac{dw}{dx}$
|
||||
|
||||
$F_y = \frac{dw}{dy}$
|
||||
|
||||
$F_z = \frac{dw}{dz}$
|
||||
|
||||
Therefore:
|
||||
$$\vec{F} = \frac{\partial w}{\partial x}\hat{i} + \frac{\partial w}{\partial y}\hat{j} + \frac{\partial w}{\partial z}\hat{k} = \nabla \vec{w}$$
|
||||
|
||||
$$q\vec{E} = \nabla (-\vec{u})$$
|
||||
|
||||
$$\vec{F} = -\nabla \vec{u}$$
|
||||
|
||||
$$\vec{E} = -\nabla \left( \frac{\vec{u}}{q} \right) = -\nabla \vec{V}$$
|
||||
|
||||
|
||||
#### Electric Flux Density
|
||||
$$\vec{D} = \varepsilon \vec{E}$$
|
||||
Where $\varepsilon = \varepsilon_r \varepsilon_0$ (permittivity).
|
||||
|
||||
#### Magnetic Flux Density
|
||||
$$\vec{B} = \mu\vec{H}$$
|
||||
Where $\mu = \mu_r \mu_0$ (permeability).
|
||||
|
||||
### Ampere's Law
|
||||
The total current crossing an area, $s$, that is enclosed by the contour $C$:
|
||||
$$\oint_C \frac{\vec{B}}{\mu_0} \cdot d\vec{l}$$
|
||||
|
||||
The total current is the sum of the current due to charge flow and the current due to the time rate of change of the electric flux crossing an area, $s$. Maxwell was able to unify electricity and magnetism by adding the current due to the time rate of change of electric flux.
|
||||
$$\oint_C \vec{H} \cdot d\vec{l} = \int_S \vec{J} \cdot d\vec{s} + \frac{d}{dt}\int \varepsilon_0\vec{E} \cdot d\vec{s}$$
|
||||
|
||||
#### Simplified Ampere's Law
|
||||
|
||||
$$\oint_C \vec{H} \cdot d\vec{l} = I = \int_s \vec{J} \cdot d\vec{s}$$
|
||||
|
||||
The charge density, $J = \rho v$, has units $\left[ \frac{A}{m^2} \right]$.
|
||||
|
||||
#### Example
|
||||
A current, $I$, in an infinitely long cylindrical wire with radius, $R$.
|
||||
$$\int \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$$
|
||||
|
||||
Measuring the magnetic field at some distance, $r$, from the center of the conductor:
|
||||
$$B\int dl = \mu_0 I$$
|
||||
Where $\int dl$ is the circumfrece of measurement.
|
||||
$$B(2\pi r) = \mu_0 I$$
|
||||
$$B_{out} = \frac{\mu_0 I}{2\pi r} \hat{\varphi}$$
|
||||
Inside the wire:
|
||||
$$\int \vec{B} \cdot d\vec{l} = \mu_0 I$$
|
||||
$$B\int dl = \frac{\mu_0 I r^2}{R^2} = 2\pi rB$$
|
||||
$$B = \frac{\mu_0 I}{2\pi R^2} r$$
|
||||
$$\vec{B} = \frac{\mu_0 I}{2\pi R^2}r \hat{\varphi}$$
|
||||
|
||||
### Coulomb's Law
|
||||
The total displacement flux of charge:
|
||||
$$\int_s \varepsilon_0 \vec{E} \cdot d\vec{s}$$
|
||||
|
||||
The total current (charge with respect to time):
|
||||
$$I = \frac{d}{dt} \int_s \varepsilon_0 \vec{E} \cdot d\vec{s}$$
|
||||
|
||||
### Faraday's Law
|
||||
Work done in moving a unit positive test charge around a closed path, $C$:
|
||||
$$\oint_C \vec{E} \cdot d\vec{l}$$
|
||||
|
||||
Magnetic force on a poving charge and is directed perpendicular to both the direction of the motion of the charge and the magnetic field.
|
||||
$$\oint_C \vec{B} \cdot d\vec{l}$$
|
||||
|
||||
### Solenoid (Ideal)
|
||||
For an ideal solenoid with constant current, $I$, assume uniform $\vec{B}$ inside, $\vec{B} = 0$ outside, and infinite length.
|
||||
|
||||
By Ampere's Law:
|
||||
$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$$
|
||||
|
||||
For a square loop with one side in the solenoid, and it's parallel side outside the loop:
|
||||
$$\oint \vec{B} \cdot d\vec{l} = \int_1 + \int_2 + \int_3 + \int_4$$
|
||||
|
||||
Sides 2 and 4 are parallel, and side 3 is outside the solenoid, so:
|
||||
$$\oint \vec{B} \cdot d\vec{l} = \int_1 = Bl$$
|
||||
|
||||
Back to Ampere's Law:
|
||||
$$Bl = \mu_0 I N$$
|
||||
$$\therefore B = \frac{\mu_0 I N}{l} = \mu_0 I n$$
|
||||
Where:
|
||||
|
||||
$N$ is the total number of windings,
|
||||
|
||||
$l$ is the sidelength of the Amperian loop,
|
||||
|
||||
$n$ is the number of windings per unit length $\frac{N}{l}$
|
||||
|
||||
### Toroid (Ideal)
|
||||
From a symmetric $\vec{B}$-field, lines form concentric circles inside the toroid. For an ideal toroid, assume $\vec{B} = 0$ outside, and Ampere's law inside.
|
||||
|
||||
$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$$
|
||||
For some circular Amperian loop inside the toroid:
|
||||
$$\vec{B} = B\hat{\varphi}$$
|
||||
$$d\vec{l} = 2\pi r \vec{\varphi}$$
|
||||
$$B(2\pi r) = \mu_0 N I$$
|
||||
$$\therefore B = \frac{\mu_0 N I}{2\pi r}$$
|
265
5th-Semester-Fall-2023/EEMAGS/Notes/Chapter2.md
Normal file
265
5th-Semester-Fall-2023/EEMAGS/Notes/Chapter2.md
Normal file
@ -0,0 +1,265 @@
|
||||
# Chapter 2
|
||||
|
||||
## Maxwell's Equations in Differential Form
|
||||
$$\int \vec{E} \cdot d\vec{s} = \frac{Q_{enc}}{\varepsilon_0} \xleftrightarrow{\text{divergence}} \nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$
|
||||
$$\int \vec{B} \cdot d\vec{s} = 0 \xleftrightarrow{} \nabla \cdot \vec{B} = 0$$
|
||||
$$\int \vec{E} \cdot d\vec{l} = -\frac{d}{dt}\vec{B} \xleftrightarrow{\text{stokes}} \nabla \times \vec{E} = -\frac{d}{dt}\vec{B}$$
|
||||
$$\int \vec{B} \cdot d\vec{l} = \mu_0\left( \vec{J} + \varepsilon_0 \frac{d\vec{E}}{dt}\right) \xleftrightarrow{} \nabla \times \vec{B} = \mu_0 J + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$
|
||||
|
||||
Before Maxwell (only true for magnetostatics):
|
||||
$$\nabla \times \vec{B} = \mu_0\vec{J}$$
|
||||
$$\nabla \cdot (\nabla \times \vec{B}) = \mu_0(\nabla \cdot \vec{J})$$
|
||||
$$\nabla \cdot \vec{J} = 0$$
|
||||
|
||||
For changing magnetic fields:
|
||||
$$\nabla \cdot \vec{J} = -\frac{\partial}{\partial t} \rho_v$$
|
||||
$$\nabla \cdot \vec{J} + \frac{\partial}{\partial t} \rho_v = 0$$
|
||||
|
||||
### Example 2.1
|
||||
$$\vec{J} = e^{-x^2}\hat{x}$$
|
||||
Find the time rate of change of charge densisty at $x=1$:
|
||||
$$\nabla \cdot \vec{J} = -\frac{\partial}{\partial t} \rho_v$$
|
||||
$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \vec{J} = -\frac{d}{dx}e^{-x^2} = 2xe^{-x^2}$$
|
||||
$$\therefore 2 e^{-1}$$
|
||||
|
||||
### Example 2.2
|
||||
For some spherical current density:
|
||||
$$\vec{J} = \frac{J_0 e^{-t/\tau}}{\rho}\hat{\rho}$$
|
||||
Find the total current that leaves the surface of radius, $t = \tau$:
|
||||
$$I = \int \vec{J} \cdot d\vec{s} = 4\pi a^2 \left(\frac{J_0 e^{-t/\tau}}{a}\right)$$
|
||||
$$I = 4\pi a J_0 e^{-1}$$
|
||||
|
||||
Find $\rho_v(\rho, t)$:
|
||||
$$\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t} = \frac{1}{\rho^2} \frac{\partial}{\partial \rho}(\rho^2 J)$$
|
||||
Plug in for $J$:
|
||||
$$\nabla \cdot \vec{J} = \frac{1}{\rho^2} \frac{\partial}{\partial \rho}\left(\rho^2 \frac{J_0 e^{-t/\tau}}{\rho}\right) = \frac{J_0}{\rho^2} e^{-t/\tau} = -\frac{\partial}{\partial t} \rho_v$$
|
||||
Solve for $\rho_v$:
|
||||
$$\rho_v = \int -\frac{J_0}{\rho^2}e^{-t/\tau} dt$$
|
||||
$$\rho_v = \frac{J_0}{\rho^2} e^{-t/\tau} \tau$$
|
||||
|
||||
## Wave Propagation
|
||||
$$\nabla \times \vec{E} = -\frac{\partial}{\partial t} \vec{B}$$
|
||||
$$\nabla \times \vec{B} = \mu_0 (\vec{J} + \varepsilon_0 \frac{\partial}{\partial t} \vec{E})$$
|
||||
$$\nabla \cdot \vec{E} = \frac{\rho_v}{\varepsilon_0}$$
|
||||
$$\nabla \cdot \vec{B} = 0$$
|
||||
|
||||
Take the curl of the first equation:
|
||||
$$\nabla \times (\nabla \times \vec{E}) = -\frac{\partial}{\partial t}(\nabla \times \vec{B})$$
|
||||
$$\nabla (\nabla \cdot \vec{E}) - \nabla^2\vec{E} = -\frac{\partial}{\partial t}(\nabla \times \vec{B})$$
|
||||
|
||||
Substitute the second equation into the one directly above:
|
||||
$$\nabla(\nabla \cdot \vec{E}) - \nabla^2\vec{E} = -\frac{\partial}{\partial t} \left( \mu_0 \vec{J} + \mu_0\varepsilon_0 \frac{\partial}{\partial t}\vec{E} \right)$$
|
||||
|
||||
#### Homogenious vector wave for $\vec{E}$-fields
|
||||
Lets say we are considering wave propagation in a source free region ($\rho_v =0$).
|
||||
$$\nabla \cdot \vec{E} = \frac{\rho_v}{\varepsilon_0} =0$$
|
||||
$$\vec{J} = -\frac{\partial}{\partial t} \rho_v = 0$$
|
||||
|
||||
Now we have:
|
||||
$$-\nabla^2\vec{E} = -\mu_0\varepsilon_0 \frac{\partial}{\partial t} \vec{E}$$
|
||||
$$\therefore \nabla^2\vec{E}-\mu_0\varepsilon_0 \frac{\partial}{\partial t}\vec{E} = 0$$
|
||||
|
||||
#### Homogeneous vector wave for $\vec{B}$-fields
|
||||
$$\nabla^2\vec{B} - \mu_0\varepsilon_0 \frac{\partial^2}{\partial t^2}\vec{B} = 0$$
|
||||
|
||||
### Phasor representations
|
||||
In general, all fields and their sources vary as a function of position and time. If the time variations are sinusoidal, with angular frequency, $\omega$, then each of their quantities can be represented by a time independent phasor.
|
||||
|
||||
$$\vec{E}(x,y,z,t) = \Re\{\vec{E}(x,y,z)e^{j \omega t}\}$$
|
||||
$$\vec{E}(r,t) = \Re\{\hat{E}(r) e^{j \omega t}\}$$
|
||||
$$\vec{B}(r,t) = \Re\{\hat{B}(r) e^{j \omega t}\}$$
|
||||
|
||||
$\hat{E}$ and $\hat{B}$ are the complex time variations in vector form. ($\hat{E} = \hat{\vec{E}}$)
|
||||
.
|
||||
|
||||
If $\hat{E}(r) = E_0 e^{j \theta}$,
|
||||
$$\vec{E}(r, t) = \Re\{E_0 e^{j \theta} e^{j \omega t}\} = E_0\cos(\omega t + \theta)$$
|
||||
|
||||
Consider a plane wave in the x-direction only ($E_y = E_z = 0$), and does ont vary the x or y direction ($\frac{\partial}{\partial x}\hat{E} = \frac{\partial}{\partial y}\hat{E} = 0$). Assume free space for propagation ($\hat{J} = \hat{\rho}_v = 0$).
|
||||
|
||||
$$\nabla \times \vec{E} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \hat{E}_x & \hat{E}_y & \hat{E}_z \end{vmatrix} = -j\omega (\hat{B}_x\hat{x} + \hat{B}_y \hat{y} + \hat{B}_z \hat{z}$$
|
||||
$$\therefore \begin{Bmatrix} -\frac{\partial}{\partial z}\hat{E} = -j\omega\hat{B}_x \\ \frac{\partial}{\partial z}\hat{E} = -j\omega\hat{B}_y \\ 0 = -j\omega\hat{B}_z \end{Bmatrix}$$
|
||||
|
||||
Similarly, Ampere's Law:
|
||||
$$\begin{Bmatrix} -\frac{\partial \hat{B}_y}{\partial z} = j\omega\varepsilon_0\mu_0\hat{E}_x \\ \frac{\partial \hat{B}_x}{\partial z} = j\omega\varepsilon_0\mu_0\hat{E}_y \\ 0 = j\omega\varepsilon_0\mu_0\hat{E}_z\end{Bmatrix}$$
|
||||
|
||||
Therefore, $B_x$ and $E_y$ are related to each other. $B_x$ acts as the source for generating $E_y$, and $E_y$ acts as the source for generating $B_x$. Solving for $\hat{E}_x$ and $\hat{B}_y$:
|
||||
$$\frac{\partial^2 \hat{E}_x}{\partial z^2} = -j\omega\frac{\partial \hat{B}_y}{\partial z} = -\omega^2\mu_0\varepsilon_0\hat{E}_x$$
|
||||
$$\therefore \frac{\partial^2}{\partial z^2}\hat{E}_x + \mu_0\varepsilon_0\omega^2\hat{E}_x = 0$$
|
||||
|
||||
The general solution:
|
||||
$$\hat{E}_x = \hat{C}_1 e^{-j \beta_0 z} + \hat{C}_2 e^{j \beta_0 z}$$
|
||||
Where $\hat{C}_1$ and $\hat{C}_2$ are complex.
|
||||
|
||||
$$\therefore \hat{E}_x = \hat{E}_m^+ e^{-j \beta_0 z} + \hat{E}_m^- e^{j \beta_0 z}$$
|
||||
Where $E_m^+$ and $E_m^-$ are wave amplitudes (volts per meter).
|
||||
|
||||
##### The phase constant:
|
||||
$$\beta_0 = \omega \sqrt{\mu_0 \varepsilon_0} = \frac{2\pi}{\lambda} = \frac{2\pi f}{C}$$
|
||||
|
||||
#### Real time form of the solution:
|
||||
$$E_x(z,t) = \Re\{\hat{E}_x e^{j \omega t}\} = \Re\{E_m^+ e^{j(\omega t - \beta_0 z)} + E_m^- e^{j(\omega t + \beta_0 z)}\}$$
|
||||
$$\therefore E_x(z,t) = E_m^+ \cos(\omega t - \beta_0 z) + E_m^- \cos(\omega t + \beta_0 z)$$
|
||||
|
||||
If $E_m^+ = E_m^-$, the magnitude and direction is $E_0$.
|
||||
$$\therefore E_x(z,t) = E_0\cos(\omega t \pm \beta_0 z)$$
|
||||
Where:
|
||||
|
||||
$\omega = 2\pi f$
|
||||
|
||||
$v_0$ is the phase velocity
|
||||
|
||||
##### The phase velocity
|
||||
$$v_0 = \frac{1}{\sqrt{\mu \varepsilon}}$$
|
||||
In a vacuum:
|
||||
$$v_0 = c$$
|
||||
|
||||
#### Also
|
||||
$$\hat{B}_y = \frac{\hat{E}_x}{c}$$
|
||||
|
||||
Common $\vec{E}$ and $\vec{B}$ field ratio is:
|
||||
$$\mu_0 \hat{H}_y = \frac{\hat{E}_x}{c}$$
|
||||
$$\therefore \frac{\hat{E}_x}{\hat{H}_y} = \mu_0 c = \frac{\mu_0}{\sqrt{\mu_0 \varepsilon_0}} = \sqrt{\frac{\mu_0}{\varepsilon_0}} = \eta_0 \approx 120\pi = 377\Omega$$
|
||||
|
||||
Where $\eta_0$ is the intrinsic wave impedance.
|
||||
|
||||
$$\therefore \hat{E}_x = \hat{H}_y \eta_0$$
|
||||
$$\therefore \hat{H}_y = \frac{\hat{E}_x}{\eta_0}$$
|
||||
|
||||
Therefore, both $\vec{H}$ and $\vec{E}$ fields are in phase.
|
||||
|
||||
In general:
|
||||
$$\hat{H} = \frac{\hat{k}}{\eta_0} \times \hat{E}$$
|
||||
$$\hat{E} = -\eta_0 \hat{k} \times \hat{H}$$
|
||||
|
||||
### Example 2.3
|
||||
$$\vec{E} = 50\cos(10^8t + \beta_0 x)\hat{y} \text{[v/m]}$$
|
||||
$$E_y = E_0\cos(\omega t + \beta x)$$
|
||||
$E_y$ propagates in the $-\hat{x}$ direction.
|
||||
$$\beta_0 = \omega \sqrt{\mu_0 \varepsilon_0} = \frac{\omega}{c} = \frac{10^8}{3 \times 10^8} = \frac{1}{3}$$
|
||||
What is the time it takes to travel a distance of $\frac{\lambda}{2}$?
|
||||
$$\omega = 2\pi f = \frac{2\pi}{T}$$
|
||||
$$T = \frac{2\pi}{\omega}$$
|
||||
$$\therefore t_{\lambda/2} = \frac{T}{2} = \frac{\pi}{\omega} = \frac{\pi}{10^8} \approx 31.42\text{[ns]}$$
|
||||
|
||||
The refractive index of a medium is given by the ratio of $c$ and $v_p$:
|
||||
$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$
|
||||
$$v_p = \frac{1}{\sqrt{\mu \varepsilon}}$$
|
||||
$$n = \frac{c}{v_p} = \sqrt{\frac{\mu \varepsilon}{\mu_0 \varepsilon_0}} = \sqrt{\mu_r \varepsilon_r}$$
|
||||
|
||||
For a non-magnetic material:
|
||||
$$\mu_r \approx 1$$
|
||||
$$\therefore n = \sqrt{\varepsilon_r}$$
|
||||
|
||||
## Polarization
|
||||
|
||||
$$\begin{rcases}
|
||||
\nabla \cdot \vec{E} = {\rho \over \varepsilon_0} \\
|
||||
\nabla \cdot \vec{B} = 0
|
||||
\end{rcases} \text{Gauss}$$
|
||||
|
||||
$$\begin{rcases}
|
||||
\nabla \times \vec{E} = -{\partial \over \partial t} \vec{B}
|
||||
\end{rcases} \text{Faraday}$$
|
||||
|
||||
$$\begin{rcases}
|
||||
\nabla \times B = \mu_0 \vec{J} + \mu_0 \varepsilon_0{\partial \over \partial t}\vec{E}
|
||||
\end{rcases} \text{Ampere}$$
|
||||
|
||||
Polarization of a uniform plane wave describes the shape and olcus of the tip of the $\vec{E}$-field vector in the plane orthoganal to the direction of propagation. There are two pairs of $\vec{E}$ and $\vec{B}$ fields ($\hat{E}_x$, $\hat{H}_y$) and ($\hat{E}_y$, $\hat{H}_x$). When both pairs are present, we can evaluate polarization of plane waves. The $\vec{E}$-field has components in the $\hat{x}$ and $\hat{y}$ directions and travels in $\hat{z}$.
|
||||
|
||||
$$\hat{E} = (\hat{E}_x \hat{x} + \hat{E}_y \hat{y})e^{-j \beta z}$$
|
||||
$$\hat{E}_x = \lvert \hat{E}_{x_0} \rvert e^{-j \beta a}$$
|
||||
$$\hat{E}_y = \lvert \hat{E}_{y_0} \rvert e^{-j \beta b}$$
|
||||
|
||||
#### Locus
|
||||
The shape the tip of the $\vec{E}$-field vector traces out while in motion.
|
||||
|
||||
#### Phase
|
||||
Typically defined relative to a reference point such as $z=0$ or $t=0$ or some combination.
|
||||
|
||||
### Polarization Characteristics
|
||||
#### Linear polarization
|
||||
$\hat{E}_x$ and $\hat{E}_y$ have the same phase angle: $a = b$, so the x and y components of the $\vec{E}$-field will be in phase.
|
||||
|
||||
$$\hat{E} = (\lvert \hat{E}_x \rvert \hat{x} + \lvert \hat{E}_y \rvert \hat{y} ) e^{-j( \beta z - a)}$$
|
||||
|
||||
In real time:
|
||||
$$\hat{E} = (\lvert \hat{E}_x \rvert \hat{x} + \lvert \hat{E}_y \rvert \hat{y} ) \cos(\omega t - \beta z + a)$$
|
||||
|
||||
As the wave continues to propagate in the $\hat{z}$ direction, the $\vec{E}$-field vector maintains its direction with angle, $\theta$, with respect to the y-axis.
|
||||
$$\tan(\theta) = {\lvert \hat{E}_x \rvert \over \vert \hat{E}_y \rvert}$$
|
||||
|
||||
When $z=0$, the $\vec{E}$ field is given by:
|
||||
$$\vec{E}(0, t) = (\lvert \hat{E}_x \rvert \hat{x} + \lvert \hat{E}_y \rvert \hat{y} ) \cos(\omega t + a)$$
|
||||
$$\vec{E}(0, 0) = (\lvert \hat{E}_x \rvert \hat{x} + \lvert \hat{E}_y \rvert \hat{y} ) \cos(a)$$
|
||||
|
||||
#### Elliptical Polarization
|
||||
$\hat{E}_x$ and $\hat{E}_y$ have different phase angles. $\vec{E}$ is no longer in one plate.
|
||||
|
||||
$$\hat{E} = \hat{x} \lvert \hat{E}_x \rvert e^{j (a - \beta z)} + \hat{y} \lvert \hat{E}_y \rvert e^{j(b - \beta z)}$$
|
||||
|
||||
Where:
|
||||
|
||||
$E_x = \lvert \hat{E}_x \rvert \cos(\omega t - a + \beta z)$
|
||||
|
||||
$E_y = \lvert \hat{E}_y \rvert \cos(\omega t - b + \beta z)$
|
||||
|
||||
|
||||
If $a=0$ and $b = {\pi \over 2}$:
|
||||
$$\vec{E}_x(z,t) = \lvert \hat{E}_x \rvert \cos(\omega t - a + \beta z)$$
|
||||
$$\vec{E}_y(z,t) = \lvert \hat{E}_y \rvert \cos(\omega t - b + \beta z)$$
|
||||
|
||||
#### Circular Polarization
|
||||
$\hat{E}_x$ and $\hat{E}_y$ have the same magnitude with a phase angle difference of ${\pi \over 2}$.
|
||||
|
||||
### Example
|
||||
Determine the real-valued $\vec{E}$-field.
|
||||
$$\hat{E}(z) = -3j\hat{x} e^{-j\beta z}$$
|
||||
$$\vec{E}(z, t) = -3j\hat{x} e^{-j \beta z} e^{j\omega t}$$
|
||||
$$3 \hat{x} e^{-j \beta z} e^{j \omega t} e^{-\pi \over 2}$$
|
||||
$$3 \cos\left(\omega t- \beta z - {\pi \over 2}\right)$$
|
||||
|
||||
### Example
|
||||
What are $E_x$ and $E_y$
|
||||
$$\hat{E}(z) = (3\hat{x} + 4\hat{y})e^{j\beta z}$$
|
||||
$$\vec{E}(z, t) = (3\hat{x} + 4\hat{y})e^{j\beta z}e^{j\omega t}$$
|
||||
$$E_x = 3\cos(\omega t + \beta z)$$
|
||||
$$E_y = 4\cos(\omega t + \beta z)$$
|
||||
|
||||
### Example
|
||||
$$\hat{E}(z) = (-4\hat{x} + 3\hat{y})e^{-j\beta z}$$
|
||||
$$\hat{E}(z, t) = (-4\hat{x} + 3\hat{y})e^{-j\beta z}e^{j\omega t}$$
|
||||
$$E_x = 4\cos(\omega t - \beta z + \pi)$$
|
||||
$$E_y = 3\cos(\omega t - \beta z)$$
|
||||
|
||||
## Non-Sinusoidal Waves
|
||||
Analytical solution of a 1-D traveling wave.
|
||||
$${\partial^2 \over \partial z^2}\vec{E} - {1\over c^2}{\partial^2 \over \partial t^2}\vec{E} = 0$$
|
||||
|
||||
### D'Alemberts Solution
|
||||
$$\vec{E}(z, t) = E(z - ct) + E'(z + ct)$$
|
||||
|
||||
Show that the function, $F(z - ct) = F_0 e^{-(z+ct)^2}$ is a solution of the wave equation.
|
||||
|
||||
Let $\gamma = z - ct$, and ${\partial \gamma \over \partial z} = 1$:
|
||||
$$F(z-ct) = F_0 e^{-\gamma^2}$$
|
||||
$$F'(z + ct) = 0$$
|
||||
$${\partial F \over \partial z} = {\partial F \over \partial \gamma} {\partial \gamma \over \partial z} = F_0 e^{-\gamma^2}(-2\gamma)$$
|
||||
$${\partial^2 F \over \partial z^2} = {\partial \over \partial z}\left({\partial F \over \partial \gamma}{\partial \gamma \over \partial z}\right)$$
|
||||
$$G = \left({\partial F \over \partial \gamma}{\partial \gamma \over \partial z}\right)$$
|
||||
|
||||
Don't forget chain rule:
|
||||
$${\partial G \over \partial \gamma}{\partial \gamma \over \partial z} = {\partial \over \partial z}\left({\partial F \over \partial \gamma}{\partial \gamma \over \partial z}\right){\partial \gamma \over \partial z}$$
|
||||
|
||||
$${\partial \over \partial \gamma} - 2\gamma F_0 e^{-\gamma^2} = -2F_0 {\partial \over \partial \gamma} \gamma e^{-\gamma^2}$$
|
||||
|
||||
By product rule:
|
||||
$$-2F_0 (\gamma (-2\gamma e^{-\gamma^2}) + e^{-\gamma^2})$$
|
||||
|
||||
$$F_0 (4\gamma^2 e^{-\gamma^2} - 2e^{-\gamma^2}) = F_0(-2 + 4\gamma^2)e^{-\gamma^2}$$
|
||||
$$={\partial^2 \over \partial \gamma^2}F \left({\partial \gamma \over \partial z}\right)^2$$
|
||||
$$\therefore {\partial^2 \over \partial t^2}F = {\partial^2 F \over \partial \gamma^2} \left({\partial \gamma \over \partial t}\right)^2 = F_0(-2 + 4\gamma^2)e^{-\gamma^2}(C^2)$$
|
||||
|
||||
This solution satisfies:
|
||||
$${\partial^2 \over \partial z^2}\vec{E} - {1\over c^2}{\partial^2 \over \partial t^2}\vec{E} = 0$$
|
332
5th-Semester-Fall-2023/EEMAGS/Notes/Chapter2.tex
Normal file
332
5th-Semester-Fall-2023/EEMAGS/Notes/Chapter2.tex
Normal file
@ -0,0 +1,332 @@
|
||||
\hypertarget{chapter-2}{%
|
||||
\section{Chapter 2}\label{chapter-2}}
|
||||
|
||||
\hypertarget{maxwells-equations-in-differential-form}{%
|
||||
\subsection{Maxwell's Equations in Differential
|
||||
Form}\label{maxwells-equations-in-differential-form}}
|
||||
|
||||
\[\int \vec{E} \cdot d\vec{s} = \frac{Q_{enc}}{\varepsilon_0} \xleftrightarrow{\text{divergence}} \nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}\]
|
||||
\[\int \vec{B} \cdot d\vec{s} = 0 \xleftrightarrow{} \nabla \cdot \vec{B} = 0\]
|
||||
\[\int \vec{E} \cdot d\vec{l} = -\frac{d}{dt}\vec{B} \xleftrightarrow{\text{stokes}} \nabla \times \vec{E} = -\frac{d}{dt}\vec{B}\]
|
||||
\[\int \vec{B} \cdot d\vec{l} = \mu_0\left( \vec{J} + \varepsilon_0 \frac{d\vec{E}}{dt}\right) \xleftrightarrow{} \nabla \times \vec{B} = \mu_0 J + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}\]
|
||||
|
||||
Before Maxwell (only true for magnetostatics):
|
||||
\[\nabla \times \vec{B} = \mu_0\vec{J}\]
|
||||
\[\nabla \cdot (\nabla \times \vec{B}) = \mu_0(\nabla \cdot \vec{J})\]
|
||||
\[\nabla \cdot \vec{J} = 0\]
|
||||
|
||||
For changing magnetic fields:
|
||||
\[\nabla \cdot \vec{J} = -\frac{\partial}{\partial t} \rho_v\]
|
||||
\[\nabla \cdot \vec{J} + \frac{\partial}{\partial t} \rho_v = 0\]
|
||||
|
||||
\hypertarget{example-2.1}{%
|
||||
\subsubsection{Example 2.1}\label{example-2.1}}
|
||||
|
||||
\[\vec{J} = e^{-x^2}\hat{x}\] Find the time rate of change of charge
|
||||
densisty at \(x=1\):
|
||||
\[\nabla \cdot \vec{J} = -\frac{\partial}{\partial t} \rho_v\]
|
||||
\[\frac{\partial \rho}{\partial t} = -\nabla \cdot \vec{J} = -\frac{d}{dx}e^{-x^2} = 2xe^{-x^2}\]
|
||||
\[\therefore 2 e^{-1}\]
|
||||
|
||||
\hypertarget{example-2.2}{%
|
||||
\subsubsection{Example 2.2}\label{example-2.2}}
|
||||
|
||||
For some spherical current density:
|
||||
\[\vec{J} = \frac{J_0 e^{-t/\tau}}{\rho}\hat{\rho}\] Find the total
|
||||
current that leaves the surface of radius, \(t = \tau\):
|
||||
\[I = \int \vec{J} \cdot d\vec{s} = 4\pi a^2 \left(\frac{J_0 e^{-t/\tau}}{a}\right)\]
|
||||
\[I = 4\pi a J_0 e^{-1}\]
|
||||
|
||||
Find \(\rho_v(\rho, t)\):
|
||||
\[\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t} = \frac{1}{\rho^2} \frac{\partial}{\partial \rho}(\rho^2 J)\]
|
||||
Plug in for \(J\):
|
||||
\[\nabla \cdot \vec{J} = \frac{1}{\rho^2} \frac{\partial}{\partial \rho}\left(\rho^2 \frac{J_0 e^{-t/\tau}}{\rho}\right) = \frac{J_0}{\rho^2} e^{-t/\tau} = -\frac{\partial}{\partial t} \rho_v\]
|
||||
Solve for \(\rho_v\):
|
||||
\[\rho_v = \int -\frac{J_0}{\rho^2}e^{-t/\tau} dt\]
|
||||
\[\rho_v = \frac{J_0}{\rho^2} e^{-t/\tau} \tau\]
|
||||
|
||||
\hypertarget{wave-propagation}{%
|
||||
\subsection{Wave Propagation}\label{wave-propagation}}
|
||||
|
||||
\[\nabla \times \vec{E} = -\frac{\partial}{\partial t} \vec{B}\]
|
||||
\[\nabla \times \vec{B} = \mu_0 (\vec{J} + \varepsilon_0 \frac{\partial}{\partial t} \vec{E})\]
|
||||
\[\nabla \cdot \vec{E} = \frac{\rho_v}{\varepsilon_0}\]
|
||||
\[\nabla \cdot \vec{B} = 0\]
|
||||
|
||||
Take the curl of the first equation:
|
||||
\[\nabla \times (\nabla \times \vec{E}) = -\frac{\partial}{\partial t}(\nabla \times \vec{B})\]
|
||||
\[\nabla (\nabla \cdot \vec{E}) - \nabla^2\vec{E} = -\frac{\partial}{\partial t}(\nabla \times \vec{B})\]
|
||||
|
||||
Substitute the second equation into the one directly above:
|
||||
\[\nabla(\nabla \cdot \vec{E}) - \nabla^2\vec{E} = -\frac{\partial}{\partial t} \left( \mu_0 \vec{J} + \mu_0\varepsilon_0 \frac{\partial}{\partial t}\vec{E} \right)\]
|
||||
|
||||
\hypertarget{homogenious-vector-wave-for-vece-fields}{%
|
||||
\paragraph{\texorpdfstring{Homogenious vector wave for
|
||||
\(\vec{E}\)-fields}{Homogenious vector wave for \textbackslash vec\{E\}-fields}}\label{homogenious-vector-wave-for-vece-fields}}
|
||||
|
||||
Lets say we are considering wave propagation in a source free region
|
||||
(\(\rho_v =0\)).
|
||||
\[\nabla \cdot \vec{E} = \frac{\rho_v}{\varepsilon_0} =0\]
|
||||
\[\vec{J} = -\frac{\partial}{\partial t} \rho_v = 0\]
|
||||
|
||||
Now we have:
|
||||
\[-\nabla^2\vec{E} = -\mu_0\varepsilon_0 \frac{\partial}{\partial t} \vec{E}\]
|
||||
\[\therefore \nabla^2\vec{E}-\mu_0\varepsilon_0 \frac{\partial}{\partial t}\vec{E} = 0\]
|
||||
|
||||
\hypertarget{homogeneous-vector-wave-for-vecb-fields}{%
|
||||
\paragraph{\texorpdfstring{Homogeneous vector wave for
|
||||
\(\vec{B}\)-fields}{Homogeneous vector wave for \textbackslash vec\{B\}-fields}}\label{homogeneous-vector-wave-for-vecb-fields}}
|
||||
|
||||
\[\nabla^2\vec{B} - \mu_0\varepsilon_0 \frac{\partial^2}{\partial t^2}\vec{B} = 0\]
|
||||
|
||||
\hypertarget{phasor-representations}{%
|
||||
\subsubsection{Phasor representations}\label{phasor-representations}}
|
||||
|
||||
In general, all fields and their sources vary as a function of position
|
||||
and time. If the time variations are sinusoidal, with angular frequency,
|
||||
\(\omega\), then each of their quantities can be represented by a time
|
||||
independent phasor.
|
||||
|
||||
\[\vec{E}(x,y,z,t) = \Re\{\vec{E}(x,y,z)e^{j \omega t}\}\]
|
||||
\[\vec{E}(r,t) = \Re\{\hat{E}(r) e^{j \omega t}\}\]
|
||||
\[\vec{B}(r,t) = \Re\{\hat{B}(r) e^{j \omega t}\}\]
|
||||
|
||||
\(\hat{E}\) and \(\hat{B}\) are the complex time variations in vector
|
||||
form. (\(\hat{E} = \hat{\vec{E}}\)) .
|
||||
|
||||
If \(\hat{E}(r) = E_0 e^{j \theta}\),
|
||||
\[\vec{E}(r, t) = \Re\{E_0 e^{j \theta} e^{j \omega t}\} = E_0\cos(\omega t + \theta)\]
|
||||
|
||||
Consider a plane wave in the x-direction only (\(E_y = E_z = 0\)), and
|
||||
does ont vary the x or y direction
|
||||
(\(\frac{\partial}{\partial x}\hat{E} = \frac{\partial}{\partial y}\hat{E} = 0\)).
|
||||
Assume free space for propagation (\(\hat{J} = \hat{\rho}_v = 0\)).
|
||||
|
||||
\[\nabla \times \vec{E} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \hat{E}_x & \hat{E}_y & \hat{E}_z \end{vmatrix} = -j\omega (\hat{B}_x\hat{x} + \hat{B}_y \hat{y} + \hat{B}_z \hat{z}\]
|
||||
\[\therefore \begin{Bmatrix} -\frac{\partial}{\partial z}\hat{E} = -j\omega\hat{B}_x \\ \frac{\partial}{\partial z}\hat{E} = -j\omega\hat{B}_y \\ 0 = -j\omega\hat{B}_z \end{Bmatrix}\]
|
||||
|
||||
Similarly, Ampere's Law:
|
||||
\[\begin{Bmatrix} -\frac{\partial \hat{B}_y}{\partial z} = j\omega\varepsilon_0\mu_0\hat{E}_x \\ \frac{\partial \hat{B}_x}{\partial z} = j\omega\varepsilon_0\mu_0\hat{E}_y \\ 0 = j\omega\varepsilon_0\mu_0\hat{E}_z\end{Bmatrix}\]
|
||||
|
||||
Therefore, \(B_x\) and \(E_y\) are related to each other. \(B_x\) acts
|
||||
as the source for generating \(E_y\), and \(E_y\) acts as the source for
|
||||
generating \(B_x\). Solving for \(\hat{E}_x\) and \(\hat{B}_y\):
|
||||
\[\frac{\partial^2 \hat{E}_x}{\partial z^2} = -j\omega\frac{\partial \hat{B}_y}{\partial z} = -\omega^2\mu_0\varepsilon_0\hat{E}_x\]
|
||||
\[\therefore \frac{\partial^2}{\partial z^2}\hat{E}_x + \mu_0\varepsilon_0\omega^2\hat{E}_x = 0\]
|
||||
|
||||
The general solution:
|
||||
\[\hat{E}_x = \hat{C}_1 e^{-j \beta_0 z} + \hat{C}_2 e^{j \beta_0 z}\]
|
||||
Where \(\hat{C}_1\) and \(\hat{C}_2\) are complex.
|
||||
|
||||
\[\therefore \hat{E}_x = \hat{E}_m^+ e^{-j \beta_0 z} + \hat{E}_m^- e^{j \beta_0 z}\]
|
||||
Where \(E_m^+\) and \(E_m^-\) are wave amplitudes (volts per meter).
|
||||
|
||||
\hypertarget{the-phase-constant}{%
|
||||
\subparagraph{The phase constant:}\label{the-phase-constant}}
|
||||
|
||||
\[\beta_0 = \omega \sqrt{\mu_0 \varepsilon_0} = \frac{2\pi}{\lambda} = \frac{2\pi f}{C}\]
|
||||
|
||||
\hypertarget{real-time-form-of-the-solution}{%
|
||||
\paragraph{Real time form of the
|
||||
solution:}\label{real-time-form-of-the-solution}}
|
||||
|
||||
\[E_x(z,t) = \Re\{\hat{E}_x e^{j \omega t}\} = \Re\{E_m^+ e^{j(\omega t - \beta_0 z)} + E_m^- e^{j(\omega t + \beta_0 z)}\}\]
|
||||
\[\therefore E_x(z,t) = E_m^+ \cos(\omega t - \beta_0 z) + E_m^- \cos(\omega t + \beta_0 z)\]
|
||||
|
||||
If \(E_m^+ = E_m^-\), the magnitude and direction is \(E_0\).
|
||||
\[\therefore E_x(z,t) = E_0\cos(\omega t \pm \beta_0 z)\] Where:
|
||||
|
||||
\(\omega = 2\pi f\)
|
||||
|
||||
\(v_0\) is the phase velocity
|
||||
|
||||
\hypertarget{the-phase-velocity}{%
|
||||
\subparagraph{The phase velocity}\label{the-phase-velocity}}
|
||||
|
||||
\[v_0 = \frac{1}{\sqrt{\mu \varepsilon}}\] In a vacuum: \[v_0 = c\]
|
||||
|
||||
\hypertarget{also}{%
|
||||
\paragraph{Also}\label{also}}
|
||||
|
||||
\[\hat{B}_y = \frac{\hat{E}_x}{c}\]
|
||||
|
||||
Common \(\vec{E}\) and \(\vec{B}\) field ratio is:
|
||||
\[\mu_0 \hat{H}_y = \frac{\hat{E}_x}{c}\]
|
||||
\[\therefore \frac{\hat{E}_x}{\hat{H}_y} = \mu_0 c = \frac{\mu_0}{\sqrt{\mu_0 \varepsilon_0}} = \sqrt{\frac{\mu_0}{\varepsilon_0}} = \eta_0 \approx 120\pi = 377\Omega\]
|
||||
|
||||
Where \(\eta_0\) is the intrinsic wave impedance.
|
||||
|
||||
\[\therefore \hat{E}_x = \hat{H}_y \eta_0\]
|
||||
\[\therefore \hat{H}_y = \frac{\hat{E}_x}{\eta_0}\]
|
||||
|
||||
Therefore, both \(\vec{H}\) and \(\vec{E}\) fields are in phase.
|
||||
|
||||
In general: \[\hat{H} = \frac{\hat{k}}{\eta_0} \times \hat{E}\]
|
||||
\[\hat{E} = -\eta_0 \hat{k} \times \hat{H}\]
|
||||
|
||||
\hypertarget{example-2.3}{%
|
||||
\subsubsection{Example 2.3}\label{example-2.3}}
|
||||
|
||||
\[\vec{E} = 50\cos(10^8t + \beta_0 x)\hat{y} \text{[v/m]}\]
|
||||
\[E_y = E_0\cos(\omega t + \beta x)\] \(E_y\) propagates in the
|
||||
\(-\hat{x}\) direction.
|
||||
\[\beta_0 = \omega \sqrt{\mu_0 \varepsilon_0} = \frac{\omega}{c} = \frac{10^8}{3 \times 10^8} = \frac{1}{3}\]
|
||||
What is the time it takes to travel a distance of \(\frac{\lambda}{2}\)?
|
||||
\[\omega = 2\pi f = \frac{2\pi}{T}\] \[T = \frac{2\pi}{\omega}\]
|
||||
\[\therefore t_{\lambda/2} = \frac{T}{2} = \frac{\pi}{\omega} = \frac{\pi}{10^8} \approx 31.42\text{[ns]}\]
|
||||
|
||||
The refractive index of a medium is given by the ratio of \(c\) and
|
||||
\(v_p\): \[c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}\]
|
||||
\[v_p = \frac{1}{\sqrt{\mu \varepsilon}}\]
|
||||
\[n = \frac{c}{v_p} = \sqrt{\frac{\mu \varepsilon}{\mu_0 \varepsilon_0}} = \sqrt{\mu_r \varepsilon_r}\]
|
||||
|
||||
For a non-magnetic material: \[\mu_r \approx 1\]
|
||||
\[\therefore n = \sqrt{\varepsilon_r}\]
|
||||
|
||||
\hypertarget{polarization}{%
|
||||
\subsection{Polarization}\label{polarization}}
|
||||
|
||||
\[\begin{rcases}
|
||||
\nabla \cdot \vec{E} = {\rho \over \varepsilon_0} \\
|
||||
\nabla \cdot \vec{B} = 0
|
||||
\end{rcases} \text{Gauss}\]
|
||||
|
||||
\[\begin{rcases}
|
||||
\nabla \times \vec{E} = -{\partial \over \partial t} \vec{B}
|
||||
\end{rcases} \text{Faraday}\]
|
||||
|
||||
\[\begin{rcases}
|
||||
\nabla \times B = \mu_0 \vec{J} + \mu_0 \varepsilon_0{\partial \over \partial t}\vec{E}
|
||||
\end{rcases} \text{Ampere}\]
|
||||
|
||||
Polarization of a uniform plane wave describes the shape and olcus of
|
||||
the tip of the \(\vec{E}\)-field vector in the plane orthoganal to the
|
||||
direction of propagation. There are two pairs of \(\vec{E}\) and
|
||||
\(\vec{B}\) fields (\(\hat{E}_x\), \(\hat{H}_y\)) and (\(\hat{E}_y\),
|
||||
\(\hat{H}_x\)). When both pairs are present, we can evaluate
|
||||
polarization of plane waves. The \(\vec{E}\)-field has components in the
|
||||
\(\hat{x}\) and \(\hat{y}\) directions and travels in \(\hat{z}\).
|
||||
|
||||
\[\hat{E} = (\hat{E}_x \hat{x} + \hat{E}_y \hat{y})e^{-j \beta z}\]
|
||||
\[\hat{E}_x = \lvert \hat{E}_{x_0} \rvert e^{-j \beta a}\]
|
||||
\[\hat{E}_y = \lvert \hat{E}_{y_0} \rvert e^{-j \beta b}\]
|
||||
|
||||
\hypertarget{locus}{%
|
||||
\paragraph{Locus}\label{locus}}
|
||||
|
||||
The shape the tip of the \(\vec{E}\)-field vector traces out while in
|
||||
motion.
|
||||
|
||||
\hypertarget{phase}{%
|
||||
\paragraph{Phase}\label{phase}}
|
||||
|
||||
Typically defined relative to a reference point such as \(z=0\) or
|
||||
\(t=0\) or some combination.
|
||||
|
||||
\hypertarget{polarization-characteristics}{%
|
||||
\subsubsection{Polarization
|
||||
Characteristics}\label{polarization-characteristics}}
|
||||
|
||||
\hypertarget{linear-polarization}{%
|
||||
\paragraph{Linear polarization}\label{linear-polarization}}
|
||||
|
||||
\(\hat{E}_x\) and \(\hat{E}_y\) have the same phase angle: \(a = b\), so
|
||||
the x and y components of the \(\vec{E}\)-field will be in phase.
|
||||
|
||||
\[\hat{E} = (\lvert \hat{E}_x \rvert \hat{x} + \lvert \hat{E}_y \rvert \hat{y} ) e^{-j( \beta z - a)}\]
|
||||
|
||||
In real time:
|
||||
\[\hat{E} = (\lvert \hat{E}_x \rvert \hat{x} + \lvert \hat{E}_y \rvert \hat{y} ) \cos(\omega t - \beta z + a)\]
|
||||
|
||||
As the wave continues to propagate in the \(\hat{z}\) direction, the
|
||||
\(\vec{E}\)-field vector maintains its direction with angle, \(\theta\),
|
||||
with respect to the y-axis.
|
||||
\[\tan(\theta) = {\lvert \hat{E}_x \rvert \over \vert \hat{E}_y \rvert}\]
|
||||
|
||||
When \(z=0\), the \(\vec{E}\) field is given by:
|
||||
\[\vec{E}(0, t) = (\lvert \hat{E}_x \rvert \hat{x} + \lvert \hat{E}_y \rvert \hat{y} ) \cos(\omega t + a)\]
|
||||
\[\vec{E}(0, 0) = (\lvert \hat{E}_x \rvert \hat{x} + \lvert \hat{E}_y \rvert \hat{y} ) \cos(a)\]
|
||||
|
||||
\hypertarget{elliptical-polarization}{%
|
||||
\paragraph{Elliptical Polarization}\label{elliptical-polarization}}
|
||||
|
||||
\(\hat{E}_x\) and \(\hat{E}_y\) have different phase angles. \(\vec{E}\)
|
||||
is no longer in one plate.
|
||||
|
||||
\[\hat{E} = \hat{x} \lvert \hat{E}_x \rvert e^{j (a - \beta z)} + \hat{y} \lvert \hat{E}_y \rvert e^{j(b - \beta z)}\]
|
||||
|
||||
Where:
|
||||
|
||||
\(E_x = \lvert \hat{E}_x \rvert \cos(\omega t - a + \beta z)\)
|
||||
|
||||
\(E_y = \lvert \hat{E}_y \rvert \cos(\omega t - b + \beta z)\)
|
||||
|
||||
If \(a=0\) and \(b = {\pi \over 2}\):
|
||||
\[\vec{E}_x(z,t) = \lvert \hat{E}_x \rvert \cos(\omega t - a + \beta z)\]
|
||||
\[\vec{E}_y(z,t) = \lvert \hat{E}_y \rvert \cos(\omega t - b + \beta z)\]
|
||||
|
||||
\hypertarget{circular-polarization}{%
|
||||
\paragraph{Circular Polarization}\label{circular-polarization}}
|
||||
|
||||
\(\hat{E}_x\) and \(\hat{E}_y\) have the same magnitude with a phase
|
||||
angle difference of \({\pi \over 2}\).
|
||||
|
||||
\hypertarget{example}{%
|
||||
\subsubsection{Example}\label{example}}
|
||||
|
||||
Determine the real-valued \(\vec{E}\)-field.
|
||||
\[\hat{E}(z) = -3j\hat{x} e^{-j\beta z}\]
|
||||
\[\vec{E}(z, t) = -3j\hat{x} e^{-j \beta z} e^{j\omega t}\]
|
||||
\[3 \hat{x} e^{-j \beta z} e^{j \omega t} e^{-\pi \over 2}\]
|
||||
\[3 \cos\left(\omega t- \beta z - {\pi \over 2}\right)\]
|
||||
|
||||
\hypertarget{example-1}{%
|
||||
\subsubsection{Example}\label{example-1}}
|
||||
|
||||
What are \(E_x\) and \(E_y\)
|
||||
\[\hat{E}(z) = (3\hat{x} + 4\hat{y})e^{j\beta z}\]
|
||||
\[\vec{E}(z, t) = (3\hat{x} + 4\hat{y})e^{j\beta z}e^{j\omega t}\]
|
||||
\[E_x = 3\cos(\omega t + \beta z)\] \[E_y = 4\cos(\omega t + \beta z)\]
|
||||
|
||||
\hypertarget{example-2}{%
|
||||
\subsubsection{Example}\label{example-2}}
|
||||
|
||||
\[\hat{E}(z) = (-4\hat{x} + 3\hat{y})e^{-j\beta z}\]
|
||||
\[\hat{E}(z, t) = (-4\hat{x} + 3\hat{y})e^{-j\beta z}e^{j\omega t}\]
|
||||
\[E_x = 4\cos(\omega t - \beta z + \pi)\]
|
||||
\[E_y = 3\cos(\omega t - \beta z)\]
|
||||
|
||||
\hypertarget{non-sinusoidal-waves}{%
|
||||
\subsection{Non-Sinusoidal Waves}\label{non-sinusoidal-waves}}
|
||||
|
||||
Analytical solution of a 1-D traveling wave.
|
||||
\[{\partial^2 \over \partial z^2}\vec{E} - {1\over c^2}{\partial^2 \over \partial t^2}\vec{E} = 0\]
|
||||
|
||||
\hypertarget{dalemberts-solution}{%
|
||||
\subsubsection{D'Alemberts Solution}\label{dalemberts-solution}}
|
||||
|
||||
\[\vec{E}(z, t) = E(z - ct) + E'(z + ct)\]
|
||||
|
||||
Show that the function, \(F(z - ct) = F_0 e^{-(z+ct)^2}\) is a solution
|
||||
of the wave equation.
|
||||
|
||||
Let \(\gamma = z - ct\), and \({\partial \gamma \over \partial z} = 1\):
|
||||
\[F(z-ct) = F_0 e^{-\gamma^2}\] \[F'(z + ct) = 0\]
|
||||
\[{\partial F \over \partial z} = {\partial F \over \partial \gamma} {\partial \gamma \over \partial z} = F_0 e^{-\gamma^2}(-2\gamma)\]
|
||||
\[{\partial^2 F \over \partial z^2} = {\partial \over \partial z}\left({\partial F \over \partial \gamma}{\partial \gamma \over \partial z}\right)\]
|
||||
\[G = \left({\partial F \over \partial \gamma}{\partial \gamma \over \partial z}\right)\]
|
||||
|
||||
Don't forget chain rule:
|
||||
\[{\partial G \over \partial \gamma}{\partial \gamma \over \partial z} = {\partial \over \partial z}\left({\partial F \over \partial \gamma}{\partial \gamma \over \partial z}\right){\partial \gamma \over \partial z}\]
|
||||
|
||||
\[{\partial \over \partial \gamma} - 2\gamma F_0 e^{-\gamma^2} = -2F_0 {\partial \over \partial \gamma} \gamma e^{-\gamma^2}\]
|
||||
|
||||
By product rule:
|
||||
\[-2F_0 (\gamma (-2\gamma e^{-\gamma^2}) + e^{-\gamma^2})\]
|
||||
|
||||
\[F_0 (4\gamma^2 e^{-\gamma^2} - 2e^{-\gamma^2}) = F_0(-2 + 4\gamma^2)e^{-\gamma^2}\]
|
||||
\[={\partial^2 \over \partial \gamma^2}F \left({\partial \gamma \over \partial z}\right)^2\]
|
||||
\[\therefore {\partial^2 \over \partial t^2}F = {\partial^2 F \over \partial \gamma^2} \left({\partial \gamma \over \partial t}\right)^2 = F_0(-2 + 4\gamma^2)e^{-\gamma^2}(C^2)\]
|
||||
|
||||
This solution satisfies:
|
||||
\[{\partial^2 \over \partial z^2}\vec{E} - {1\over c^2}{\partial^2 \over \partial t^2}\vec{E} = 0\]
|
151
5th-Semester-Fall-2023/EEMAGS/Notes/EEMAGS-Notes.aux
Normal file
151
5th-Semester-Fall-2023/EEMAGS/Notes/EEMAGS-Notes.aux
Normal file
@ -0,0 +1,151 @@
|
||||
\relax
|
||||
\providecommand{\transparent@use}[1]{}
|
||||
\providecommand\hyper@newdestlabel[2]{}
|
||||
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
|
||||
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
|
||||
\global\let\oldnewlabel\newlabel
|
||||
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
|
||||
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
|
||||
\AtEndDocument{\ifx\hyper@anchor\@undefined
|
||||
\let\newlabel\oldnewlabel
|
||||
\fi}
|
||||
\fi}
|
||||
\global\let\hyper@last\relax
|
||||
\gdef\HyperFirstAtBeginDocument#1{#1}
|
||||
\providecommand\HyField@AuxAddToFields[1]{}
|
||||
\providecommand\HyField@AuxAddToCoFields[2]{}
|
||||
\providecommand\BKM@entry[2]{}
|
||||
\pgfsyspdfmark {pgfid1}{6935668}{39655510}
|
||||
\pgfsyspdfmark {pgfid2}{36232565}{39655510}
|
||||
\pgfsyspdfmark {pgfid3}{6935668}{28055638}
|
||||
\pgfsyspdfmark {pgfid4}{36232565}{28055638}
|
||||
\BKM@entry{id=1,open,dest={746F632E73656374696F6E},srcline={18}}{5C3337365C3337375C303030435C3030306F5C3030306E5C303030745C303030655C3030306E5C303030745C30303073}
|
||||
\pgfsyspdfmark {pgfid5}{4025872}{43485761}
|
||||
\BKM@entry{id=2,open,dest={636861707465722E31},srcline={22}}{5C3337365C3337375C303030315C3030305C3034305C3030304D5C303030615C303030785C303030775C303030655C3030306C5C3030306C5C303030275C303030735C3030305C3034305C303030455C303030715C303030755C303030615C303030745C303030695C3030306F5C3030306E5C303030735C3030305C3034305C303030695C3030306E5C3030305C3034305C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C5C3030305C3034305C303030465C3030306F5C303030725C3030306D}
|
||||
\BKM@entry{id=3,open,dest={73656374696F6E2E312E31},srcline={24}}{5C3337365C3337375C303030315C3030302E5C303030315C3030305C3034305C303030565C303030655C303030635C303030745C3030306F5C303030725C3030305C3034305C303030415C3030306E5C303030615C3030306C5C303030795C303030735C303030695C30303073}
|
||||
\@writefile{toc}{\contentsline {chapter}{\numberline {1}Maxwell's Equations in Integral Form}{2}{chapter.1}\protected@file@percent }
|
||||
\@writefile{lof}{\addvspace {10\p@ }}
|
||||
\@writefile{lot}{\addvspace {10\p@ }}
|
||||
\@writefile{loa}{\addvspace {10\p@ }}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {1.1}Vector Analysis}{2}{section.1.1}\protected@file@percent }
|
||||
\BKM@entry{id=4,open,dest={73656374696F6E2E312E32},srcline={65}}{5C3337365C3337375C303030315C3030302E5C303030325C3030305C3034305C303030565C303030655C303030635C303030745C3030306F5C303030725C3030305C3034305C303030435C303030615C3030306C5C303030635C303030755C3030306C5C303030755C30303073}
|
||||
\BKM@entry{id=5,open,dest={73756273656374696F6E2E312E322E31},srcline={106}}{5C3337365C3337375C303030315C3030302E5C303030325C3030302E5C303030315C3030305C3034305C303030445C303030695C303030765C303030655C303030725C303030675C303030655C3030306E5C303030635C303030655C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030435C303030755C303030725C3030306C}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {1.2}Vector Calculus}{3}{section.1.2}\protected@file@percent }
|
||||
\newlabel{vector-calculus}{{1.2}{3}{Vector Calculus}{section.1.2}{}}
|
||||
\newlabel{ex: A function, \(f(x,y,z) = x^2 y^2 + xyz\). Find \(\nabla f\). \[f(x,y,z) = f(r)\] \[r = \sqrt {x^2 + y^2 + z^2}\] \[\nabla f = (2xy^2)\hat {x} + (2x^2y + xz)\hat {y} + xy\hat {z}\]}{{1.2.1}{3}{}{tcb@cnt@Example.1.2.1}{}}
|
||||
\newlabel{ex: Consider a function, \(w = x^2y^2 + xyz\). Find \(\nabla _l w\) at \((2, -1, 0)\) in the direction, \(\vec {l} = 3\hat {x} + 4\hat {y} + 12\hat {z}\). \[\lVert \vec {l}\rVert = \sqrt {3^2 + 4^2 + 12^2} = 13\] \[{\nabla }_l w = \nabla w \cdot \frac {\vec {l}}{\lVert \vec {l}\rVert }\] Solving at \((2, -1, 0)\): \[\nabla w = 2(2)(-1)^2\hat {x} + 2(2)^2(-1)\hat {y} + 2(-1)\hat {z} = 4\hat {x} - 8\hat {y} - 2\hat {z}\] \[{\nabla }_l w= (4\hat {x} - 8\hat {y} - 2\hat {z}) \cdot \left (\frac {3}{13}\hat {x} + \frac {4}{13}\hat {y} + \frac {12}{13}\hat {z}\right ) = \frac {-44}{13}\]}{{1.2.2}{3}{}{tcb@cnt@Example.1.2.2}{}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2.1}Divergence and Curl}{4}{subsection.1.2.1}\protected@file@percent }
|
||||
\BKM@entry{id=6,open,dest={73756273656374696F6E2E312E322E32},srcline={188}}{5C3337365C3337375C303030315C3030302E5C303030325C3030302E5C303030325C3030305C3034305C3030304C5C303030695C3030306E5C303030655C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030535C303030755C303030725C303030665C303030615C303030635C303030655C3030305C3034305C303030495C3030306E5C303030745C303030655C303030675C303030725C303030615C3030306C5C30303073}
|
||||
\newlabel{ex: Consider the vector field, \(\vec {F} = k \hat {x}\), where both the direction and magnitude are uniform in all space. $$\nabla \cdot \vec {F} = 0$$ $$\nabla \times \vec {F} = 0$$}{{1.2.3}{5}{}{tcb@cnt@Example.1.2.3}{}}
|
||||
\newlabel{ex: Consider the vector field, \(\vec {F} = k \hat {r}\), where magnitude is constant and direction is away from a central point. $$\hat {r} = \sqrt {\hat {x}^2 + \hat {y}^2 + \hat {z}^2}$$ $$\nabla \cdot \vec {F} = \sqrt {3} k$$ $$nabla \times \vec {F} = 0$$}{{1.2.4}{5}{}{tcb@cnt@Example.1.2.4}{}}
|
||||
\newlabel{ex: Consider the vector field, $\vec {F} = \vec {k} \times \hat {r}$, where magnitude is uniform and the direction is perpendicular to the distance from a central point for all space. $$\nabla \cdot \vec {F} = 0$$ $$\nabla \times \vec {F} = 2k$$}{{1.2.5}{5}{}{tcb@cnt@Example.1.2.5}{}}
|
||||
\@writefile{toc}{\contentsline {subsubsection}{Curl and Divergence Identities}{5}{section*.2}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2.2}Line and Surface Integrals}{5}{subsection.1.2.2}\protected@file@percent }
|
||||
\newlabel{path-1}{{1.2.6}{5}{Path 1}{section*.3}{}}
|
||||
\newlabel{path-2}{{1.2.6}{5}{Path 2}{section*.4}{}}
|
||||
\newlabel{path-3}{{1.2.6}{5}{Path 3}{section*.5}{}}
|
||||
\BKM@entry{id=7,open,dest={73656374696F6E2E312E33},srcline={294}}{5C3337365C3337375C303030315C3030302E5C303030335C3030305C3034305C303030545C303030685C303030655C3030305C3034305C303030455C3030306C5C303030655C303030635C303030745C303030725C303030695C303030635C3030305C3034305C303030465C303030695C303030655C3030306C5C30303064}
|
||||
\BKM@entry{id=8,open,dest={73756273656374696F6E2E312E332E31},srcline={295}}{5C3337365C3337375C303030315C3030302E5C303030335C3030302E5C303030315C3030305C3034305C303030435C3030306F5C303030755C3030306C5C3030306F5C3030306D5C303030625C303030275C303030735C3030305C3034305C3030304C5C303030615C30303077}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {1.3}The Electric Field}{6}{section.1.3}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3.1}Coulomb's Law}{6}{subsection.1.3.1}\protected@file@percent }
|
||||
\BKM@entry{id=9,open,dest={73756273656374696F6E2E312E332E32},srcline={339}}{5C3337365C3337375C303030315C3030302E5C303030335C3030302E5C303030325C3030305C3034305C303030455C3030306C5C303030655C303030635C303030745C303030725C303030695C303030635C3030305C3034305C303030465C303030695C303030655C3030306C5C303030645C3030305C3034305C303030495C3030306E5C303030745C303030655C3030306E5C303030735C303030695C303030745C30303079}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3.2}Electric Field Intensity}{7}{subsection.1.3.2}\protected@file@percent }
|
||||
\BKM@entry{id=10,open,dest={73656374696F6E2E312E34},srcline={417}}{5C3337365C3337375C303030315C3030302E5C303030345C3030305C3034305C303030545C303030685C303030655C3030305C3034305C3030304D5C303030615C303030675C3030306E5C303030655C303030745C303030695C303030635C3030305C3034305C303030465C303030695C303030655C3030306C5C30303064}
|
||||
\BKM@entry{id=11,open,dest={73756273656374696F6E2E312E342E31},srcline={418}}{5C3337365C3337375C303030315C3030302E5C303030345C3030302E5C303030315C3030305C3034305C303030425C303030695C3030306F5C303030745C3030302D5C303030535C303030615C303030765C303030615C303030725C303030745C3030305C3034305C3030304C5C303030615C30303077}
|
||||
\BKM@entry{id=12,open,dest={73656374696F6E2E312E35},srcline={465}}{5C3337365C3337375C303030315C3030302E5C303030355C3030305C3034305C303030475C303030615C303030755C303030735C303030735C303030275C303030735C3030305C3034305C3030304C5C303030615C303030775C3030305C3034305C303030665C3030306F5C303030725C3030305C3034305C3030302D5C303030665C303030695C303030655C3030306C5C303030645C30303073}
|
||||
\BKM@entry{id=13,open,dest={73656374696F6E2E312E36},srcline={467}}{5C3337365C3337375C303030315C3030302E5C303030365C3030305C3034305C303030455C3030304D5C30303046}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {1.4}The Magnetic Field}{8}{section.1.4}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {1.4.1}Biot-Savart Law}{8}{subsection.1.4.1}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {1.5}Gauss's Law for $\vec {E}$-fields}{8}{section.1.5}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {1.6}EMF}{8}{section.1.6}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsubsection}{Filling in some Gaps}{9}{section*.6}\protected@file@percent }
|
||||
\newlabel{filling-in-some-gaps}{{1.6}{9}{Filling in some Gaps}{section*.6}{}}
|
||||
\newlabel{electric-flux-density}{{1.6}{10}{Electric Flux Density}{section*.7}{}}
|
||||
\@writefile{toc}{\contentsline {paragraph}{Electric Flux Density}{10}{section*.7}\protected@file@percent }
|
||||
\newlabel{magnetic-flux-density}{{1.6}{10}{Magnetic Flux Density}{section*.8}{}}
|
||||
\@writefile{toc}{\contentsline {paragraph}{Magnetic Flux Density}{10}{section*.8}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsubsection}{Ampere's Law}{10}{section*.9}\protected@file@percent }
|
||||
\newlabel{amperes-law}{{1.6}{10}{Ampere's Law}{section*.9}{}}
|
||||
\newlabel{simplified-amperes-law}{{1.6}{10}{Simplified Ampere's Law}{section*.10}{}}
|
||||
\@writefile{toc}{\contentsline {paragraph}{Simplified Ampere's Law}{10}{section*.10}\protected@file@percent }
|
||||
\newlabel{example}{{1.6}{10}{Example}{section*.11}{}}
|
||||
\@writefile{toc}{\contentsline {paragraph}{Example}{10}{section*.11}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsubsection}{Coulomb's Law}{11}{section*.12}\protected@file@percent }
|
||||
\newlabel{coulombs-law-1}{{1.6}{11}{Coulomb's Law}{section*.12}{}}
|
||||
\@writefile{toc}{\contentsline {subsubsection}{Faraday's Law}{11}{section*.13}\protected@file@percent }
|
||||
\newlabel{faradays-law}{{1.6}{11}{Faraday's Law}{section*.13}{}}
|
||||
\@writefile{toc}{\contentsline {subsubsection}{Solenoid (Ideal)}{11}{section*.14}\protected@file@percent }
|
||||
\newlabel{solenoid-ideal}{{1.6}{11}{Solenoid (Ideal)}{section*.14}{}}
|
||||
\@writefile{toc}{\contentsline {subsubsection}{Toroid (Ideal)}{12}{section*.15}\protected@file@percent }
|
||||
\newlabel{toroid-ideal}{{1.6}{12}{Toroid (Ideal)}{section*.15}{}}
|
||||
\BKM@entry{id=14,open,dest={636861707465722E32},srcline={642}}{5C3337365C3337375C303030325C3030305C3034305C3030304D5C303030615C303030785C303030775C303030655C3030306C5C3030306C5C303030275C303030735C3030305C3034305C303030455C303030715C303030755C303030615C303030745C303030695C3030306F5C3030306E5C303030735C3030305C3034305C303030695C3030306E5C3030305C3034305C303030445C303030695C303030665C303030665C303030655C303030725C303030655C3030306E5C303030745C303030695C303030615C3030306C5C3030305C3034305C303030465C3030306F5C303030725C3030306D}
|
||||
\@writefile{toc}{\contentsline {chapter}{\numberline {2}Maxwell's Equations in Differential Form}{13}{chapter.2}\protected@file@percent }
|
||||
\@writefile{lof}{\addvspace {10\p@ }}
|
||||
\@writefile{lot}{\addvspace {10\p@ }}
|
||||
\@writefile{loa}{\addvspace {10\p@ }}
|
||||
\@writefile{toc}{\contentsline {subsubsection}{Example 2.1}{13}{section*.16}\protected@file@percent }
|
||||
\newlabel{example-2.1}{{2}{13}{Example 2.1}{section*.16}{}}
|
||||
\BKM@entry{id=15,open,dest={73756273656374696F6E2E322E302E31},srcline={684}}{5C3337365C3337375C303030325C3030302E5C303030305C3030302E5C303030315C3030305C3034305C303030575C303030615C303030765C303030655C3030305C3034305C303030505C303030725C3030306F5C303030705C303030615C303030675C303030615C303030745C303030695C3030306F5C3030306E}
|
||||
\@writefile{toc}{\contentsline {subsubsection}{Example 2.2}{14}{section*.17}\protected@file@percent }
|
||||
\newlabel{example-2.2}{{2}{14}{Example 2.2}{section*.17}{}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {2.0.1}Wave Propagation}{14}{subsection.2.0.1}\protected@file@percent }
|
||||
\newlabel{wave-propagation}{{2.0.1}{14}{Wave Propagation}{subsection.2.0.1}{}}
|
||||
\newlabel{homogenious-vector-wave-for-vece-fields}{{2.0.1}{14}{\texorpdfstring {Homogenious vector wave for \(\vec {E}\)-fields}{Homogenious vector wave for \textbackslash vec\{E\}-fields}}{section*.18}{}}
|
||||
\@writefile{toc}{\contentsline {paragraph}{Homogenious vector wave for \(\vec {E}\)-fields}{14}{section*.18}\protected@file@percent }
|
||||
\newlabel{homogeneous-vector-wave-for-vecb-fields}{{2.0.1}{15}{\texorpdfstring {Homogeneous vector wave for \(\vec {B}\)-fields}{Homogeneous vector wave for \textbackslash vec\{B\}-fields}}{section*.19}{}}
|
||||
\@writefile{toc}{\contentsline {paragraph}{Homogeneous vector wave for \(\vec {B}\)-fields}{15}{section*.19}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsubsection}{Phasor representations}{15}{section*.20}\protected@file@percent }
|
||||
\newlabel{phasor-representations}{{2.0.1}{15}{Phasor representations}{section*.20}{}}
|
||||
\newlabel{the-phase-constant}{{2.0.1}{15}{The phase constant:}{section*.21}{}}
|
||||
\@writefile{toc}{\contentsline {subparagraph}{The phase constant:}{15}{section*.21}\protected@file@percent }
|
||||
\newlabel{real-time-form-of-the-solution}{{2.0.1}{16}{Real time form of the solution:}{section*.22}{}}
|
||||
\@writefile{toc}{\contentsline {paragraph}{Real time form of the solution:}{16}{section*.22}\protected@file@percent }
|
||||
\newlabel{the-phase-velocity}{{2.0.1}{16}{The phase velocity}{section*.23}{}}
|
||||
\@writefile{toc}{\contentsline {subparagraph}{The phase velocity}{16}{section*.23}\protected@file@percent }
|
||||
\newlabel{also}{{2.0.1}{16}{Also}{section*.24}{}}
|
||||
\@writefile{toc}{\contentsline {paragraph}{Also}{16}{section*.24}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsubsection}{Example 2.3}{16}{section*.25}\protected@file@percent }
|
||||
\newlabel{example-2.3}{{2.0.1}{16}{Example 2.3}{section*.25}{}}
|
||||
\BKM@entry{id=16,open,dest={73756273656374696F6E2E322E302E32},srcline={822}}{5C3337365C3337375C303030325C3030302E5C303030305C3030302E5C303030325C3030305C3034305C303030505C3030306F5C3030306C5C303030615C303030725C303030695C3030307A5C303030615C303030745C303030695C3030306F5C3030306E}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {2.0.2}Polarization}{17}{subsection.2.0.2}\protected@file@percent }
|
||||
\newlabel{polarization}{{2.0.2}{17}{Polarization}{subsection.2.0.2}{}}
|
||||
\newlabel{locus}{{2.0.2}{17}{Locus}{section*.26}{}}
|
||||
\@writefile{toc}{\contentsline {paragraph}{Locus}{17}{section*.26}\protected@file@percent }
|
||||
\newlabel{phase}{{2.0.2}{17}{Phase}{section*.27}{}}
|
||||
\@writefile{toc}{\contentsline {paragraph}{Phase}{17}{section*.27}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsubsection}{Polarization Characteristics}{17}{section*.28}\protected@file@percent }
|
||||
\newlabel{polarization-characteristics}{{2.0.2}{17}{Polarization Characteristics}{section*.28}{}}
|
||||
\newlabel{linear-polarization}{{2.0.2}{17}{Linear polarization}{section*.29}{}}
|
||||
\@writefile{toc}{\contentsline {paragraph}{Linear polarization}{17}{section*.29}\protected@file@percent }
|
||||
\BKM@entry{id=17,open,dest={73756273656374696F6E2E322E302E33},srcline={935}}{5C3337365C3337375C303030325C3030302E5C303030305C3030302E5C303030335C3030305C3034305C3030304E5C3030306F5C3030306E5C3030302D5C303030535C303030695C3030306E5C303030755C303030735C3030306F5C303030695C303030645C303030615C3030306C5C3030305C3034305C303030575C303030615C303030765C303030655C30303073}
|
||||
\newlabel{elliptical-polarization}{{2.0.2}{18}{Elliptical Polarization}{section*.30}{}}
|
||||
\@writefile{toc}{\contentsline {paragraph}{Elliptical Polarization}{18}{section*.30}\protected@file@percent }
|
||||
\newlabel{circular-polarization}{{2.0.2}{18}{Circular Polarization}{section*.31}{}}
|
||||
\@writefile{toc}{\contentsline {paragraph}{Circular Polarization}{18}{section*.31}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsubsection}{Example}{18}{section*.32}\protected@file@percent }
|
||||
\newlabel{example}{{2.0.2}{18}{Example}{section*.32}{}}
|
||||
\@writefile{toc}{\contentsline {subsubsection}{Example}{18}{section*.33}\protected@file@percent }
|
||||
\newlabel{example-1}{{2.0.2}{18}{Example}{section*.33}{}}
|
||||
\@writefile{toc}{\contentsline {subsubsection}{Example}{18}{section*.34}\protected@file@percent }
|
||||
\newlabel{example-2}{{2.0.2}{18}{Example}{section*.34}{}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {2.0.3}Non-Sinusoidal Waves}{18}{subsection.2.0.3}\protected@file@percent }
|
||||
\newlabel{non-sinusoidal-waves}{{2.0.3}{18}{Non-Sinusoidal Waves}{subsection.2.0.3}{}}
|
||||
\@writefile{toc}{\contentsline {subsubsection}{D'Alemberts Solution}{19}{section*.35}\protected@file@percent }
|
||||
\newlabel{dalemberts-solution}{{2.0.3}{19}{D'Alemberts Solution}{section*.35}{}}
|
||||
\BKM@entry{id=18,open,dest={636861707465722E33},srcline={970}}{5C3337365C3337375C303030335C3030305C3034305C3030304D5C303030615C303030785C303030775C303030655C3030306C5C3030306C5C303030275C303030735C3030305C3034305C303030455C303030715C303030755C303030615C303030745C303030695C3030306F5C3030306E5C303030735C3030305C3034305C303030695C3030306E5C3030305C3034305C3030304D5C303030615C303030745C303030655C303030725C303030695C303030615C3030306C5C30303073}
|
||||
\BKM@entry{id=19,open,dest={73756273656374696F6E2E332E302E31},srcline={986}}{5C3337365C3337375C303030335C3030302E5C303030305C3030302E5C303030315C3030305C3034305C303030445C303030655C303030725C303030695C303030765C303030615C303030745C303030695C3030306F5C3030306E5C3030305C3034305C3030306F5C303030665C3030305C3034305C3030304F5C303030685C3030306D5C303030275C303030735C3030305C3034305C3030304C5C303030615C30303077}
|
||||
\@writefile{toc}{\contentsline {chapter}{\numberline {3}Maxwell's Equations in Materials}{20}{chapter.3}\protected@file@percent }
|
||||
\@writefile{lof}{\addvspace {10\p@ }}
|
||||
\@writefile{lot}{\addvspace {10\p@ }}
|
||||
\@writefile{loa}{\addvspace {10\p@ }}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {3.0.1}Derivation of Ohm's Law}{20}{subsection.3.0.1}\protected@file@percent }
|
||||
\BKM@entry{id=20,open,dest={73656374696F6E2E332E31},srcline={1020}}{5C3337365C3337375C303030335C3030302E5C303030315C3030305C3034305C303030445C303030695C303030655C3030306C5C303030655C303030635C303030745C303030725C303030695C303030635C3030305C3034305C3030304D5C303030615C303030745C303030655C303030725C303030695C303030615C3030306C5C303030735C3030305C3034305C303030615C3030306E5C303030645C3030305C3034305C303030505C3030306F5C3030306C5C303030615C303030725C303030695C3030307A5C303030615C303030745C303030695C3030306F5C3030306E}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {3.1}Dielectric Materials and Polarization}{21}{section.3.1}\protected@file@percent }
|
||||
\BKM@entry{id=21,open,dest={73756273656374696F6E2E332E312E31},srcline={1106}}{5C3337365C3337375C303030335C3030302E5C303030315C3030302E5C303030315C3030305C3034305C303030505C3030306F5C3030306C5C303030615C303030725C303030695C3030307A5C303030615C303030745C303030695C3030306F5C3030306E5C3030305C3034305C303030435C303030755C303030725C303030725C303030655C3030306E5C30303074}
|
||||
\newlabel{th:o}{{3.1.1}{22}{F}{tcb@cnt@claim.3.1.1}{}}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.1}Polarization Current}{22}{subsection.3.1.1}\protected@file@percent }
|
||||
\BKM@entry{id=22,open,dest={73756273656374696F6E2E332E312E32},srcline={1152}}{5C3337365C3337375C303030335C3030302E5C303030315C3030302E5C303030325C3030305C3034305C303030445C303030695C303030735C303030705C3030306C5C303030615C303030635C303030655C3030306D5C303030655C3030306E5C303030745C3030305C3034305C3030306F5C303030665C3030305C3034305C303030505C3030306F5C3030306C5C303030615C303030725C303030695C3030307A5C303030615C303030745C303030695C3030306F5C3030306E5C3030305C3034305C303030435C303030685C303030615C303030725C303030675C303030655C30303073}
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1.2}Displacement of Polarization Charges}{23}{subsection.3.1.2}\protected@file@percent }
|
||||
\BKM@entry{id=23,open,dest={73656374696F6E2E332E32},srcline={1248}}{5C3337365C3337375C303030335C3030302E5C303030325C3030305C3034305C3030304D5C303030615C303030675C3030306E5C303030655C303030745C303030695C303030635C3030305C3034305C3030304D5C303030615C303030745C303030655C303030725C303030695C303030615C3030306C5C30303073}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {3.2}Magnetic Materials}{24}{section.3.2}\protected@file@percent }
|
||||
\newlabel{ex:o}{{3.2.1}{25}{C}{tcb@cnt@Example.3.2.1}{}}
|
309
5th-Semester-Fall-2023/EEMAGS/Notes/EEMAGS-Notes.fdb_latexmk
Normal file
309
5th-Semester-Fall-2023/EEMAGS/Notes/EEMAGS-Notes.fdb_latexmk
Normal file
@ -0,0 +1,309 @@
|
||||
# Fdb version 4
|
||||
["pdflatex"] 1703786151 "EEMAGS-Notes.tex" "EEMAGS-Notes.pdf" "EEMAGS-Notes" 1703786156 2
|
||||
"/usr/share/texlive/texmf-dist/fonts/map/fontname/texfonts.map" 1577235249 3524 cb3e574dea2d1052e39280babc910dc8 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/jknappen/ec/tcrm0900.tfm" 1136768653 1536 c4f439db76ef96a9c53bc437f35ffe20 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/jknappen/ec/tcrm1000.tfm" 1136768653 1536 e07581a4bb3136ece9eeb4c3ffab8233 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam10.tfm" 1246382020 916 f87d7c45f9c908e672703b83b72241a3 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam5.tfm" 1246382020 924 9904cf1d39e9767e7a3622f2a125a565 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/amsfonts/symbols/msam7.tfm" 1246382020 928 2dc8d444221b7a635bb58038579b861a ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm10.tfm" 1246382020 908 2921f8a10601f252058503cc6570e581 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm5.tfm" 1246382020 940 75ac932a52f80982a9f8ea75d03a34cf ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/amsfonts/symbols/msbm7.tfm" 1246382020 940 228d6584342e91276bf566bcf9716b83 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmb10.tfm" 1136768653 1336 fb32298c2d61d0c4b59f3065fdd6def9 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmbx10.tfm" 1136768653 1328 c834bbb027764024c09d3d2bf908b5f0 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmbx12.tfm" 1136768653 1324 c910af8c371558dc20f2d7822f66fe64 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmcsc10.tfm" 1136768653 1300 63a6111ee6274895728663cf4b4e7e81 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmr10.tfm" 1136768653 1296 45809c5a464d5f32c8f98ba97c1bb47f ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmr12.tfm" 1136768653 1288 655e228510b4c2a1abe905c368440826 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmr17.tfm" 1136768653 1292 296a67155bdbfc32aa9c636f21e91433 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmr8.tfm" 1136768653 1292 21c1c5bfeaebccffdb478fd231a0997d ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmr9.tfm" 1136768653 1292 6b21b9c2c7bebb38aa2273f7ca0fb3af ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmss10.tfm" 1136768653 1316 b636689f1933f24d1294acdf6041daaa ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmssbx10.tfm" 1136768653 1272 e2d13f0df30bf3ad990bb9d028e37f34 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/cm/cmti10.tfm" 1136768653 1480 aa8e34af0eb6a2941b776984cf1dfdc4 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newpx/NewPXMI.tfm" 1591219423 1160 c2197cdaa08622262260a0a34b1dfcef ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newpx/NewPXMI_gnu.tfm" 1570136818 748 0258bafb3cb53bfddd528993739cf619 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newpx/pxbsys.tfm" 1618176981 1644 f658344274e38ac6790d162fee396d15 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newpx/pxmiaX.tfm" 1634156854 1732 18a727750846a1c3e7271725c4449898 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newpx/pxsys.tfm" 1622581553 1572 bcf7a724ad3204b5e0bc5efc50ffa655 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newpx/zplbexa.tfm" 1589834291 800 4cdc6a03b8c436bf1ad8baeb8357e6fc ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newpx/zplbexx.tfm" 1618176981 1784 fb31d3ad027b93f406cbff9b836cc557 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newpx/zplbmi.tfm" 1591219423 3320 00f767b2f658b19aecdfe269e81ecfb6 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newpx/zplbmia.tfm" 1618176981 2288 0cc23c6cc88dde1a59bde4f4e367ce34 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newpx/zplbsy.tfm" 1618176981 2056 87a18ec96a5754ec717f5914661ee6e4 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newpx/zplbsyc.tfm" 1589834291 1040 5a545317e1379c1ae80559811cce15dc ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newpx/zplbsym.tfm" 1589834291 1600 143c6def8364b8cede0292a4c01a3e10 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newpx/zplexa.tfm" 1589834291 760 1bbb6b93780440b947a1a84c0a1886d8 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newpx/zplexx.tfm" 1621714401 1772 fc88c9c5de1bdc9fcff910265b563e6c ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newpx/zplmi.tfm" 1591219423 3260 0a40022e2c14e21e9b62ad177b8d4fed ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newpx/zplmia.tfm" 1618176981 2220 8ab24a4f03729d0c6f447c26467c5c04 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newpx/zplsy.tfm" 1622581553 2004 f492482278fad9bc8554be763ab874ea ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newpx/zplsyc.tfm" 1589834291 1028 21e15ab4b85747ec39bbc16f585cbee8 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newpx/zplsym.tfm" 1589834291 1572 bcb12adf2427f3408055786fa60ac08c ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newtx/ntxexx.tfm" 1621283831 1772 c3eb2dc3ad7612f6f7ffa1b18d45b0b9 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newtx/ntxsym.tfm" 1589834365 1572 ee1610f2b8e0679b918f57086595f5a6 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newtx/stxscr.tfm" 1569879884 1836 3af1bb0996e7f6070b70151de6395c2c ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newtx/txbex-bar.tfm" 1569879884 888 8ce6f9eb280ce5b5b049a2fee38162eb ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newtx/txex-bar.tfm" 1487028062 872 42a11c392ad05634fee0c67e353926cf ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newtx/txexs.tfm" 1621283831 1552 a4f9bb57de5b2864f3db1cb10ac7ad3a ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/newtx/txmiaSTbb.tfm" 1569879884 920 99acdf374993fd46fd345f9cac168080 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsya.tfm" 1136768653 972 2c9ffac4bbd20f91c01aaef9bf3f8710 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/tfm/public/txfonts/txsyb.tfm" 1136768653 988 098ca7e8cc5647b9ac21b82dbdce1f01 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/vf/public/newpx/zplbsy.vf" 1581804797 1796 d12b50313c454501524816a43dd66029 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/vf/public/newpx/zplexx.vf" 1471383743 1308 008fdb91ea46e5a26848b9a9c07d2e15 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/vf/public/newpx/zplmi.vf" 1591219423 2556 7db3e3f5fd274b63bfb66a1d0b1e1c0d ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/vf/public/newpx/zplmia.vf" 1618176981 1748 43529cca237bd0a988c8893565c9538d ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/vf/public/newpx/zplsy.vf" 1622581553 1792 dcf98ad5656a7eda1a465da285af4954 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/vf/public/newpx/zplsym.vf" 1427059271 1668 2dfb20472341e4bd61027a2a33f02db0 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/vf/public/newtx/ntxexx.vf" 1471383769 1648 0d93cbefa82585faadc39ecd0ea4f212 ""
|
||||
"/usr/share/texlive/texmf-dist/fonts/vf/public/newtx/ntxsym.vf" 1569879884 2004 3a0866355d95176afe52235bd210579a ""
|
||||
"/usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii" 1684972800 71627 94eb9990bed73c364d7f53f960cc8c5b ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/atbegshi/atbegshi.sty" 1575674566 24708 5584a51a7101caf7e6bbf1fc27d8f7b1 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/bigintcalc/bigintcalc.sty" 1576625341 40635 c40361e206be584d448876bba8a64a3b ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/bitset/bitset.sty" 1576016050 33961 6b5c75130e435b2bfdb9f480a09a39f9 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/circuitikz/pgfcirc.defines.tex" 1670794472 41491 ab94f505d8167d711e380d88d3b9689e ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/circuitikz/pgfcircbipoles.tex" 1670794472 281961 ed00e080174889659fa038b53fb7af9b ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/circuitikz/pgfcirccurrent.tex" 1644013141 9538 d41d3f442f974856ce6f6490d8c753a0 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/circuitikz/pgfcircflow.tex" 1644013141 9804 96db64eb5590839eb80a509a06bb80e5 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/circuitikz/pgfcirclabel.tex" 1644013141 15442 521f202fed8dcf583f9119c7b45a8595 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/circuitikz/pgfcircmonopoles.tex" 1670794472 56360 03022f8eea30c349ed1b6a20694c621a ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/circuitikz/pgfcircmultipoles.tex" 1650748229 112203 6f6586db42c85cba724c7b7cdb7ac800 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/circuitikz/pgfcircpath.tex" 1650748229 16722 7eaaf69eca58ff49a24ece99018b241a ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/circuitikz/pgfcircquadpoles.tex" 1670794472 83192 46a166bc803a8d7ab0efde4812561c3f ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/circuitikz/pgfcircshapes.tex" 1650748229 33313 70aeeeca358e5e7691919788ad5cec3d ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/circuitikz/pgfcirctripoles.tex" 1670794472 377503 98893576777000618d7a212157445401 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/circuitikz/pgfcircutils.tex" 1650748229 14587 5e7f9413ed51b17dd74183040d3f03e5 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/circuitikz/pgfcircvoltage.tex" 1644013141 35438 9e95a3481c73b66c56859e611c07426c ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/etexcmds/etexcmds.sty" 1576625273 7734 b98cbb34c81f667027c1e3ebdbfce34b ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/gettitlestring/gettitlestring.sty" 1576625223 8371 9d55b8bd010bc717624922fb3477d92e ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/iftex/iftex.sty" 1644112042 7237 bdd120a32c8fdb4b433cf9ca2e7cd98a ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/iftex/ifvtex.sty" 1572645307 1057 525c2192b5febbd8c1f662c9468335bb ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/infwarerr/infwarerr.sty" 1575499628 8356 7bbb2c2373aa810be568c29e333da8ed ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/intcalc/intcalc.sty" 1576625065 31769 002a487f55041f8e805cfbf6385ffd97 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/kastrup/binhex.tex" 1215376579 2553 4b99aa9667b708dd355926023d705446 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/kvdefinekeys/kvdefinekeys.sty" 1576878844 5412 d5a2436094cd7be85769db90f29250a6 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/ltxcmds/ltxcmds.sty" 1600895880 17859 4409f8f50cd365c68e684407e5350b1b ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pdfescape/pdfescape.sty" 1576015897 19007 15924f7228aca6c6d184b115f4baa231 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pdftexcmds/pdftexcmds.sty" 1593379760 20089 80423eac55aa175305d35b49e04fe23b ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcore.code.tex" 1601326656 992 855ff26741653ab54814101ca36e153c ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorearrows.code.tex" 1601326656 43820 1fef971b75380574ab35a0d37fd92608 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreexternal.code.tex" 1601326656 19324 f4e4c6403dd0f1605fd20ed22fa79dea ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoregraphicstate.code.tex" 1601326656 6038 ccb406740cc3f03bbfb58ad504fe8c27 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreimage.code.tex" 1601326656 6944 e12f8f7a7364ddf66f93ba30fb3a3742 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorelayers.code.tex" 1601326656 4883 42daaf41e27c3735286e23e48d2d7af9 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreobjects.code.tex" 1601326656 2544 8c06d2a7f0f469616ac9e13db6d2f842 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathconstruct.code.tex" 1601326656 44195 5e390c414de027626ca5e2df888fa68d ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathprocessing.code.tex" 1601326656 17311 2ef6b2e29e2fc6a2fc8d6d652176e257 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepathusage.code.tex" 1601326656 21302 788a79944eb22192a4929e46963a3067 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepatterns.code.tex" 1601326656 9690 01feb7cde25d4293ef36eef45123eb80 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorepoints.code.tex" 1601326656 33335 dd1fa4814d4e51f18be97d88bf0da60c ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorequick.code.tex" 1601326656 2965 4c2b1f4e0826925746439038172e5d6f ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorerdf.code.tex" 1601326656 5196 2cc249e0ee7e03da5f5f6589257b1e5b ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcorescopes.code.tex" 1601326656 20726 d4c8db1e2e53b72721d29916314a22ea ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoreshade.code.tex" 1601326656 35249 abd4adf948f960299a4b3d27c5dddf46 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransformations.code.tex" 1601326656 21989 fdc867d05d228316de137a9fc5ec3bbe ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/basiclayer/pgfcoretransparency.code.tex" 1601326656 8893 e851de2175338fdf7c17f3e091d94618 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryarrows.code.tex" 1601326656 319 225dfe354ba678ff3c194968db39d447 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarybending.code.tex" 1601326656 345 9efe6b557b64ab0401dc06a4ef8ca04c ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarycalc.code.tex" 1601326656 15929 463535aa2c4268fead6674a75c0e8266 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarydecorations.code.tex" 1601326656 5493 23e371e6fe3e7e42533d6d6c15662e0d ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarydecorations.pathmorphing.code.tex" 1601326656 321 cdd11262840e01e25374a2d458f15e99 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryfadings.code.tex" 1601326656 1179 5483d86c1582c569e665c74efab6281f ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryfpu.code.tex" 1601326656 283 0802c14f542ec5204d2d1cc89f08a4d2 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarymatrix.code.tex" 1601326656 4202 b95061a2334c704bfa941fb8d5c0d0a2 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryquotes.code.tex" 1601326656 3931 8b99416ab2e0d0d6af4e0cc444f11055 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibraryshadows.code.tex" 1601326656 2889 d698e3a959304efa342d47e3bb86da5b ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarytopaths.code.tex" 1608933718 11518 738408f795261b70ce8dd47459171309 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/libraries/tikzlibrarytrees.code.tex" 1601326656 3360 d7547ac810d5d8570c7b6f7c224d69da ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/frontendlayer/tikz/tikz.code.tex" 1621110968 186007 6e7dfe0bd57520fd5f91641aa72dcac8 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/decorations/pgflibrarydecorations.pathmorphing.code.tex" 1601326656 8843 5533436db3e30fbad1e0440db6027dac ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryarrows.code.tex" 1601326656 31874 89148c383c49d4c72114a76fd0062299 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryarrows.meta.code.tex" 1601326656 58801 1e750fb0692eb99aaac45698bbec96b1 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibrarycurvilinear.code.tex" 1601326656 14117 ce877c5ca2b43f31c2cd81e74cc26bd9 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryfadings.code.tex" 1601326656 2563 d5b174eb7709fd6bdcc2f70953dbdf8e ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryfpu.code.tex" 1608933718 85938 8e4ba97c5906e1c0d158aea81fe29af7 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/libraries/pgflibraryplothandlers.code.tex" 1601326656 32995 ac577023e12c0e4bd8aa420b2e852d1a ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfint.code.tex" 1557692582 3063 8c415c68a0f3394e45cfeca0b65f6ee6 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmath.code.tex" 1601326656 521 8e224a7af69b7fee4451d1bf76b46654 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathcalc.code.tex" 1601326656 13391 84d29568c13bdce4133ab4a214711112 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfloat.code.tex" 1601326656 104935 184ed87524e76d4957860df4ce0cd1c3 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.base.code.tex" 1601326656 10165 cec5fa73d49da442e56efc2d605ef154 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.basic.code.tex" 1601326656 28178 41c17713108e0795aac6fef3d275fbca ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.code.tex" 1601326656 9989 c55967bf45126ff9b061fa2ca0c4694f ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.comparison.code.tex" 1601326656 3865 ac538ab80c5cf82b345016e474786549 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.integerarithmetics.code.tex" 1557692582 3177 27d85c44fbfe09ff3b2cf2879e3ea434 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.misc.code.tex" 1621110968 11024 0179538121bc2dba172013a3ef89519f ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.random.code.tex" 1608933718 7854 4176998eeefd8745ac6d2d4bd9c98451 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.round.code.tex" 1601326656 3379 781797a101f647bab82741a99944a229 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathfunctions.trigonometric.code.tex" 1601326656 92405 f515f31275db273f97b9d8f52e1b0736 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathparser.code.tex" 1601326656 37376 11cd75aac3da1c1b152b2848f30adc14 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/math/pgfmathutil.code.tex" 1601326656 8471 c2883569d03f69e8e1cabfef4999cfd7 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmodulebending.code.tex" 1601326656 10901 2a1622fae7fe4eb4574c13e264019b2f ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmoduledecorations.code.tex" 1601326656 71722 aa25655703db0306f6401798e312b7b8 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmodulematrix.code.tex" 1601326656 21201 08d231a2386e2b61d64641c50dc15abd ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmodulenonlineartransformations.code.tex" 1601326656 12243 a8b138086af750a4e0d253790eb930d8 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmoduleplot.code.tex" 1601326656 16121 346f9013d34804439f7436ff6786cef7 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/modules/pgfmoduleshapes.code.tex" 1621110968 44784 cedaa399d15f95e68e22906e2cc09ef8 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/pgf.revision.tex" 1621110968 465 d68603f8b820ea4a08cce534944db581 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgf.cfg" 1601326656 926 2963ea0dcf6cc6c0a770b69ec46a477b ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-common-pdf.def" 1601326656 5546 f3f24d7898386cb7daac70bdd2c4d6dc ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys-pdftex.def" 1601326656 12601 4786e597516eddd82097506db7cfa098 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsys.code.tex" 1621110968 61163 9b2eefc24e021323e0fc140e9826d016 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsysprotocol.code.tex" 1601326656 1896 b8e0ca0ac371d74c0ca05583f6313c91 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/systemlayer/pgfsyssoftpath.code.tex" 1601326656 7778 53c8b5623d80238f6a20aa1df1868e63 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgffor.code.tex" 1606168878 23997 a4bed72405fa644418bea7eac2887006 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeys.code.tex" 1621110968 37060 797782f0eb50075c9bc952374d9a659a ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfkeysfiltered.code.tex" 1601326656 37431 9abe862035de1b29c7a677f3205e3d9f ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfrcs.code.tex" 1601326656 4494 af17fb7efeafe423710479858e42fa7e ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-common-lists.tex" 1601326656 7251 fb18c67117e09c64de82267e12cd8aa4 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-common.tex" 1621110968 29274 e15c5b7157d21523bd9c9f1dfa146b8e ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/pgf/utilities/pgfutil-latex.def" 1621110968 6825 a2b0ea5b539dda0625e99dd15785ab59 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/stringenc/stringenc.sty" 1575152242 21514 b7557edcee22835ef6b03ede1802dad4 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/tikz-cd/tikzlibrarycd.code.tex" 1620507957 23059 b4b98da760150611227e2533f15fe352 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/uniquecounter/uniquecounter.sty" 1576624663 7008 f92eaa0a3872ed622bbf538217cd2ab7 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/xkeyval/xkeyval.tex" 1655411236 19231 27205ee17aaa2902aea3e0c07a3cfc65 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/generic/xkeyval/xkvutils.tex" 1655411236 7677 9cb1a74d945bc9331f2181c0a59ff34a ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/algorithm2e/algorithm2e.sty" 1500498588 167160 d91cee26d3ef5727644d2110445741dd ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/amscls/amsthm.sty" 1591045760 12594 0d51ac3a545aaaa555021326ff22a6cc ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amsfonts.sty" 1359763108 5949 3f3fd50a8cc94c3d4cbf4fc66cd3df1c ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/amsfonts/amssymb.sty" 1359763108 13829 94730e64147574077f8ecfea9bb69af4 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsa.fd" 1359763108 961 6518c6525a34feb5e8250ffa91731cff ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/amsfonts/umsb.fd" 1359763108 961 d02606146ba5601b5645f987c92e6193 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsbsy.sty" 1654720880 2222 78b930a5a6e3dc2ac69b78c2057b94d7 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsgen.sty" 1654720880 4173 c989ee3ced31418e3593916ab26c793a ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsmath.sty" 1654720880 88393 1adf6fa3f245270d06e3d4f8910f7fc5 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/amsmath/amsopn.sty" 1654720880 4474 f04cd1cc7bd76eb033e6fb12eb6a0d77 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/amsmath/amstext.sty" 1654720880 2444 70065bddd85997dc1fd0bb7ae634e5fa ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/atveryend/atveryend.sty" 1576191570 19336 ce7ae9438967282886b3b036cfad1e4d ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/auxhook/auxhook.sty" 1576625391 3935 57aa3c3e203a5c2effb4d2bd2efbc323 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/base/atbegshi-ltx.sty" 1684972800 3122 8df402c6591ccc8ed35ce64c1c49c50b ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/base/atveryend-ltx.sty" 1684972800 2462 2ab3964e30f8e7a2977395016edcbbc6 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/base/ifthen.sty" 1684972800 5319 48d7f3cfa322abd2788e3c09d624b922 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/base/inputenc.sty" 1684972800 5048 84b05796b49b69e2d4257d537721c960 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/base/report.cls" 1684972800 23203 79c43e7b729c67df90b0b3c7627a752a ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/base/size10.clo" 1684972800 8448 e0391042ca0932ede1098ae14ada60ba ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/base/textcomp.sty" 1684972800 2894 f2f8ee7d4fb94263f9f255fa22cab2d3 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/bookmark/bkm-pdftex.def" 1604871679 8609 8ac7db65d9617618cf703bd16c1bd0b8 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/bookmark/bookmark.sty" 1604871679 18237 5cbdfe9ef383a557f780a0a1f45cdb1c ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/cancel/cancel.sty" 1388445839 7592 dd751af313a16a0308545d5bfd7aaaa2 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/circuitikz/circuitikz.sty" 1670794472 13737 a27835426206f3b54574dc3437dfe424 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/comment/comment.sty" 1472166125 10197 204f75d5d8d88aa345a8c402e879e63b ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/enumitem/enumitem.sty" 1561238569 51697 f8f08183cd2080d9d18a41432d651dfb ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/environ/environ.sty" 1399239813 4378 f429f0da968c278653359293040a8f52 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/epstopdf-pkg/epstopdf-base.sty" 1579991033 13886 d1306dcf79a944f6988e688c1785f9ce ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/eso-pic/eso-pic.sty" 1602711807 11772 8d0db0794e6aeb45348f60bbe3a3e093 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/etoolbox/etoolbox.sty" 1601931149 46845 3b58f70c6e861a13d927bff09d35ecbc ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/geometry/geometry.sty" 1578002852 41601 9cf6c5257b1bc7af01a58859749dd37a ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/color.cfg" 1459978653 1213 620bba36b25224fa9b7e1ccb4ecb76fd ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/graphics.cfg" 1465944070 1224 978390e9c2234eab29404bc21b268d1e ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/graphics-def/pdftex.def" 1663965824 19448 1e988b341dda20961a6b931bcde55519 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/graphics/color.sty" 1654720880 7233 e46ce9241d2b2ca2a78155475fdd557a ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty" 1654720880 18387 8f900a490197ebaf93c02ae9476d4b09 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty" 1654720880 8010 a8d949cbdbc5c983593827c9eec252e1 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty" 1654720880 2671 7e67d78d9b88c845599a85b2d41f2e39 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/graphics/lscape.sty" 1654720880 1822 5e4f855a9ecb640f34881e4b457fa9aa ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/graphics/mathcolor.ltx" 1667332637 2885 9c645d672ae17285bba324998918efd8 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty" 1654720880 4023 293ea1c16429fc0c4cf605f4da1791a9 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/hycolor/hycolor.sty" 1580250785 17914 4c28a13fc3d975e6e81c9bea1d697276 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/hyperref/hpdftex.def" 1668456740 48272 52af74196dd55e6c486243beada2adcd ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/hyperref/hyperref.sty" 1668456740 222727 cfc4e76008392378678e691ec73ef8f0 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/hyperref/nameref.sty" 1668456740 12947 2cb391007415dfa63f4c5ba1610afddb ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/hyperref/pd1enc.def" 1668456740 14249 c27c0c7065e940126403e065c08683b6 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/hyperref/puenc.def" 1668456740 117125 a8ce97e3b03f76decc5ad7e8d4da3088 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/ifmtarg/ifmtarg.sty" 1525197427 318 019510c713feab56160631df4423d2aa ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/ifoddpage/ifoddpage.sty" 1666126449 2142 eae42205b97b7a3ad0e58db5fe99e3e6 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/import/import.sty" 1586645574 6201 0ad8b5da8e12f60a88d546b2198a56f2 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/kvoptions/kvoptions.sty" 1655478651 22555 6d8e155cfef6d82c3d5c742fea7c992e ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/kvsetkeys/kvsetkeys.sty" 1665067230 13815 760b0c02f691ea230f5359c4e1de23a7 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/l3backend/l3backend-pdftex.def" 1666901542 30426 f2fb69fcda4dc35ed0b7dee211bce679 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/l3kernel/expl3.sty" 1671310534 6107 386d6336ccdc5637fb2ac440a8c4ecaa ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/l3packages/l3keys2e/l3keys2e.sty" 1671310555 4674 59e4cf717912f4a8712612c3924f734c ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/l3packages/xfrac/xfrac.sty" 1671310555 14672 d7b6c220d20143765a1f715c7f781bca ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/l3packages/xparse/xparse.sty" 1671310555 6812 c155095bd0101370166071972167f9ce ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/l3packages/xtemplate/xtemplate.sty" 1671310555 49752 79ab8ee9c58f03e0dffe768239f96e29 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg" 1279039959 678 4792914a8f45be57bb98413425e4c7af ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/letltxmacro/letltxmacro.sty" 1575499565 5766 13a9e8766c47f30327caf893ece86ac8 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/listings/listings.cfg" 1585170648 1830 e31effa752c61538383451ae21332364 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/listings/listings.sty" 1585170648 80964 64e57373f36316e4a09b517cbf1aba2e ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/listings/lstmisc.sty" 1585170648 77022 ee25ce086f4a79d8cf73bac6f94c02a5 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/listingsutf8/listingsutf8.sty" 1576101256 5148 1baf596b2560b44d9ff1889dc1d7564e ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/mathtools/mathtools.sty" 1656621545 62269 5c1837a5bc5db4c0d255eedc225ca44b ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/mathtools/mhsetup.sty" 1616101747 5582 a43dedf8e5ec418356f1e9dfe5d29fc3 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/newpx/lmsnpxsy.fd" 1570136818 694 74f1360ae44f64fd2ee5afe681f49916 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/newpx/lmxnpxexx.fd" 1570136818 690 f81411dddf695b387c215e4d3b12bf7b ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/newpx/newpxmath.sty" 1638738662 114387 dbb9ec887679ee7d72d5b493f17e0b18 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/newpx/omlnpxmi.fd" 1364773518 1021 ea219cb4ba93d269a1b8397517fa73dd ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/newpx/unpxexa.fd" 1364773518 628 fbc01db774ec301bc422f326613f3c15 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/newpx/unpxmia.fd" 1364773518 837 c5c93d6a90ec14994a382e80af2ef77b ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/newpx/unpxsyc.fd" 1364773518 629 23771a5c5746d49294830c1e10f874a0 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/newpx/unpxsym.fd" 1427059271 629 cc717b9aff93d9a4e4fc63ecc381750e ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/oberdiek/centernot.sty" 1684972800 1640 c9cca60f81c5839b9a3e794d72c0b0a7 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/pdfcol/pdfcol.sty" 1663877585 8086 ac143843b6ea88d172677dc3ed532925 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/pdflscape/pdflscape-nometadata.sty" 1667072951 6572 ea530fbbe537629fd97736d33babc07d ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/pdflscape/pdflscape.sty" 1667072951 2224 1230ab76aa62221ccbd90bca8c8c015e ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/pdfpages/pdfpages.sty" 1671569853 54859 c2b191f8d736ddb86177723cc23c30a9 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/pdfpages/pppdftex.def" 1671569853 6591 7c9b26513263b04a3b43be6474a4ef4d ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/pgf-blur/tikzlibraryshadows.blur.code.tex" 1534888041 10370 2aaefd11895645becd171b233f2734ef ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/pgf/basiclayer/pgf.sty" 1601326656 1090 bae35ef70b3168089ef166db3e66f5b2 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/pgf/basiclayer/pgfcore.sty" 1601326656 410 615550c46f918fcbee37641b02a862d9 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-0-65.sty" 1601326656 21013 f4ff83d25bb56552493b030f27c075ae ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/pgf/compatibility/pgfcomp-version-1-18.sty" 1601326656 989 c49c8ae06d96f8b15869da7428047b1e ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/pgf/frontendlayer/tikz.sty" 1601326656 339 c2e180022e3afdb99c7d0ea5ce469b7d ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/pgf/math/pgfmath.sty" 1601326656 306 c56a323ca5bf9242f54474ced10fca71 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/pgf/systemlayer/pgfsys.sty" 1601326656 443 8c872229db56122037e86bcda49e14f3 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgffor.sty" 1601326656 348 ee405e64380c11319f0e249fed57e6c5 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfkeys.sty" 1601326656 274 5ae372b7df79135d240456a1c6f2cf9a ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/pgf/utilities/pgfrcs.sty" 1601326656 325 f9f16d12354225b7dd52a3321f085955 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/physics/physics.sty" 1356048875 29610 a9597219b282d9c78b02393dcd7d4322 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/refcount/refcount.sty" 1576624809 9878 9e94e8fa600d95f9c7731bb21dfb67a4 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/relsize/relsize.sty" 1369619135 15542 c4cc3164fe24f2f2fbb06eb71b1da4c4 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/rerunfilecheck/rerunfilecheck.sty" 1657483315 9714 ba3194bd52c8499b3f1e3eb91d409670 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tcolorbox/tcbbreakable.code.tex" 1656107635 34175 feed9905ce89de845f860d211e5c2240 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tcolorbox/tcbexternal.code.tex" 1656107635 9035 4057c03f3e68bd5199cad399b7ed35cb ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tcolorbox/tcbfitting.code.tex" 1656107635 16500 0e96bf329424e4ffac8ed9198baf08d8 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tcolorbox/tcbhooks.code.tex" 1656107635 8352 1b243f45199aabb0fb4b22793a7d9c6b ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tcolorbox/tcblistings.code.tex" 1656107635 3414 5ddf9e25d1c361e5fd4b8027ffce69ae ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tcolorbox/tcblistingscore.code.tex" 1656107635 15198 73669bef3d081ffbd10332ae34fcdf4c ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tcolorbox/tcblistingsutf8.code.tex" 1656107635 1414 895d34906227f42bfe50218d7a471034 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tcolorbox/tcbmagazine.code.tex" 1656107635 5632 7d011841c2060c41b2644347d0941411 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tcolorbox/tcbposter.code.tex" 1656107635 12453 95a7e4fc59021ca07ba8c6b47847ba40 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tcolorbox/tcbprocessing.code.tex" 1656107635 2591 f32bc57485f7e37ee1406df61214b6cb ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tcolorbox/tcbraster.code.tex" 1656107635 9359 99ea7a9058595d2ef317b2e431efa3fe ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tcolorbox/tcbskins.code.tex" 1656107635 88377 227faeb2f20e57725acee3db0d727c8f ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tcolorbox/tcbskinsjigsaw.code.tex" 1656107635 10040 ada4625116a1561792f047dc37cb3d97 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tcolorbox/tcbtheorems.code.tex" 1656107635 12058 aff387a63714c17afe776bc6795dd178 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tcolorbox/tcbvignette.code.tex" 1656107635 12747 efe9fa5c5eeef5be5e4ae71c4c1171f3 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tcolorbox/tcolorbox.sty" 1656107635 96695 0ff78495949c25f8b4397e77c7fa148e ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/theoremref/theoremref.sty" 1369264355 8987 0681aef301a54317610d6c432b179725 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tikz-cd/tikz-cd.sty" 1620507957 823 2375f30bf77af9357d3b4834b054bf52 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tikzsymbols/tikzsymbols.sty" 1639516976 132239 eb912f9962d808256603d31d845cbf37 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/titlesec/titletoc.sty" 1625518490 16869 7ce4779f4c701438f50d52c5972cef02 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tools/array.sty" 1667332637 12691 5b542990fe866f3d772f71346cf85b95 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tools/calc.sty" 1654720880 10214 de3e21cfc0eccc98ca7f8dac0ef263d2 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tools/multicol.sty" 1654720880 32329 5d201ab4b4c773e7c876c2a052b07be3 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tools/shellesc.sty" 1654720880 4118 0aa319c56935d7d217b6a8bf300b81b7 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tools/verbatim.sty" 1667332637 7392 f19cdc68ae9f1190dbd54eee6d29fb7c ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/tools/xspace.sty" 1654720880 4545 4c279ac9292a1be8afa9ab2f1d3299c2 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/transparent/transparent-nometadata.sty" 1667073146 4212 8da4873548cbd3f1cdb053c708e8aa7e ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/transparent/transparent.sty" 1667073146 1918 c8d1ecb3722721d6f624992cbc042b70 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/trimspaces/trimspaces.sty" 1253232110 1380 971a51b00a14503ddf754cab24c3f209 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/url/url.sty" 1388531844 12796 8edb7d69a20b857904dd0ea757c14ec9 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/varwidth/varwidth.sty" 1238697683 10894 d359a13923460b2a73d4312d613554c8 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/xcolor/xcolor.sty" 1655066402 56148 51a9a8571c07b9921892ae11063ae853 ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/xifthen/xifthen.sty" 1448319911 5689 1bfa68243e89a54479e7d0580773c57e ""
|
||||
"/usr/share/texlive/texmf-dist/tex/latex/xkeyval/xkeyval.sty" 1655411236 4937 4ce600ce9bd4ec84d0250eb6892fcf4f ""
|
||||
"/usr/share/texlive/texmf-dist/web2c/texmf.cnf" 1684972800 40326 aba987258e6d6b6da5dec3a727ea174b ""
|
||||
"/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map" 1695741510 4547801 12750a1f41d88f5207b57129561a9960 ""
|
||||
"/var/lib/texmf/web2c/pdftex/pdflatex.fmt" 1701277330 7863019 097b4e8e1a66030be4a54b16b984698d ""
|
||||
"EEMAGS-Notes.aux" 1703786155 20374 7ffc5fccecedcef8a7e326214346ae1f "pdflatex"
|
||||
"EEMAGS-Notes.tex" 1703714290 102838 ae933d220db25d79bc81d584c099ccc3 ""
|
||||
"EEMAGS-Notes.toc" 1703786153 0 d41d8cd98f00b204e9800998ecf8427e "pdflatex"
|
||||
"letterfonts.tex" 1697213298 8702 ef32ca12e97530ef5734ca4adcb1f6b1 ""
|
||||
"macros.tex" 1702308869 3825 f757810fffa02e0f99331e231a504497 ""
|
||||
"preamble.tex" 1703714290 20047 75d6fed8d1ca24a6563055c96647726e ""
|
||||
(generated)
|
||||
"EEMAGS-Notes.aux"
|
||||
"EEMAGS-Notes.log"
|
||||
"EEMAGS-Notes.pdf"
|
||||
"EEMAGS-Notes.toc"
|
||||
(rewritten before read)
|
1717
5th-Semester-Fall-2023/EEMAGS/Notes/EEMAGS-Notes.fls
Normal file
1717
5th-Semester-Fall-2023/EEMAGS/Notes/EEMAGS-Notes.fls
Normal file
File diff suppressed because it is too large
Load Diff
4883
5th-Semester-Fall-2023/EEMAGS/Notes/EEMAGS-Notes.log
Normal file
4883
5th-Semester-Fall-2023/EEMAGS/Notes/EEMAGS-Notes.log
Normal file
File diff suppressed because it is too large
Load Diff
2340
5th-Semester-Fall-2023/EEMAGS/Notes/EEMAGS-Notes.tex
Normal file
2340
5th-Semester-Fall-2023/EEMAGS/Notes/EEMAGS-Notes.tex
Normal file
File diff suppressed because it is too large
Load Diff
BIN
5th-Semester-Fall-2023/EEMAGS/Notes/FEA.png
Normal file
BIN
5th-Semester-Fall-2023/EEMAGS/Notes/FEA.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 65 KiB |
29
5th-Semester-Fall-2023/EEMAGS/Notes/PythonSimulation.py
Normal file
29
5th-Semester-Fall-2023/EEMAGS/Notes/PythonSimulation.py
Normal file
@ -0,0 +1,29 @@
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
from copy import deepcopy
|
||||
|
||||
tau = 0.25 # Size of the time step
|
||||
N = 4 # Number of grid points
|
||||
c = 1 # Normalized speed of light
|
||||
L = 1 # Size of the system
|
||||
h = L / N # Spacing of grids (0.25)
|
||||
hct = h / (c*tau) # 1 here
|
||||
coef = 1 / 2*(hct) # 1/2 here
|
||||
sig = 1 # Width of the pulse
|
||||
|
||||
z = np.arange(-L/2 + h/2, L/2 + h/2, h)
|
||||
|
||||
phi = [0, 1, 1, 0]
|
||||
|
||||
phinew = [0]*N
|
||||
|
||||
steps = 5
|
||||
for i in range(steps):
|
||||
for k in range(N):
|
||||
if k != 0 and k != N-1:
|
||||
phinew[k] = (0.5 - coef)*phi[k+1] + (0.5 + coef)*phi[k-1]
|
||||
else:
|
||||
phinew[0] = (0.5 - coef)*phi[1] + (0.5 + coef)*phi[N-1]
|
||||
phinew[N-1] = (0.5 - coef)*phi[0] + (0.5 + coef)*phi[N-2]
|
||||
phi = deepcopy(phinew)
|
||||
print(phi)
|
BIN
5th-Semester-Fall-2023/EEMAGS/Notes/TransmissionLine.png
Normal file
BIN
5th-Semester-Fall-2023/EEMAGS/Notes/TransmissionLine.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 4.3 KiB |
178
5th-Semester-Fall-2023/EEMAGS/Notes/letterfonts.tex
Normal file
178
5th-Semester-Fall-2023/EEMAGS/Notes/letterfonts.tex
Normal file
@ -0,0 +1,178 @@
|
||||
% Things Lie
|
||||
\newcommand{\kb}{\mathfrak b}
|
||||
\newcommand{\kg}{\mathfrak g}
|
||||
\newcommand{\kh}{\mathfrak h}
|
||||
\newcommand{\kn}{\mathfrak n}
|
||||
\newcommand{\ku}{\mathfrak u}
|
||||
\newcommand{\kz}{\mathfrak z}
|
||||
\DeclareMathOperator{\Ext}{Ext} % Ext functor
|
||||
\DeclareMathOperator{\Tor}{Tor} % Tor functor
|
||||
\newcommand{\gl}{\opname{\mathfrak{gl}}} % frak gl group
|
||||
\renewcommand{\sl}{\opname{\mathfrak{sl}}} % frak sl group chktex 6
|
||||
|
||||
% More script letters etc.
|
||||
\newcommand{\SA}{\mathcal A}
|
||||
\newcommand{\SB}{\mathcal B}
|
||||
\newcommand{\SC}{\mathcal C}
|
||||
\newcommand{\SF}{\mathcal F}
|
||||
\newcommand{\SG}{\mathcal G}
|
||||
\newcommand{\SH}{\mathcal H}
|
||||
\newcommand{\OO}{\mathcal O}
|
||||
|
||||
\newcommand{\SCA}{\mathscr A}
|
||||
\newcommand{\SCB}{\mathscr B}
|
||||
\newcommand{\SCC}{\mathscr C}
|
||||
\newcommand{\SCD}{\mathscr D}
|
||||
\newcommand{\SCE}{\mathscr E}
|
||||
\newcommand{\SCF}{\mathscr F}
|
||||
\newcommand{\SCG}{\mathscr G}
|
||||
\newcommand{\SCH}{\mathscr H}
|
||||
|
||||
% Mathfrak primes
|
||||
\newcommand{\km}{\mathfrak m}
|
||||
\newcommand{\kp}{\mathfrak p}
|
||||
\newcommand{\kq}{\mathfrak q}
|
||||
|
||||
% number sets
|
||||
\newcommand{\RR}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{R}}{\mathbb{R}^{#1}}}}
|
||||
\newcommand{\NN}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{N}}{\mathbb{N}^{#1}}}}
|
||||
\newcommand{\ZZ}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{Z}}{\mathbb{Z}^{#1}}}}
|
||||
\newcommand{\QQ}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{Q}}{\mathbb{Q}^{#1}}}}
|
||||
\newcommand{\CC}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{C}}{\mathbb{C}^{#1}}}}
|
||||
\newcommand{\PP}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{P}}{\mathbb{P}^{#1}}}}
|
||||
\newcommand{\HH}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{H}}{\mathbb{H}^{#1}}}}
|
||||
\newcommand{\FF}[1][]{\ensuremath{\ifstrempty{#1}{\mathbb{F}}{\mathbb{F}^{#1}}}}
|
||||
% expected value
|
||||
\newcommand{\EE}{\ensuremath{\mathbb{E}}}
|
||||
\newcommand{\charin}{\text{ char }}
|
||||
\DeclareMathOperator{\sign}{sign}
|
||||
\DeclareMathOperator{\Aut}{Aut}
|
||||
\DeclareMathOperator{\Inn}{Inn}
|
||||
\DeclareMathOperator{\Syl}{Syl}
|
||||
\DeclareMathOperator{\Gal}{Gal}
|
||||
\DeclareMathOperator{\GL}{GL} % General linear group
|
||||
\DeclareMathOperator{\SL}{SL} % Special linear group
|
||||
|
||||
%---------------------------------------
|
||||
% BlackBoard Math Fonts :-
|
||||
%---------------------------------------
|
||||
|
||||
%Captital Letters
|
||||
\newcommand{\bbA}{\mathbb{A}} \newcommand{\bbB}{\mathbb{B}}
|
||||
\newcommand{\bbC}{\mathbb{C}} \newcommand{\bbD}{\mathbb{D}}
|
||||
\newcommand{\bbE}{\mathbb{E}} \newcommand{\bbF}{\mathbb{F}}
|
||||
\newcommand{\bbG}{\mathbb{G}} \newcommand{\bbH}{\mathbb{H}}
|
||||
\newcommand{\bbI}{\mathbb{I}} \newcommand{\bbJ}{\mathbb{J}}
|
||||
\newcommand{\bbK}{\mathbb{K}} \newcommand{\bbL}{\mathbb{L}}
|
||||
\newcommand{\bbM}{\mathbb{M}} \newcommand{\bbN}{\mathbb{N}}
|
||||
\newcommand{\bbO}{\mathbb{O}} \newcommand{\bbP}{\mathbb{P}}
|
||||
\newcommand{\bbQ}{\mathbb{Q}} \newcommand{\bbR}{\mathbb{R}}
|
||||
\newcommand{\bbS}{\mathbb{S}} \newcommand{\bbT}{\mathbb{T}}
|
||||
\newcommand{\bbU}{\mathbb{U}} \newcommand{\bbV}{\mathbb{V}}
|
||||
\newcommand{\bbW}{\mathbb{W}} \newcommand{\bbX}{\mathbb{X}}
|
||||
\newcommand{\bbY}{\mathbb{Y}} \newcommand{\bbZ}{\mathbb{Z}}
|
||||
|
||||
%---------------------------------------
|
||||
% MathCal Fonts :-
|
||||
%---------------------------------------
|
||||
|
||||
%Captital Letters
|
||||
\newcommand{\mcA}{\mathcal{A}} \newcommand{\mcB}{\mathcal{B}}
|
||||
\newcommand{\mcC}{\mathcal{C}} \newcommand{\mcD}{\mathcal{D}}
|
||||
\newcommand{\mcE}{\mathcal{E}} \newcommand{\mcF}{\mathcal{F}}
|
||||
\newcommand{\mcG}{\mathcal{G}} \newcommand{\mcH}{\mathcal{H}}
|
||||
\newcommand{\mcI}{\mathcal{I}} \newcommand{\mcJ}{\mathcal{J}}
|
||||
\newcommand{\mcK}{\mathcal{K}} \newcommand{\mcL}{\mathcal{L}}
|
||||
\newcommand{\mcM}{\mathcal{M}} \newcommand{\mcN}{\mathcal{N}}
|
||||
\newcommand{\mcO}{\mathcal{O}} \newcommand{\mcP}{\mathcal{P}}
|
||||
\newcommand{\mcQ}{\mathcal{Q}} \newcommand{\mcR}{\mathcal{R}}
|
||||
\newcommand{\mcS}{\mathcal{S}} \newcommand{\mcT}{\mathcal{T}}
|
||||
\newcommand{\mcU}{\mathcal{U}} \newcommand{\mcV}{\mathcal{V}}
|
||||
\newcommand{\mcW}{\mathcal{W}} \newcommand{\mcX}{\mathcal{X}}
|
||||
\newcommand{\mcY}{\mathcal{Y}} \newcommand{\mcZ}{\mathcal{Z}}
|
||||
|
||||
|
||||
%---------------------------------------
|
||||
% Bold Math Fonts :-
|
||||
%---------------------------------------
|
||||
|
||||
%Captital Letters
|
||||
\newcommand{\bmA}{\boldsymbol{A}} \newcommand{\bmB}{\boldsymbol{B}}
|
||||
\newcommand{\bmC}{\boldsymbol{C}} \newcommand{\bmD}{\boldsymbol{D}}
|
||||
\newcommand{\bmE}{\boldsymbol{E}} \newcommand{\bmF}{\boldsymbol{F}}
|
||||
\newcommand{\bmG}{\boldsymbol{G}} \newcommand{\bmH}{\boldsymbol{H}}
|
||||
\newcommand{\bmI}{\boldsymbol{I}} \newcommand{\bmJ}{\boldsymbol{J}}
|
||||
\newcommand{\bmK}{\boldsymbol{K}} \newcommand{\bmL}{\boldsymbol{L}}
|
||||
\newcommand{\bmM}{\boldsymbol{M}} \newcommand{\bmN}{\boldsymbol{N}}
|
||||
\newcommand{\bmO}{\boldsymbol{O}} \newcommand{\bmP}{\boldsymbol{P}}
|
||||
\newcommand{\bmQ}{\boldsymbol{Q}} \newcommand{\bmR}{\boldsymbol{R}}
|
||||
\newcommand{\bmS}{\boldsymbol{S}} \newcommand{\bmT}{\boldsymbol{T}}
|
||||
\newcommand{\bmU}{\boldsymbol{U}} \newcommand{\bmV}{\boldsymbol{V}}
|
||||
\newcommand{\bmW}{\boldsymbol{W}} \newcommand{\bmX}{\boldsymbol{X}}
|
||||
\newcommand{\bmY}{\boldsymbol{Y}} \newcommand{\bmZ}{\boldsymbol{Z}}
|
||||
%Small Letters
|
||||
\newcommand{\bma}{\boldsymbol{a}} \newcommand{\bmb}{\boldsymbol{b}}
|
||||
\newcommand{\bmc}{\boldsymbol{c}} \newcommand{\bmd}{\boldsymbol{d}}
|
||||
\newcommand{\bme}{\boldsymbol{e}} \newcommand{\bmf}{\boldsymbol{f}}
|
||||
\newcommand{\bmg}{\boldsymbol{g}} \newcommand{\bmh}{\boldsymbol{h}}
|
||||
\newcommand{\bmi}{\boldsymbol{i}} \newcommand{\bmj}{\boldsymbol{j}}
|
||||
\newcommand{\bmk}{\boldsymbol{k}} \newcommand{\bml}{\boldsymbol{l}}
|
||||
\newcommand{\bmm}{\boldsymbol{m}} \newcommand{\bmn}{\boldsymbol{n}}
|
||||
\newcommand{\bmo}{\boldsymbol{o}} \newcommand{\bmp}{\boldsymbol{p}}
|
||||
\newcommand{\bmq}{\boldsymbol{q}} \newcommand{\bmr}{\boldsymbol{r}}
|
||||
\newcommand{\bms}{\boldsymbol{s}} \newcommand{\bmt}{\boldsymbol{t}}
|
||||
\newcommand{\bmu}{\boldsymbol{u}} \newcommand{\bmv}{\boldsymbol{v}}
|
||||
\newcommand{\bmw}{\boldsymbol{w}} \newcommand{\bmx}{\boldsymbol{x}}
|
||||
\newcommand{\bmy}{\boldsymbol{y}} \newcommand{\bmz}{\boldsymbol{z}}
|
||||
|
||||
%---------------------------------------
|
||||
% Scr Math Fonts :-
|
||||
%---------------------------------------
|
||||
|
||||
\newcommand{\sA}{{\mathscr{A}}} \newcommand{\sB}{{\mathscr{B}}}
|
||||
\newcommand{\sC}{{\mathscr{C}}} \newcommand{\sD}{{\mathscr{D}}}
|
||||
\newcommand{\sE}{{\mathscr{E}}} \newcommand{\sF}{{\mathscr{F}}}
|
||||
\newcommand{\sG}{{\mathscr{G}}} \newcommand{\sH}{{\mathscr{H}}}
|
||||
\newcommand{\sI}{{\mathscr{I}}} \newcommand{\sJ}{{\mathscr{J}}}
|
||||
\newcommand{\sK}{{\mathscr{K}}} \newcommand{\sL}{{\mathscr{L}}}
|
||||
\newcommand{\sM}{{\mathscr{M}}} \newcommand{\sN}{{\mathscr{N}}}
|
||||
\newcommand{\sO}{{\mathscr{O}}} \newcommand{\sP}{{\mathscr{P}}}
|
||||
\newcommand{\sQ}{{\mathscr{Q}}} \newcommand{\sR}{{\mathscr{R}}}
|
||||
\newcommand{\sS}{{\mathscr{S}}} \newcommand{\sT}{{\mathscr{T}}}
|
||||
\newcommand{\sU}{{\mathscr{U}}} \newcommand{\sV}{{\mathscr{V}}}
|
||||
\newcommand{\sW}{{\mathscr{W}}} \newcommand{\sX}{{\mathscr{X}}}
|
||||
\newcommand{\sY}{{\mathscr{Y}}} \newcommand{\sZ}{{\mathscr{Z}}}
|
||||
|
||||
|
||||
%---------------------------------------
|
||||
% Math Fraktur Font
|
||||
%---------------------------------------
|
||||
|
||||
%Captital Letters
|
||||
\newcommand{\mfA}{\mathfrak{A}} \newcommand{\mfB}{\mathfrak{B}}
|
||||
\newcommand{\mfC}{\mathfrak{C}} \newcommand{\mfD}{\mathfrak{D}}
|
||||
\newcommand{\mfE}{\mathfrak{E}} \newcommand{\mfF}{\mathfrak{F}}
|
||||
\newcommand{\mfG}{\mathfrak{G}} \newcommand{\mfH}{\mathfrak{H}}
|
||||
\newcommand{\mfI}{\mathfrak{I}} \newcommand{\mfJ}{\mathfrak{J}}
|
||||
\newcommand{\mfK}{\mathfrak{K}} \newcommand{\mfL}{\mathfrak{L}}
|
||||
\newcommand{\mfM}{\mathfrak{M}} \newcommand{\mfN}{\mathfrak{N}}
|
||||
\newcommand{\mfO}{\mathfrak{O}} \newcommand{\mfP}{\mathfrak{P}}
|
||||
\newcommand{\mfQ}{\mathfrak{Q}} \newcommand{\mfR}{\mathfrak{R}}
|
||||
\newcommand{\mfS}{\mathfrak{S}} \newcommand{\mfT}{\mathfrak{T}}
|
||||
\newcommand{\mfU}{\mathfrak{U}} \newcommand{\mfV}{\mathfrak{V}}
|
||||
\newcommand{\mfW}{\mathfrak{W}} \newcommand{\mfX}{\mathfrak{X}}
|
||||
\newcommand{\mfY}{\mathfrak{Y}} \newcommand{\mfZ}{\mathfrak{Z}}
|
||||
%Small Letters
|
||||
\newcommand{\mfa}{\mathfrak{a}} \newcommand{\mfb}{\mathfrak{b}}
|
||||
\newcommand{\mfc}{\mathfrak{c}} \newcommand{\mfd}{\mathfrak{d}}
|
||||
\newcommand{\mfe}{\mathfrak{e}} \newcommand{\mff}{\mathfrak{f}}
|
||||
\newcommand{\mfg}{\mathfrak{g}} \newcommand{\mfh}{\mathfrak{h}}
|
||||
\newcommand{\mfi}{\mathfrak{i}} \newcommand{\mfj}{\mathfrak{j}}
|
||||
\newcommand{\mfk}{\mathfrak{k}} \newcommand{\mfl}{\mathfrak{l}}
|
||||
\newcommand{\mfm}{\mathfrak{m}} \newcommand{\mfn}{\mathfrak{n}}
|
||||
\newcommand{\mfo}{\mathfrak{o}} \newcommand{\mfp}{\mathfrak{p}}
|
||||
\newcommand{\mfq}{\mathfrak{q}} \newcommand{\mfr}{\mathfrak{r}}
|
||||
\newcommand{\mfs}{\mathfrak{s}} \newcommand{\mft}{\mathfrak{t}}
|
||||
\newcommand{\mfu}{\mathfrak{u}} \newcommand{\mfv}{\mathfrak{v}}
|
||||
\newcommand{\mfw}{\mathfrak{w}} \newcommand{\mfx}{\mathfrak{x}}
|
||||
\newcommand{\mfy}{\mathfrak{y}} \newcommand{\mfz}{\mathfrak{z}}
|
101
5th-Semester-Fall-2023/EEMAGS/Notes/macros.tex
Normal file
101
5th-Semester-Fall-2023/EEMAGS/Notes/macros.tex
Normal file
@ -0,0 +1,101 @@
|
||||
%From M275 "Topology" at SJSU
|
||||
\newcommand{\id}{\mathrm{id}}
|
||||
\newcommand{\taking}[1]{\xrightarrow{#1}}
|
||||
\newcommand{\inv}{^{-1}}
|
||||
|
||||
%From M170 "Introduction to Graph Theory" at SJSU
|
||||
\DeclareMathOperator{\diam}{diam}
|
||||
\DeclareMathOperator{\ord}{ord}
|
||||
\newcommand{\defeq}{\overset{\mathrm{def}}{=}}
|
||||
|
||||
%From the USAMO .tex files
|
||||
\newcommand{\ts}{\textsuperscript}
|
||||
\newcommand{\dg}{^\circ}
|
||||
\newcommand{\ii}{\item}
|
||||
|
||||
% % From Math 55 and Math 145 at Harvard
|
||||
% \newenvironment{subproof}[1][Proof]{%
|
||||
% \begin{proof}[#1] \renewcommand{\qedsymbol}{$\blacksquare$}}%
|
||||
% {\end{proof}}
|
||||
|
||||
\newcommand{\liff}{\leftrightarrow}
|
||||
\newcommand{\lthen}{\rightarrow}
|
||||
\newcommand{\opname}{\operatorname}
|
||||
\newcommand{\surjto}{\twoheadrightarrow}
|
||||
\newcommand{\injto}{\hookrightarrow}
|
||||
\newcommand{\On}{\mathrm{On}} % ordinals
|
||||
\DeclareMathOperator{\img}{im} % Image
|
||||
\DeclareMathOperator{\Img}{Im} % Image
|
||||
\DeclareMathOperator{\coker}{coker} % Cokernel
|
||||
\DeclareMathOperator{\Coker}{Coker} % Cokernel
|
||||
\DeclareMathOperator{\Ker}{Ker} % Kernel
|
||||
\DeclareMathOperator{\rank}{rank}
|
||||
\DeclareMathOperator{\Spec}{Spec} % spectrum
|
||||
\DeclareMathOperator{\Tr}{Tr} % trace
|
||||
\DeclareMathOperator{\pr}{pr} % projection
|
||||
\DeclareMathOperator{\ext}{ext} % extension
|
||||
\DeclareMathOperator{\pred}{pred} % predecessor
|
||||
\DeclareMathOperator{\dom}{dom} % domain
|
||||
\DeclareMathOperator{\ran}{ran} % range
|
||||
\DeclareMathOperator{\Hom}{Hom} % homomorphism
|
||||
\DeclareMathOperator{\Mor}{Mor} % morphisms
|
||||
\DeclareMathOperator{\End}{End} % endomorphism
|
||||
|
||||
% Trig stuff
|
||||
\DeclareMathOperator{\sech}{sech}
|
||||
\DeclareMathOperator{\csch}{csch}
|
||||
\DeclareMathOperator{\arcsec}{arcsec}
|
||||
\DeclareMathOperator{\arccot}{arcCot}
|
||||
\DeclareMathOperator{\arccsc}{arcCsc}
|
||||
\DeclareMathOperator{\arccosh}{arcCosh}
|
||||
\DeclareMathOperator{\arcsinh}{arcsinh}
|
||||
\DeclareMathOperator{\arctanh}{arctanh}
|
||||
\DeclareMathOperator{\arcsech}{arcsech}
|
||||
\DeclareMathOperator{\arccsch}{arcCsch}
|
||||
\DeclareMathOperator{\arccoth}{arcCoth}
|
||||
|
||||
\newcommand{\eps}{\epsilon}
|
||||
\newcommand{\veps}{\varepsilon}
|
||||
\newcommand{\ol}{\overline}
|
||||
\newcommand{\ul}{\underline}
|
||||
\newcommand{\wt}{\widetilde}
|
||||
\newcommand{\wh}{\widehat}
|
||||
\newcommand{\vocab}[1]{\textbf{\color{blue} #1}}
|
||||
\providecommand{\half}{\frac{1}{2}}
|
||||
\newcommand{\dang}{\measuredangle} %% Directed angle
|
||||
\newcommand{\ray}[1]{\overrightarrow{#1}}
|
||||
\newcommand{\seg}[1]{\overline{#1}}
|
||||
\newcommand{\arc}[1]{\wideparen{#1}}
|
||||
\DeclareMathOperator{\cis}{cis}
|
||||
\DeclareMathOperator*{\lcm}{lcm}
|
||||
\DeclareMathOperator*{\argmin}{arg min}
|
||||
\DeclareMathOperator*{\argmax}{arg max}
|
||||
\newcommand{\cycsum}{\sum_{\mathrm{cyc}}}
|
||||
\newcommand{\symsum}{\sum_{\mathrm{sym}}}
|
||||
\newcommand{\cycprod}{\prod_{\mathrm{cyc}}}
|
||||
\newcommand{\symprod}{\prod_{\mathrm{sym}}}
|
||||
\newcommand{\Qed}{\begin{flushright}\qed\end{flushright}}
|
||||
\newcommand{\parinn}{\setlength{\parindent}{1cm}}
|
||||
\newcommand{\parinf}{\setlength{\parindent}{0cm}}
|
||||
% \newcommand{\norm}{\|\cdot\|}
|
||||
\newcommand{\inorm}{\norm_{\infty}}
|
||||
\newcommand{\opensets}{\{V_{\alpha}\}_{\alpha\in I}}
|
||||
\newcommand{\oset}{V_{\alpha}}
|
||||
\newcommand{\opset}[1]{V_{\alpha_{#1}}}
|
||||
\newcommand{\lub}{\text{lub}}
|
||||
\newcommand{\del}[2]{\frac{\partial #1}{\partial #2}}
|
||||
\newcommand{\Del}[3]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
|
||||
\newcommand{\deld}[2]{\dfrac{\partial #1}{\partial #2}}
|
||||
\newcommand{\Deld}[3]{\dfrac{\partial^{#1} #2}{\partial^{#1} #3}}
|
||||
\newcommand{\lm}{\lambda}
|
||||
\newcommand{\uin}{\mathbin{\rotatebox[origin=c]{90}{$\in$}}}
|
||||
\newcommand{\usubset}{\mathbin{\rotatebox[origin=c]{90}{$\subset$}}}
|
||||
\newcommand{\lt}{\left}
|
||||
\newcommand{\rt}{\right}
|
||||
\newcommand{\bs}[1]{\boldsymbol{#1}}
|
||||
\newcommand{\exs}{\exists}
|
||||
\newcommand{\st}{\strut}
|
||||
\newcommand{\dps}[1]{\displaystyle{#1}}
|
||||
|
||||
\newcommand{\sol}{\setlength{\parindent}{0cm}\textbf{\textit{Solution:}}\setlength{\parindent}{1cm} }
|
||||
\newcommand{\solve}[1]{\setlength{\parindent}{0cm}\textbf{\textit{Solution: }}\setlength{\parindent}{1cm}#1 \Qed}
|
608
5th-Semester-Fall-2023/EEMAGS/Notes/old-chapter-1.tex
Normal file
608
5th-Semester-Fall-2023/EEMAGS/Notes/old-chapter-1.tex
Normal file
@ -0,0 +1,608 @@
|
||||
\hypertarget{vector-analysis}{%
|
||||
\subsection{1.1 Vector Analysis}\label{vector-analysis}}
|
||||
|
||||
\hypertarget{scalar}{%
|
||||
\paragraph{Scalar}\label{scalar}}
|
||||
|
||||
A measure described by one real number. Examples include temperature,
|
||||
size, and mass. A scalar is a \(1 \times 1\) matrix.
|
||||
|
||||
\hypertarget{vector}{%
|
||||
\paragraph{Vector}\label{vector}}
|
||||
|
||||
A measure described by more than one real number (direction and
|
||||
magnitude). Examples include force, velocity, and it's derivatives.
|
||||
Vectors are often described by \(n \times 1\) or \(1 \times n\)
|
||||
matricies.
|
||||
|
||||
\hypertarget{unit-vector}{%
|
||||
\paragraph{Unit Vector}\label{unit-vector}}
|
||||
|
||||
A unit (direction or normalized) vector is signified with a \(\hat{ }\)
|
||||
symbol. Common unit vectors include \(\hat{x}\), \(\hat{y}\), and
|
||||
\(\hat{z}\). The normalized version of any vector is defined as:
|
||||
\[\hat{a} = \frac{\vec{A}}{\lVert\vec{A}\rVert}\]
|
||||
|
||||
\hypertarget{dot-product}{%
|
||||
\paragraph{Dot Product}\label{dot-product}}
|
||||
|
||||
The dot product is a measure of how \emph{parallel} two vectors are,
|
||||
scaled by the magnitudes of the two vectors. To compute it, find the sum
|
||||
of the products of the like components of two vectors. It is also
|
||||
defined as the product of the magnitudes of the vectors normalized by
|
||||
the cosine of the angle between them. It is defined as:
|
||||
\[W = \vec{F} \cdot \vec{r} = \lVert\vec{F}\rVert\lVert\vec{r}\rVert \cos{\alpha}\]
|
||||
|
||||
\hypertarget{cross-product}{%
|
||||
\paragraph{Cross Product}\label{cross-product}}
|
||||
|
||||
The cross product is a measure of how \emph{perpendicular} two vectors
|
||||
are. This operation yeilds a vector quantity \emph{orthoganal} to both
|
||||
original vectors. The direction vector for the cross product is
|
||||
\(\hat{a}_c\), and its magnitude is the product of the magnitudes and
|
||||
the sine of the angle between them. It is defined as:
|
||||
\[\vec{C} = \vec{A} \times \vec{B} = \lVert\vec{A}\rVert \lVert\vec{B}\rVert \sin(\alpha) \hat{a}_c = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}\]
|
||||
|
||||
\hypertarget{right-hand-rule}{%
|
||||
\paragraph{Right Hand Rule}\label{right-hand-rule}}
|
||||
|
||||
The right hand rule is a quick way to find \(\hat{a}_c\).
|
||||
\[\overrightarrow{thumb} = \overrightarrow{pointer} \times \overrightarrow{middle}\]
|
||||
|
||||
\hypertarget{cartesian-to-cylindrical}{%
|
||||
\paragraph{Cartesian to Cylindrical}\label{cartesian-to-cylindrical}}
|
||||
|
||||
\[\vec{A} = 4\hat{x} + 4\hat{y} - 2\hat{z}\] \[r = \sqrt{x^2 + y^2}\]
|
||||
\[\varphi = \arctan\left(\frac{y}{x}\right)\] \[z = z\]
|
||||
\[\vec{A} = A_\rho \hat{\rho} + A_\varphi \hat{\varphi} + A_z \hat{z}\]
|
||||
\[A_\rho = A_x \cos(\varphi) + A_y\sin(\varphi) = 4\sqrt{2}\]
|
||||
\[A_\varphi = -A_x\sin(\varphi) + A_y\cos(\varphi) = 0\]
|
||||
\[A_z = A_z = -2\]
|
||||
|
||||
\hypertarget{vector-calculus}{%
|
||||
\subsection{1.2 Vector Calculus}\label{vector-calculus}}
|
||||
|
||||
The differential along some path, \(d\vec{l}\), is defined as:
|
||||
\[d\vec{l} = dx\hat{x} + dy\hat{y} + dz\hat{z} = d\vec{x} + d\vec{y} + d\vec{z}\]
|
||||
|
||||
\hypertarget{the-del-leftnablaright-operator}{%
|
||||
\paragraph{\texorpdfstring{The ``Del'' \(\left(\nabla\right)\)
|
||||
operator}{The ``Del'' \textbackslash left(\textbackslash nabla\textbackslash right) operator}}\label{the-del-leftnablaright-operator}}
|
||||
|
||||
The gradient of the scalar field \(\left(\nabla f\right)\).
|
||||
\[\nabla = \frac{\partial}{\partial x} \hat{x} + \frac{\partial}{\partial y} \hat{y} + \frac{\partial}{\partial z} \hat{z}\]
|
||||
\[df = \nabla f \cdot d\vec{l} = \left(\frac{\partial f}{\partial x}\right)dx + \left(\frac{\partial f}{\partial y}\right)dy + \left(\frac{\partial f}{\partial z}\right)dz\]
|
||||
|
||||
\hypertarget{directional-derivative}{%
|
||||
\subsubsection{Directional Derivative:}\label{directional-derivative}}
|
||||
|
||||
The \emph{directional derivative} is used to find the change of a
|
||||
function along some infinatesimal direction and is defined as:
|
||||
\[\Delta \varphi = {\nabla}_l \varphi \cdot \Delta \vec{l}\]
|
||||
\[\therefore {\nabla}_l \varphi = \frac{\Delta \varphi}{\delta \vec{l}} = \frac{d \varphi}{d \vec{l}} = \nabla \varphi \cdot \frac{\vec{l}}{\lVert\vec{l}\rVert}\]
|
||||
|
||||
\hypertarget{example-1.1}{%
|
||||
\paragraph{Example 1.1}\label{example-1.1}}
|
||||
|
||||
A function, \(f(x,y,z) = x^2 y^2 + xyz\). Find \(\nabla f\).
|
||||
\[f(x,y,z) = f(r)\] \[r = \sqrt{x^2 + y^2 + z^2}\]
|
||||
\[\nabla f = (2xy^2)\hat{x} + (2x^2y + xz)\hat{y} + xy\hat{z}\]
|
||||
|
||||
\hypertarget{example-1.2}{%
|
||||
\paragraph{Example 1.2}\label{example-1.2}}
|
||||
|
||||
Consider a function, \(w = x^2y^2 + xyz\). Find \(\nabla_l w\) at
|
||||
\((2, -1, 0)\) in the direction,
|
||||
\(\vec{l} = 3\hat{x} + 4\hat{y} + 12\hat{z}\).
|
||||
\[\lVert\vec{l}\rVert = \sqrt{3^2 + 4^2 + 12^2} = 13\]
|
||||
\[{\nabla}_l w = \nabla w \cdot \frac{\vec{l}}{\lVert\vec{l}\rVert}\]
|
||||
Solving at \((2, -1, 0)\):
|
||||
\[\nabla w = 2(2)(-1)^2\hat{x} + 2(2)^2(-1)\hat{y} + 2(-1)\hat{z} = 4\hat{x} - 8\hat{y} - 2\hat{z}\]
|
||||
\[{\nabla}_l w= (4\hat{x} - 8\hat{y} - 2\hat{z}) \cdot \left(\frac{3}{13}\hat{x} + \frac{4}{13}\hat{y} + \frac{12}{13}\hat{z}\right) = \frac{-44}{13}\]
|
||||
|
||||
\hypertarget{divergence-and-curl}{%
|
||||
\subsubsection{Divergence and Curl}\label{divergence-and-curl}}
|
||||
|
||||
\hypertarget{divergence-of-a-vector-field}{%
|
||||
\paragraph{Divergence of a Vector
|
||||
Field}\label{divergence-of-a-vector-field}}
|
||||
|
||||
The divergence of a vector field is a measure of outward flux. It is
|
||||
defined as:
|
||||
\[\nabla \cdot f = \left( \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right) \cdot (f_x + f_y + f_z) = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z}\]
|
||||
|
||||
If \(\nabla \cdot \vec{A} = 0\), there is no divergence.
|
||||
|
||||
\hypertarget{curl-of-a-vector-field}{%
|
||||
\paragraph{Curl of a Vector Field}\label{curl-of-a-vector-field}}
|
||||
|
||||
The curl of a vector field is a measure of circulation in each
|
||||
infinatesimally small region of the field. It is defined as:
|
||||
\[\nabla \times f = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_x & f_y & f_z \\ \end{vmatrix} = \left< \frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z}, \frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial x}, \frac{\partial f_y}{\partial z} - \frac{\partial f_x}{\partial z} \right>\]
|
||||
|
||||
\hypertarget{solenoidal-field}{%
|
||||
\paragraph{Solenoidal Field}\label{solenoidal-field}}
|
||||
|
||||
A solenoidal field is a vector field without divergence, defined as:
|
||||
\[\nabla \cdot \vec{f} = 0\]
|
||||
|
||||
\hypertarget{conservative-rotational-field}{%
|
||||
\paragraph{Conservative / Rotational
|
||||
Field}\label{conservative-rotational-field}}
|
||||
|
||||
A conservative field is a vector field without curl, defined as:
|
||||
\[\nabla \times \vec{f} = 0\]
|
||||
|
||||
\hypertarget{example-1.3}{%
|
||||
\paragraph{Example 1.3}\label{example-1.3}}
|
||||
|
||||
Consider the vector field, \(\vec{F} = k \hat{x}\), where both the
|
||||
direction and magnitude are uniform in all space.
|
||||
\[\nabla \cdot \vec{F} = 0\] \[\nabla \times \vec{F} = 0\]
|
||||
|
||||
\hypertarget{example-1.4}{%
|
||||
\paragraph{Example 1.4}\label{example-1.4}}
|
||||
|
||||
Consider the vector field, \(\vec{F} = k \hat{r}\), where magnitude is
|
||||
constant and direction is away from a central point.
|
||||
\[\hat{r} = \sqrt{\hat{x}^2 + \hat{y}^2 + \hat{z}^2}\]
|
||||
\[\nabla \cdot \vec{F} = \sqrt{3} k\] \[\nabla \times \vec{F} = 0\]
|
||||
|
||||
\hypertarget{example-1.5}{%
|
||||
\paragraph{Example 1.5}\label{example-1.5}}
|
||||
|
||||
Consider the vector field, \(\vec{F} = k \times \hat{r}\), where
|
||||
magnitude is uniform and the direction is perpendicular to the distance
|
||||
from a central point for all space. \[\nabla \cdot \vec{F} = 0\]
|
||||
\[\nabla \times \vec{F} = 2k\]
|
||||
|
||||
\hypertarget{curl-and-divergence-identities}{%
|
||||
\subsubsection{Curl and Divergence
|
||||
Identities}\label{curl-and-divergence-identities}}
|
||||
|
||||
\begin{enumerate}
|
||||
\def\labelenumi{\arabic{enumi}.}
|
||||
\tightlist
|
||||
\item
|
||||
The Laplacian: can operate on a scalar or vector field
|
||||
\[\nabla \cdot (\nabla f) = \nabla^2 f\]
|
||||
\[\frac{\partial^2 f}{\partial x} + \frac{\partial^2 f}{\partial y} + \frac{\partial^2 f}{\partial z}\]
|
||||
\item
|
||||
The curl of a gradient is \(0\) \[\nabla \times (\nabla f) = 0\]
|
||||
\item
|
||||
The gradient of divergence is a scalar
|
||||
\[\nabla (\nabla \cdot \vec{f})\]
|
||||
\item
|
||||
The divergence of curl is \(0\)
|
||||
\[\nabla \cdot (\nabla \times \vec{v}) = 0\]
|
||||
\item
|
||||
Curl of curl
|
||||
\[\nabla \times (\nabla \times \vec{A}) = \nabla(\nabla \cdot \vec{A}) - \nabla^2 \vec{A}\]
|
||||
\end{enumerate}
|
||||
|
||||
\hypertarget{the-line-integral}{%
|
||||
\subsubsection{The Line Integral}\label{the-line-integral}}
|
||||
|
||||
The line integral is the integral of the tangential component of a
|
||||
vector field along a path.
|
||||
|
||||
The line integral is defined as:
|
||||
\[\int \vec{A} \cdot d\vec{l} = \int \lVert \vec{A} \rVert \cos(\alpha) \lVert d\vec{l} \rVert\]
|
||||
|
||||
Where:
|
||||
|
||||
\begin{itemize}
|
||||
\item
|
||||
\(\vec{A}\) is some vector field
|
||||
\item
|
||||
\(d\vec{l} = dx\hat{x} + dy\hat{y} + dz\hat{z}\)
|
||||
\end{itemize}
|
||||
|
||||
If the path of the integral is a closed curve, it is said to be the
|
||||
circulation of \(\vec{A}\) around \(\vec{l}\), defined as:
|
||||
|
||||
\[\oint_c \vec{A} \cdot d\vec{l}\]
|
||||
|
||||
\hypertarget{example-1.6}{%
|
||||
\paragraph{Example 1.6}\label{example-1.6}}
|
||||
|
||||
Calculate the circulation of \(\vec{F}\) around the path.
|
||||
|
||||
\(\vec{F} = x^2 \hat{x} - xy\hat{y} - y^2\hat{z}\)
|
||||
|
||||
Circulation of \(\vec{F}\) around the path:
|
||||
\[\oint \vec{F} \cdot d \vec{l} = \int_1 + \int_2 + \int_3 + \int_4\]
|
||||
|
||||
\hypertarget{path-1}{%
|
||||
\subparagraph{Path 1}\label{path-1}}
|
||||
|
||||
Straight line from \((1,0,0)\) to \((0,0,0)\)
|
||||
|
||||
\(x\) varies, \(z=0\), \(y=0\).
|
||||
|
||||
Plug into \(\vec{F}\):
|
||||
\[\vec{F}_1 = x^2\hat{x} - x(0)\hat{y} - (0)^2\hat{z} = x^2\hat{x}\]
|
||||
|
||||
Since \(x\) varies at some rate, \(dx\) exists, and since \(y\) and
|
||||
\(z\) are constant, \(dy\) and \(dz\) are both \(0\).
|
||||
|
||||
Plug into \(d\vec{l}\):
|
||||
\[d\vec{l} = dx\hat{x} + (0)\hat{y} + (0)\hat{z} = dx\hat{x}\]
|
||||
\[\int \vec{F}_1 \cdot d\vec{l}_1 = \int x^2\hat{x} \cdot dx\hat{x} = \int x^2dx\]
|
||||
|
||||
For this specific path:
|
||||
\[\int_{1}^{0} x^2dx = \left. \frac{x^3}{3} \right\vert_1^0 = 0 - \frac{1}{3} = -\frac{1}{3}\]
|
||||
|
||||
\hypertarget{path-2}{%
|
||||
\subparagraph{Path 2}\label{path-2}}
|
||||
|
||||
Straight line from \((0,0,0)\) to \((0,1,0)\)
|
||||
|
||||
\(y\) varies, \(x=0\), \(z=0\)
|
||||
|
||||
Plug into \(\vec{F}\):
|
||||
\[\vec{F}_2 = (0)^2\hat{x} - (0)y\hat{y} - y^2\hat{z} = -y^2\hat{z}\]
|
||||
|
||||
Since \(y\) varies at some rate, \(dy\) exists, but since \(x\) and
|
||||
\(z\) are constant, \(dx\) and \(dz\) are both \(0\).
|
||||
|
||||
Plug into \(d\vec{l}\):
|
||||
\[d\vec{l}_2 = (0)\hat{x} + dy\hat{y} + (0)\hat{z} = dy\hat{y}\]
|
||||
\[\int \vec{F}_2 \cdot d\vec{l} = \int -y^2\hat{z} \cdot dy\hat{y} = \int\limits_0^1 0 = 0\]
|
||||
|
||||
\hypertarget{path-3}{%
|
||||
\subparagraph{Path 3}\label{path-3}}
|
||||
|
||||
Straight line from \((0,1,0)\) to \((1,1,1)\)
|
||||
|
||||
\(x\) and \(z\) vary at the same rate and always have the same value,
|
||||
\(y=1\)
|
||||
|
||||
\hypertarget{surface-integrals}{%
|
||||
\subsubsection{Surface Integrals}\label{surface-integrals}}
|
||||
|
||||
\(\hat{n}\) is the unit normal vector of a surface.
|
||||
|
||||
The total \emph{flux} crossing an area, \(\Delta s\), is given by the
|
||||
function:
|
||||
\[\Delta s \left[ \lVert \vec{F} \rVert \cos(\alpha)\right] = \vec{F} \cdot \hat{n} \Delta s\]
|
||||
|
||||
Total flux is defined as:
|
||||
\[\sum_{i=1}^N \vec{F}_i \cos(\alpha_i) \Delta s_i = \int_s \vec{F} \cdot d\vec{s}\]
|
||||
|
||||
\hypertarget{gradient-theorem}{%
|
||||
\paragraph{Gradient Theorem}\label{gradient-theorem}}
|
||||
|
||||
The line integral through a gradient field is the difference of the
|
||||
values a the end points.
|
||||
|
||||
\[\int\limits_{r_1}^{r_2} \nabla \varphi \cdot d\vec{l} = \varphi(r_2) - \varphi(r_1)\]
|
||||
|
||||
\[\oint \nabla \varphi \cdot d\vec{l} = 0\]
|
||||
|
||||
\hypertarget{divergence-theorem}{%
|
||||
\paragraph{Divergence Theorem}\label{divergence-theorem}}
|
||||
|
||||
The divergence in some volume is the same as the flux through its
|
||||
surface.
|
||||
|
||||
\[\iiint_{vol} \nabla \cdot \vec{A} d\tau = \oiint \vec{A} \cdot d\vec{s}\]
|
||||
|
||||
\hypertarget{stokes-theorem}{%
|
||||
\paragraph{Stokes Theorem}\label{stokes-theorem}}
|
||||
|
||||
The curl in some region is the same as the circulation of the region's
|
||||
border.
|
||||
\[\iint_A (\nabla \times \vec{A}) \cdot d\vec{s} = \oint \vec{A} \cdot d\vec{l}\]
|
||||
|
||||
\hypertarget{coulombs-law}{%
|
||||
\subsection{1.3 Coulomb's Law}\label{coulombs-law}}
|
||||
|
||||
Initial observation: \[\vec{F} \propto q_1 q_2\]
|
||||
|
||||
Vacuum Permittivity: \[\varepsilon_0 = 8.854 \times 10^{-12}\]
|
||||
|
||||
Coulomb's Constant:
|
||||
\[k = \frac{1}{4 \pi \varepsilon_0} = 9 \times 10^{-9}\]
|
||||
|
||||
Coulomb's Law: \[\vec{F} = k \frac{q_1 q_2}{r^2} \hat{a}_{1 2}\]
|
||||
|
||||
Superposition of Coulomb's Law:
|
||||
\[\vec{F}_{Net} = \sum_{i=1}^{N} k_i \frac{Q q_i}{r_i^2} \hat{r}\]
|
||||
|
||||
\textbf{Note}: \(k_i\) depends on material properties. When in a vacuum,
|
||||
\(k_i = k\).
|
||||
|
||||
\hypertarget{example-1.7}{%
|
||||
\paragraph{Example 1.7}\label{example-1.7}}
|
||||
|
||||
Two point charges, \(q_1\) and \(q_2\) are spaced 2cm apart on the
|
||||
x-axis. A third charge, \(q_3\) is placed between the first two with a
|
||||
distance \(x_1\) between it and \(q_1\) and \(x_2\) between it and
|
||||
\(q_2\) such that \(q_3\) is in static equilibrium.
|
||||
|
||||
Known: \[\vec{F}_{1 3} + \vec{F}_{2 3} = 0\] By Coulomb's Law:
|
||||
\[\vec{F}_{1 3} = \frac{k_1 q_3 q_1}{r_{1 3}^2} \hat{z}\]
|
||||
\[\vec{F}_{2 3} = -\frac{k_2 q_3 q_2}{r_{1 3}^2} \hat{z}\]
|
||||
\[\therefore \vec{F}_{1 3} + \vec{F}_{2 3} = k q_3 \left( \frac{q_1}{r_{1 3}^2} - \frac{q_2}{r_{2 3}^2} \right)\hat{z} = 0\]
|
||||
\[\therefore \frac{q_1}{r_{1 3}^2} - \frac{q_2}{r_{2 3}^2} = 0\]
|
||||
|
||||
Solve for \(r_{1 3}\): \[r_{1 3} = \pm r_{2 3}\sqrt{\frac{q_1}{q_2}}\]
|
||||
|
||||
Known: \[r_{1 3} + r_{2 3} = 2\] \[\therefore r_{2 3} = 2 - r_{1 3}\]
|
||||
|
||||
Plug into first equation:
|
||||
\[r_{1 3} = \pm (2 - r_{1 3}) \sqrt{\frac{q_1}{q_2}}\]
|
||||
|
||||
Expand:
|
||||
\[r_{1 3} = \pm \left(2 \sqrt{\frac{q_1}{q_2}} - r_{1 3}\sqrt{\frac{q_1}{q_2}} \right)\]
|
||||
\[\therefore r_{1 3} \left(1 \pm \sqrt{\frac{q_1}{q_2}} \right) = \pm 2\sqrt{\frac{q_1}{q_2}}\]
|
||||
\[\therefore r_{1 3} = \pm 2\sqrt{\frac{q_1}{q_2}} \left( 1 \pm \sqrt{\frac{q_1}{q_2}} \right)^{-1}\]
|
||||
|
||||
\hypertarget{electric-field-intensity}{%
|
||||
\subsubsection{Electric Field
|
||||
Intensity}\label{electric-field-intensity}}
|
||||
|
||||
Call a test charge at the point of measurement \(Q_2\).
|
||||
|
||||
Coulomb's Law:
|
||||
\[\vec{F}_{1 2} = \frac{Q_1 Q_2}{4 \pi \varepsilon_0 R^2} \hat{a}_{1 2}\]
|
||||
|
||||
The electric field intensisty:
|
||||
\[\vec{E}_{1 2} = \frac{\vec{F}_{1 2}}{Q_1}\]
|
||||
\[\vec{E} = \frac{Q_1}{4 \pi \varepsilon_0 r^2} \hat{a}_{1 2}\]
|
||||
\[\vec{E}_{NET} = \sum_{i=0}^{N} \frac{k_i Q_i}{R_i^2} \hat{a}_{R_i}\]
|
||||
|
||||
Force due to electric field: \[\vec{F} = q \vec{E}\]
|
||||
|
||||
\hypertarget{electric-field}{%
|
||||
\paragraph{Electric field}\label{electric-field}}
|
||||
|
||||
Always in the same direction as the electric field force.
|
||||
|
||||
\hypertarget{electric-field-of-a-dipole}{%
|
||||
\paragraph{Electric field of a
|
||||
dipole}\label{electric-field-of-a-dipole}}
|
||||
|
||||
At a point equidistant to each pole:
|
||||
\[\lVert \vec{r}_1 \rVert = \lVert \vec{r_2} \rVert = r\]
|
||||
|
||||
By Coulomb's Law: \[\vec{E}_1 = \frac{kq}{r^2} \hat{r}_1\]
|
||||
\[\vec{E}_2 = \frac{kq}{r^2} \hat{r}_2\]
|
||||
\[\therefore \lVert \vec{E}_1 \rVert = \lVert \vec{E}_2 \rVert\]
|
||||
|
||||
In terms of the component distances: \[r^2 = a^2 + y^2\]
|
||||
\[\therefore E = \frac{kq}{a^2 + y^2}\]
|
||||
|
||||
\[\vec{E}_{NET_y} = \vec{E}_{1_y} + \vec{E}_{2_y} = 2E\cos{\theta}\]
|
||||
|
||||
By definition: \[\cos(\theta) = \frac{a}{r}\]
|
||||
\[\therefore \vec{E}_{NET_y} = \frac{2kq}{a^2 + y^2} \frac{a}{\sqrt{a^2 + y^2}}\hat{y}\]
|
||||
\[\vec{E}_{NET_y} = 2 \frac{kqa}{(x^2 + y^2)^{3/2}} \hat{y}\]
|
||||
|
||||
If \(y \gg a\) (far field): \[\vec{E}_{NET} = 2 \frac{kqa}{y^3}\]
|
||||
|
||||
\textbf{Takeaway}: \[\vec{E}_{monopole} \propto \frac{1}{r^2}\]
|
||||
\[\vec{E}_{dipole} \propto \frac{1}{r^3}\]
|
||||
|
||||
\hypertarget{charge-densities}{%
|
||||
\paragraph{Charge Densities}\label{charge-densities}}
|
||||
|
||||
\(\lambda\) - Linear charge density
|
||||
|
||||
\(\sigma\) - Surface charge density
|
||||
|
||||
\(\rho\) - Volume charge density
|
||||
|
||||
Electric flux density: \[\vec{D} = \varepsilon_0 \vec{E}\]
|
||||
|
||||
Where:
|
||||
\[\vec{E} = \lim_{\Delta q \to 0} \frac{k \sum_i \Delta q_i}{\lVert \vec{r}_i \rVert ^2} \hat{r}_i = \int \frac{k}{\lVert \vec{r}_i \rVert ^2} dq\]
|
||||
|
||||
\hypertarget{example-1.8}{%
|
||||
\paragraph{Example 1.8}\label{example-1.8}}
|
||||
|
||||
A straight line segment of length \(L\) with uniform charge density
|
||||
\(\lambda\) extends from the origin in the \(\hat{x}\) direction. Find
|
||||
the strength of the electric field, \(\vec{E}\) at some arbitrary point,
|
||||
\(p\) along the ray from the origin in the \(\hat{z}\) direction.
|
||||
|
||||
The distance along the line segment in the \(\hat{x}\) direction is
|
||||
denoted as \(x\), and the distance from the origin to point \(p\) is
|
||||
denoted as \(z\). The vector, \(\vec{r}\) has length
|
||||
\(\sqrt{x^2 + z^2}\) and makes an angle \(\theta\) with the ray in the
|
||||
\(-\hat{z}\) direction.
|
||||
|
||||
The contribution \(d\vec{E}\) to the total electric field, \(\vec{E}\),
|
||||
at point \(p\) is defined as:
|
||||
\[d\vec{E} = \frac{k dq}{\lVert \vec{r} \rVert ^2} \hat{r}\]
|
||||
|
||||
For a linear charge distribution: \[dq = \lambda dl\] The distance,
|
||||
\(r\), to each \(x\) alond the line:
|
||||
\[\lVert \vec{r} \rVert ^2 = x^2 + z^2\] The components of the
|
||||
\(\vec{E}\)-field at point \(p\):
|
||||
\[d\vec{E}_x = \lVert d\vec{E} \rVert \sin(\theta) \hat{x}\]
|
||||
\[d\vec{E}_z = \lVert d\vec{E} \rVert \cos(\theta) \hat{z}\]
|
||||
|
||||
\hypertarget{gausss-law}{%
|
||||
\subsection{Gauss's Law}\label{gausss-law}}
|
||||
|
||||
\hypertarget{e-flux-density}{%
|
||||
\subsection{E-Flux Density}\label{e-flux-density}}
|
||||
|
||||
\hypertarget{emf}{%
|
||||
\subsection{EMF}\label{emf}}
|
||||
|
||||
Measured in \emph{volts}, electromotive force (EMF), is denoted by
|
||||
\(\mathcal{E}\). The value for EMF is defined as:
|
||||
\[\mathcal{E} = \oint \vec{E} \cdot d \vec{l} = -\frac{d}{dt} \int_s B_z(t) \cdot ds = -\frac{d}{dt}\psi_m\]
|
||||
|
||||
Where:
|
||||
|
||||
\[\psi_m = \int_s \vec{B} \cdot d\vec{s}\]
|
||||
|
||||
A perfectly conducting ring with radius, \(\rho_0\), centered on the
|
||||
origin in the x-y plane.
|
||||
|
||||
The charge distribution: \[\rho = \rho_0 + \rho_0 \sin(\omega t)\]
|
||||
\[\vec{B}(t) = B_0 \cos(\omega t)\hat{z}\]
|
||||
\[\mathcal{E} = \oint \vec{E} \cdot d\vec{l} = \iint\limits_{\phi R} B_0 \cos(\omega t) dr d\phi\]
|
||||
|
||||
Where:
|
||||
|
||||
\(\varphi: [0, 2\pi]\)
|
||||
|
||||
\(R: [0, \rho(t)]\)
|
||||
|
||||
Therefore: \[\psi_m = (B_0 \cos(\omega t) \hat{z})(2\pi \rho(t))\]
|
||||
|
||||
\[\mathcal{E} = -\frac{d}{dt} B_0 2\pi \cos(\omega t)(\rho_0 + \rho_0\sin(\omega t))\]
|
||||
|
||||
\hypertarget{filling-in-some-gaps}{%
|
||||
\subsubsection{Filling in some Gaps}\label{filling-in-some-gaps}}
|
||||
|
||||
\[\vec{F} = -\nabla \vec{u}\] Where: \(\vec{u}\) is potential.
|
||||
|
||||
\[\vec{E} = -\nabla \vec{v}\] Where: \(\vec{v}\) is electric potential.
|
||||
|
||||
\[W = \vec{F} \cdot \vec{d} = q\vec{E} \cdot \vec{d}\]
|
||||
|
||||
Work done by the \(\vec{E}\)-field on a charge will reduce the electric
|
||||
potential:
|
||||
|
||||
\[-\Delta u = u_B - u_A = -\Delta W = -qEd\]
|
||||
|
||||
The total change is:
|
||||
|
||||
\[\Delta u = -q \int\limits_A^B \vec{E} \cdot d\vec{l}\]
|
||||
|
||||
\[\therefore \frac{\Delta u}{q} = \int\limits_A^B \vec{E} \cdot d\vec{l} = \Delta V\]
|
||||
|
||||
\[W = q \int \vec{E} \cdot d\vec{l}\]
|
||||
|
||||
\[V(r) = \frac{kq}{r}\]
|
||||
|
||||
For \(N\) discrete charges,
|
||||
\[V = \sum\limits_{i=1}^{N} \frac{k q_i}{r_i}\]
|
||||
|
||||
In cartesian coordinates:
|
||||
|
||||
\[\vec{F} = F_x\hat{i} + F_y\hat{j} + F_z\hat{z}\]
|
||||
|
||||
Where:
|
||||
|
||||
\(F_x = \frac{dw}{dx}\)
|
||||
|
||||
\(F_y = \frac{dw}{dy}\)
|
||||
|
||||
\(F_z = \frac{dw}{dz}\)
|
||||
|
||||
Therefore:
|
||||
\[\vec{F} = \frac{\partial w}{\partial x}\hat{i} + \frac{\partial w}{\partial y}\hat{j} + \frac{\partial w}{\partial z}\hat{k} = \nabla \vec{w}\]
|
||||
|
||||
\[q\vec{E} = \nabla (-\vec{u})\]
|
||||
|
||||
\[\vec{F} = -\nabla \vec{u}\]
|
||||
|
||||
\[\vec{E} = -\nabla \left( \frac{\vec{u}}{q} \right) = -\nabla \vec{V}\]
|
||||
|
||||
\hypertarget{electric-flux-density}{%
|
||||
\paragraph{Electric Flux Density}\label{electric-flux-density}}
|
||||
|
||||
\[\vec{D} = \varepsilon \vec{E}\] Where
|
||||
\(\varepsilon = \varepsilon_r \varepsilon_0\) (permittivity).
|
||||
|
||||
\hypertarget{magnetic-flux-density}{%
|
||||
\paragraph{Magnetic Flux Density}\label{magnetic-flux-density}}
|
||||
|
||||
\[\vec{B} = \mu\vec{H}\] Where \(\mu = \mu_r \mu_0\) (permeability).
|
||||
|
||||
\hypertarget{amperes-law}{%
|
||||
\subsubsection{Ampere's Law}\label{amperes-law}}
|
||||
|
||||
The total current crossing an area, \(s\), that is enclosed by the
|
||||
contour \(C\): \[\oint_C \frac{\vec{B}}{\mu_0} \cdot d\vec{l}\]
|
||||
|
||||
The total current is the sum of the current due to charge flow and the
|
||||
current due to the time rate of change of the electric flux crossing an
|
||||
area, \(s\). Maxwell was able to unify electricity and magnetism by
|
||||
adding the current due to the time rate of change of electric flux.
|
||||
\[\oint_C \vec{H} \cdot d\vec{l} = \int_S \vec{J} \cdot d\vec{s} + \frac{d}{dt}\int \varepsilon_0\vec{E} \cdot d\vec{s}\]
|
||||
|
||||
\hypertarget{simplified-amperes-law}{%
|
||||
\paragraph{Simplified Ampere's Law}\label{simplified-amperes-law}}
|
||||
|
||||
\[\oint_C \vec{H} \cdot d\vec{l} = I = \int_s \vec{J} \cdot d\vec{s}\]
|
||||
|
||||
The charge density, \(J = \rho v\), has units
|
||||
\(\left[ \frac{A}{m^2} \right]\).
|
||||
|
||||
\hypertarget{example}{%
|
||||
\paragraph{Example}\label{example}}
|
||||
|
||||
A current, \(I\), in an infinitely long cylindrical wire with radius,
|
||||
\(R\). \[\int \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}\]
|
||||
|
||||
Measuring the magnetic field at some distance, \(r\), from the center of
|
||||
the conductor: \[B\int dl = \mu_0 I\] Where \(\int dl\) is the
|
||||
circumfrece of measurement. \[B(2\pi r) = \mu_0 I\]
|
||||
\[B_{out} = \frac{\mu_0 I}{2\pi r} \hat{\varphi}\] Inside the wire:
|
||||
\[\int \vec{B} \cdot d\vec{l} = \mu_0 I\]
|
||||
\[B\int dl = \frac{\mu_0 I r^2}{R^2} = 2\pi rB\]
|
||||
\[B = \frac{\mu_0 I}{2\pi R^2} r\]
|
||||
\[\vec{B} = \frac{\mu_0 I}{2\pi R^2}r \hat{\varphi}\]
|
||||
|
||||
\hypertarget{coulombs-law-1}{%
|
||||
\subsubsection{Coulomb's Law}\label{coulombs-law-1}}
|
||||
|
||||
The total displacement flux of charge:
|
||||
\[\int_s \varepsilon_0 \vec{E} \cdot d\vec{s}\]
|
||||
|
||||
The total current (charge with respect to time):
|
||||
\[I = \frac{d}{dt} \int_s \varepsilon_0 \vec{E} \cdot d\vec{s}\]
|
||||
|
||||
\hypertarget{faradays-law}{%
|
||||
\subsubsection{Faraday's Law}\label{faradays-law}}
|
||||
|
||||
Work done in moving a unit positive test charge around a closed path,
|
||||
\(C\): \[\oint_C \vec{E} \cdot d\vec{l}\]
|
||||
|
||||
Magnetic force on a poving charge and is directed perpendicular to both
|
||||
the direction of the motion of the charge and the magnetic field.
|
||||
\[\oint_C \vec{B} \cdot d\vec{l}\]
|
||||
|
||||
\hypertarget{solenoid-ideal}{%
|
||||
\subsubsection{Solenoid (Ideal)}\label{solenoid-ideal}}
|
||||
|
||||
For an ideal solenoid with constant current, \(I\), assume uniform
|
||||
\(\vec{B}\) inside, \(\vec{B} = 0\) outside, and infinite length.
|
||||
|
||||
By Ampere's Law: \[\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}\]
|
||||
|
||||
For a square loop with one side in the solenoid, and it's parallel side
|
||||
outside the loop:
|
||||
\[\oint \vec{B} \cdot d\vec{l} = \int_1 + \int_2 + \int_3 + \int_4\]
|
||||
|
||||
Sides 2 and 4 are parallel, and side 3 is outside the solenoid, so:
|
||||
\[\oint \vec{B} \cdot d\vec{l} = \int_1 = Bl\]
|
||||
|
||||
Back to Ampere's Law: \[Bl = \mu_0 I N\]
|
||||
\[\therefore B = \frac{\mu_0 I N}{l} = \mu_0 I n\] Where:
|
||||
|
||||
\(N\) is the total number of windings,
|
||||
|
||||
\(l\) is the sidelength of the Amperian loop,
|
||||
|
||||
\(n\) is the number of windings per unit length \(\frac{N}{l}\)
|
||||
|
||||
\hypertarget{toroid-ideal}{%
|
||||
\subsubsection{Toroid (Ideal)}\label{toroid-ideal}}
|
||||
|
||||
From a symmetric \(\vec{B}\)-field, lines form concentric circles inside
|
||||
the toroid. For an ideal toroid, assume \(\vec{B} = 0\) outside, and
|
||||
Ampere's law inside.
|
||||
|
||||
\[\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}\] For some circular
|
||||
Amperian loop inside the toroid: \[\vec{B} = B\hat{\varphi}\]
|
||||
\[d\vec{l} = 2\pi r \vec{\varphi}\] \[B(2\pi r) = \mu_0 N I\]
|
||||
\[\therefore B = \frac{\mu_0 N I}{2\pi r}\]
|
778
5th-Semester-Fall-2023/EEMAGS/Notes/preamble.tex
Normal file
778
5th-Semester-Fall-2023/EEMAGS/Notes/preamble.tex
Normal file
@ -0,0 +1,778 @@
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% PACKAGE IMPORTS
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
|
||||
\usepackage[tmargin=2cm,rmargin=1in,lmargin=1in,margin=0.85in,bmargin=2cm,footskip=.2in]{geometry}
|
||||
\usepackage{amsmath,amsfonts,amsthm,amssymb,mathtools}
|
||||
\usepackage[varbb]{newpxmath}
|
||||
\usepackage{xfrac}
|
||||
\usepackage[makeroom]{cancel}
|
||||
\usepackage{mathtools}
|
||||
\usepackage{bookmark}
|
||||
\usepackage{enumitem}
|
||||
\usepackage{hyperref,theoremref}
|
||||
\hypersetup{
|
||||
pdftitle={Assignment},
|
||||
colorlinks=true, linkcolor=doc!90,
|
||||
bookmarksnumbered=true,
|
||||
bookmarksopen=true
|
||||
}
|
||||
\usepackage[most,many,breakable]{tcolorbox}
|
||||
\usepackage{xcolor}
|
||||
\usepackage{varwidth}
|
||||
\usepackage{varwidth}
|
||||
\usepackage{etoolbox}
|
||||
%\usepackage{authblk}
|
||||
\usepackage{nameref}
|
||||
\usepackage{multicol,array}
|
||||
\usepackage{tikz-cd}
|
||||
\usepackage[ruled,vlined,linesnumbered]{algorithm2e}
|
||||
\usepackage{comment} % enables the use of multi-line comments (\ifx \fi)
|
||||
\usepackage{import}
|
||||
\usepackage{xifthen}
|
||||
\usepackage{pdfpages}
|
||||
\usepackage{transparent}
|
||||
|
||||
\newcommand\mycommfont[1]{\footnotesize\ttfamily\textcolor{blue}{#1}}
|
||||
\SetCommentSty{mycommfont}
|
||||
\newcommand{\incfig}[1]{%
|
||||
\def\svgwidth{\columnwidth}
|
||||
\import{./figures/}{#1.pdf_tex}
|
||||
}
|
||||
|
||||
\usepackage{tikzsymbols}
|
||||
\renewcommand\qedsymbol{$\Laughey$}
|
||||
|
||||
|
||||
%\usepackage{import}
|
||||
%\usepackage{xifthen}
|
||||
%\usepackage{pdfpages}
|
||||
%\usepackage{transparent}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% SELF MADE COLORS
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
|
||||
|
||||
\definecolor{myg}{RGB}{56, 140, 70}
|
||||
\definecolor{myb}{RGB}{45, 111, 177}
|
||||
\definecolor{myr}{RGB}{199, 68, 64}
|
||||
\definecolor{mytheorembg}{HTML}{F2F2F9}
|
||||
\definecolor{mytheoremfr}{HTML}{00007B}
|
||||
\definecolor{mylenmabg}{HTML}{FFFAF8}
|
||||
\definecolor{mylenmafr}{HTML}{983b0f}
|
||||
\definecolor{mypropbg}{HTML}{f2fbfc}
|
||||
\definecolor{mypropfr}{HTML}{191971}
|
||||
\definecolor{myexamplebg}{HTML}{F2FBF8}
|
||||
\definecolor{myexamplefr}{HTML}{88D6D1}
|
||||
\definecolor{myexampleti}{HTML}{2A7F7F}
|
||||
\definecolor{mydefinitbg}{HTML}{E5E5FF}
|
||||
\definecolor{mydefinitfr}{HTML}{3F3FA3}
|
||||
\definecolor{notesgreen}{RGB}{0,162,0}
|
||||
\definecolor{myp}{RGB}{197, 92, 212}
|
||||
\definecolor{mygr}{HTML}{2C3338}
|
||||
\definecolor{myred}{RGB}{127,0,0}
|
||||
\definecolor{myyellow}{RGB}{169,121,69}
|
||||
\definecolor{myexercisebg}{HTML}{F2FBF8}
|
||||
\definecolor{myexercisefg}{HTML}{88D6D1}
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% TCOLORBOX SETUPS
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\setlength{\parindent}{1cm}
|
||||
%================================
|
||||
% THEOREM BOX
|
||||
%================================
|
||||
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=section]{Theorem}{Theorem}
|
||||
{%
|
||||
enhanced,
|
||||
breakable,
|
||||
colback = mytheorembg,
|
||||
frame hidden,
|
||||
boxrule = 0sp,
|
||||
borderline west = {2pt}{0pt}{mytheoremfr},
|
||||
sharp corners,
|
||||
detach title,
|
||||
before upper = \tcbtitle\par\smallskip,
|
||||
coltitle = mytheoremfr,
|
||||
fonttitle = \bfseries\sffamily,
|
||||
description font = \mdseries,
|
||||
separator sign none,
|
||||
segmentation style={solid, mytheoremfr},
|
||||
}
|
||||
{th}
|
||||
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=chapter]{theorem}{Theorem}
|
||||
{%
|
||||
enhanced,
|
||||
breakable,
|
||||
colback = mytheorembg,
|
||||
frame hidden,
|
||||
boxrule = 0sp,
|
||||
borderline west = {2pt}{0pt}{mytheoremfr},
|
||||
sharp corners,
|
||||
detach title,
|
||||
before upper = \tcbtitle\par\smallskip,
|
||||
coltitle = mytheoremfr,
|
||||
fonttitle = \bfseries\sffamily,
|
||||
description font = \mdseries,
|
||||
separator sign none,
|
||||
segmentation style={solid, mytheoremfr},
|
||||
}
|
||||
{th}
|
||||
|
||||
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcolorbox{Theoremcon}
|
||||
{%
|
||||
enhanced
|
||||
,breakable
|
||||
,colback = mytheorembg
|
||||
,frame hidden
|
||||
,boxrule = 0sp
|
||||
,borderline west = {2pt}{0pt}{mytheoremfr}
|
||||
,sharp corners
|
||||
,description font = \mdseries
|
||||
,separator sign none
|
||||
}
|
||||
|
||||
%================================
|
||||
% Corollery
|
||||
%================================
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=section]{Corollary}{Corollary}
|
||||
{%
|
||||
enhanced
|
||||
,breakable
|
||||
,colback = myp!10
|
||||
,frame hidden
|
||||
,boxrule = 0sp
|
||||
,borderline west = {2pt}{0pt}{myp!85!black}
|
||||
,sharp corners
|
||||
,detach title
|
||||
,before upper = \tcbtitle\par\smallskip
|
||||
,coltitle = myp!85!black
|
||||
,fonttitle = \bfseries\sffamily
|
||||
,description font = \mdseries
|
||||
,separator sign none
|
||||
,segmentation style={solid, myp!85!black}
|
||||
}
|
||||
{th}
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=chapter]{corollary}{Corollary}
|
||||
{%
|
||||
enhanced
|
||||
,breakable
|
||||
,colback = myp!10
|
||||
,frame hidden
|
||||
,boxrule = 0sp
|
||||
,borderline west = {2pt}{0pt}{myp!85!black}
|
||||
,sharp corners
|
||||
,detach title
|
||||
,before upper = \tcbtitle\par\smallskip
|
||||
,coltitle = myp!85!black
|
||||
,fonttitle = \bfseries\sffamily
|
||||
,description font = \mdseries
|
||||
,separator sign none
|
||||
,segmentation style={solid, myp!85!black}
|
||||
}
|
||||
{th}
|
||||
|
||||
|
||||
%================================
|
||||
% LENMA
|
||||
%================================
|
||||
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=section]{Review}{Review}
|
||||
{%
|
||||
enhanced,
|
||||
breakable,
|
||||
colback = mylenmabg,
|
||||
frame hidden,
|
||||
boxrule = 0sp,
|
||||
borderline west = {2pt}{0pt}{mylenmafr},
|
||||
sharp corners,
|
||||
detach title,
|
||||
before upper = \tcbtitle\par\smallskip,
|
||||
coltitle = mylenmafr,
|
||||
fonttitle = \bfseries\sffamily,
|
||||
description font = \mdseries,
|
||||
separator sign none,
|
||||
segmentation style={solid, mylenmafr},
|
||||
}
|
||||
{th}
|
||||
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=chapter]{review}{Review}
|
||||
{%
|
||||
enhanced,
|
||||
breakable,
|
||||
colback = mylenmabg,
|
||||
frame hidden,
|
||||
boxrule = 0sp,
|
||||
borderline west = {2pt}{0pt}{mylenmafr},
|
||||
sharp corners,
|
||||
detach title,
|
||||
before upper = \tcbtitle\par\smallskip,
|
||||
coltitle = mylenmafr,
|
||||
fonttitle = \bfseries\sffamily,
|
||||
description font = \mdseries,
|
||||
separator sign none,
|
||||
segmentation style={solid, mylenmafr},
|
||||
}
|
||||
{th}
|
||||
|
||||
|
||||
%================================
|
||||
% METHOD
|
||||
%================================
|
||||
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=section]{Method}{Method}
|
||||
{%
|
||||
enhanced,
|
||||
breakable,
|
||||
colback = mypropbg,
|
||||
frame hidden,
|
||||
boxrule = 0sp,
|
||||
borderline west = {2pt}{0pt}{mypropfr},
|
||||
sharp corners,
|
||||
detach title,
|
||||
before upper = \tcbtitle\par\smallskip,
|
||||
coltitle = mypropfr,
|
||||
fonttitle = \bfseries\sffamily,
|
||||
description font = \mdseries,
|
||||
separator sign none,
|
||||
segmentation style={solid, mypropfr},
|
||||
}
|
||||
{th}
|
||||
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=chapter]{method}{Method}
|
||||
{%
|
||||
enhanced,
|
||||
breakable,
|
||||
colback = mypropbg,
|
||||
frame hidden,
|
||||
boxrule = 0sp,
|
||||
borderline west = {2pt}{0pt}{mypropfr},
|
||||
sharp corners,
|
||||
detach title,
|
||||
before upper = \tcbtitle\par\smallskip,
|
||||
coltitle = mypropfr,
|
||||
fonttitle = \bfseries\sffamily,
|
||||
description font = \mdseries,
|
||||
separator sign none,
|
||||
segmentation style={solid, mypropfr},
|
||||
}
|
||||
{th}
|
||||
|
||||
|
||||
%================================
|
||||
% CLAIM
|
||||
%================================
|
||||
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=section]{claim}{Claim}
|
||||
{%
|
||||
enhanced
|
||||
,breakable
|
||||
,colback = myg!10
|
||||
,frame hidden
|
||||
,boxrule = 0sp
|
||||
,borderline west = {2pt}{0pt}{myg}
|
||||
,sharp corners
|
||||
,detach title
|
||||
,before upper = \tcbtitle\par\smallskip
|
||||
,coltitle = myg!85!black
|
||||
,fonttitle = \bfseries\sffamily
|
||||
,description font = \mdseries
|
||||
,separator sign none
|
||||
,segmentation style={solid, myg!85!black}
|
||||
}
|
||||
{th}
|
||||
|
||||
|
||||
|
||||
%================================
|
||||
% Exercise
|
||||
%================================
|
||||
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=section]{Exercise}{Exercise}
|
||||
{%
|
||||
enhanced,
|
||||
breakable,
|
||||
colback = myexercisebg,
|
||||
frame hidden,
|
||||
boxrule = 0sp,
|
||||
borderline west = {2pt}{0pt}{myexercisefg},
|
||||
sharp corners,
|
||||
detach title,
|
||||
before upper = \tcbtitle\par\smallskip,
|
||||
coltitle = myexercisefg,
|
||||
fonttitle = \bfseries\sffamily,
|
||||
description font = \mdseries,
|
||||
separator sign none,
|
||||
segmentation style={solid, myexercisefg},
|
||||
}
|
||||
{th}
|
||||
|
||||
\tcbuselibrary{theorems,skins,hooks}
|
||||
\newtcbtheorem[number within=chapter]{exercise}{Exercise}
|
||||
{%
|
||||
enhanced,
|
||||
breakable,
|
||||
colback = myexercisebg,
|
||||
frame hidden,
|
||||
boxrule = 0sp,
|
||||
borderline west = {2pt}{0pt}{myexercisefg},
|
||||
sharp corners,
|
||||
detach title,
|
||||
before upper = \tcbtitle\par\smallskip,
|
||||
coltitle = myexercisefg,
|
||||
fonttitle = \bfseries\sffamily,
|
||||
description font = \mdseries,
|
||||
separator sign none,
|
||||
segmentation style={solid, myexercisefg},
|
||||
}
|
||||
{th}
|
||||
|
||||
%================================
|
||||
% EXAMPLE BOX
|
||||
%================================
|
||||
|
||||
\newtcbtheorem[number within=section]{Example}{Example}
|
||||
{%
|
||||
colback = myexamplebg
|
||||
,breakable
|
||||
,colframe = myexamplefr
|
||||
,coltitle = myexampleti
|
||||
,boxrule = 1pt
|
||||
,sharp corners
|
||||
,detach title
|
||||
,before upper=\tcbtitle\par\smallskip
|
||||
,fonttitle = \bfseries
|
||||
,description font = \mdseries
|
||||
,separator sign none
|
||||
,description delimiters parenthesis
|
||||
}
|
||||
{ex}
|
||||
|
||||
\newtcbtheorem[number within=chapter]{example}{Example}
|
||||
{%
|
||||
colback = myexamplebg
|
||||
,breakable
|
||||
,colframe = myexamplefr
|
||||
,coltitle = myexampleti
|
||||
,boxrule = 1pt
|
||||
,sharp corners
|
||||
,detach title
|
||||
,before upper=\tcbtitle\par\smallskip
|
||||
,fonttitle = \bfseries
|
||||
,description font = \mdseries
|
||||
,separator sign none
|
||||
,description delimiters parenthesis
|
||||
}
|
||||
{ex}
|
||||
|
||||
%================================
|
||||
% DEFINITION BOX
|
||||
%================================
|
||||
|
||||
\newtcbtheorem[number within=section]{Definition}{Definition}{enhanced,
|
||||
before skip=2mm,after skip=2mm, colback=red!5,colframe=red!80!black,boxrule=0.5mm,
|
||||
attach boxed title to top left={xshift=1cm,yshift*=1mm-\tcboxedtitleheight}, varwidth boxed title*=-3cm,
|
||||
boxed title style={frame code={
|
||||
\path[fill=tcbcolback]
|
||||
([yshift=-1mm,xshift=-1mm]frame.north west)
|
||||
arc[start angle=0,end angle=180,radius=1mm]
|
||||
([yshift=-1mm,xshift=1mm]frame.north east)
|
||||
arc[start angle=180,end angle=0,radius=1mm];
|
||||
\path[left color=tcbcolback!60!black,right color=tcbcolback!60!black,
|
||||
middle color=tcbcolback!80!black]
|
||||
([xshift=-2mm]frame.north west) -- ([xshift=2mm]frame.north east)
|
||||
[rounded corners=1mm]-- ([xshift=1mm,yshift=-1mm]frame.north east)
|
||||
-- (frame.south east) -- (frame.south west)
|
||||
-- ([xshift=-1mm,yshift=-1mm]frame.north west)
|
||||
[sharp corners]-- cycle;
|
||||
},interior engine=empty,
|
||||
},
|
||||
fonttitle=\bfseries,
|
||||
title={#2},#1}{def}
|
||||
\newtcbtheorem[number within=chapter]{definition}{Definition}{enhanced,
|
||||
before skip=2mm,after skip=2mm, colback=red!5,colframe=red!80!black,boxrule=0.5mm,
|
||||
attach boxed title to top left={xshift=1cm,yshift*=1mm-\tcboxedtitleheight}, varwidth boxed title*=-3cm,
|
||||
boxed title style={frame code={
|
||||
\path[fill=tcbcolback]
|
||||
([yshift=-1mm,xshift=-1mm]frame.north west)
|
||||
arc[start angle=0,end angle=180,radius=1mm]
|
||||
([yshift=-1mm,xshift=1mm]frame.north east)
|
||||
arc[start angle=180,end angle=0,radius=1mm];
|
||||
\path[left color=tcbcolback!60!black,right color=tcbcolback!60!black,
|
||||
middle color=tcbcolback!80!black]
|
||||
([xshift=-2mm]frame.north west) -- ([xshift=2mm]frame.north east)
|
||||
[rounded corners=1mm]-- ([xshift=1mm,yshift=-1mm]frame.north east)
|
||||
-- (frame.south east) -- (frame.south west)
|
||||
-- ([xshift=-1mm,yshift=-1mm]frame.north west)
|
||||
[sharp corners]-- cycle;
|
||||
},interior engine=empty,
|
||||
},
|
||||
fonttitle=\bfseries,
|
||||
title={#2},#1}{def}
|
||||
|
||||
|
||||
|
||||
%================================
|
||||
% Solution BOX
|
||||
%================================
|
||||
|
||||
\makeatletter
|
||||
\newtcbtheorem{question}{Question}{enhanced,
|
||||
breakable,
|
||||
colback=white,
|
||||
colframe=myb!80!black,
|
||||
attach boxed title to top left={yshift*=-\tcboxedtitleheight},
|
||||
fonttitle=\bfseries,
|
||||
title={#2},
|
||||
boxed title size=title,
|
||||
boxed title style={%
|
||||
sharp corners,
|
||||
rounded corners=northwest,
|
||||
colback=tcbcolframe,
|
||||
boxrule=0pt,
|
||||
},
|
||||
underlay boxed title={%
|
||||
\path[fill=tcbcolframe] (title.south west)--(title.south east)
|
||||
to[out=0, in=180] ([xshift=5mm]title.east)--
|
||||
(title.center-|frame.east)
|
||||
[rounded corners=\kvtcb@arc] |-
|
||||
(frame.north) -| cycle;
|
||||
},
|
||||
#1
|
||||
}{def}
|
||||
\makeatother
|
||||
|
||||
%================================
|
||||
% SOLUTION BOX
|
||||
%================================
|
||||
|
||||
\makeatletter
|
||||
\newtcolorbox{solution}{enhanced,
|
||||
breakable,
|
||||
colback=white,
|
||||
colframe=myg!80!black,
|
||||
attach boxed title to top left={yshift*=-\tcboxedtitleheight},
|
||||
title=Solution,
|
||||
boxed title size=title,
|
||||
boxed title style={%
|
||||
sharp corners,
|
||||
rounded corners=northwest,
|
||||
colback=tcbcolframe,
|
||||
boxrule=0pt,
|
||||
},
|
||||
underlay boxed title={%
|
||||
\path[fill=tcbcolframe] (title.south west)--(title.south east)
|
||||
to[out=0, in=180] ([xshift=5mm]title.east)--
|
||||
(title.center-|frame.east)
|
||||
[rounded corners=\kvtcb@arc] |-
|
||||
(frame.north) -| cycle;
|
||||
},
|
||||
}
|
||||
\makeatother
|
||||
|
||||
%================================
|
||||
% Question BOX
|
||||
%================================
|
||||
|
||||
\makeatletter
|
||||
\newtcbtheorem{qstion}{Question}{enhanced,
|
||||
breakable,
|
||||
colback=white,
|
||||
colframe=mygr,
|
||||
attach boxed title to top left={yshift*=-\tcboxedtitleheight},
|
||||
fonttitle=\bfseries,
|
||||
title={#2},
|
||||
boxed title size=title,
|
||||
boxed title style={%
|
||||
sharp corners,
|
||||
rounded corners=northwest,
|
||||
colback=tcbcolframe,
|
||||
boxrule=0pt,
|
||||
},
|
||||
underlay boxed title={%
|
||||
\path[fill=tcbcolframe] (title.south west)--(title.south east)
|
||||
to[out=0, in=180] ([xshift=5mm]title.east)--
|
||||
(title.center-|frame.east)
|
||||
[rounded corners=\kvtcb@arc] |-
|
||||
(frame.north) -| cycle;
|
||||
},
|
||||
#1
|
||||
}{def}
|
||||
\makeatother
|
||||
|
||||
\newtcbtheorem[number within=chapter]{wconc}{Wrong Concept}{
|
||||
breakable,
|
||||
enhanced,
|
||||
colback=white,
|
||||
colframe=myr,
|
||||
arc=0pt,
|
||||
outer arc=0pt,
|
||||
fonttitle=\bfseries\sffamily\large,
|
||||
colbacktitle=myr,
|
||||
attach boxed title to top left={},
|
||||
boxed title style={
|
||||
enhanced,
|
||||
skin=enhancedfirst jigsaw,
|
||||
arc=3pt,
|
||||
bottom=0pt,
|
||||
interior style={fill=myr}
|
||||
},
|
||||
#1
|
||||
}{def}
|
||||
|
||||
|
||||
|
||||
%================================
|
||||
% NOTE BOX
|
||||
%================================
|
||||
|
||||
\usetikzlibrary{arrows,calc,shadows.blur}
|
||||
\tcbuselibrary{skins}
|
||||
\newtcolorbox{note}[1][]{%
|
||||
enhanced jigsaw,
|
||||
colback=gray!20!white,%
|
||||
colframe=gray!80!black,
|
||||
size=small,
|
||||
boxrule=1pt,
|
||||
title=\textbf{Note:},
|
||||
halign title=flush center,
|
||||
coltitle=black,
|
||||
breakable,
|
||||
drop shadow=black!50!white,
|
||||
attach boxed title to top left={xshift=1cm,yshift=-\tcboxedtitleheight/2,yshifttext=-\tcboxedtitleheight/2},
|
||||
minipage boxed title=1.5cm,
|
||||
boxed title style={%
|
||||
colback=white,
|
||||
size=fbox,
|
||||
boxrule=1pt,
|
||||
boxsep=2pt,
|
||||
underlay={%
|
||||
\coordinate (dotA) at ($(interior.west) + (-0.5pt,0)$);
|
||||
\coordinate (dotB) at ($(interior.east) + (0.5pt,0)$);
|
||||
\begin{scope}
|
||||
\clip (interior.north west) rectangle ([xshift=3ex]interior.east);
|
||||
\filldraw [white, blur shadow={shadow opacity=60, shadow yshift=-.75ex}, rounded corners=2pt] (interior.north west) rectangle (interior.south east);
|
||||
\end{scope}
|
||||
\begin{scope}[gray!80!black]
|
||||
\fill (dotA) circle (2pt);
|
||||
\fill (dotB) circle (2pt);
|
||||
\end{scope}
|
||||
},
|
||||
},
|
||||
#1,
|
||||
}
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% SELF MADE COMMANDS
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
|
||||
\newcommand{\thm}[2]{\begin{Theorem}{#1}{}#2\end{Theorem}}
|
||||
\newcommand{\cor}[2]{\begin{Corollary}{#1}{}#2\end{Corollary}}
|
||||
\newcommand{\rvw}[2]{\begin{Review}{#1}{}#2\end{Review}}
|
||||
\newcommand{\mthd}[2]{\begin{Method}{#1}{}#2\end{Method}}
|
||||
\newcommand{\clm}[3]{\begin{claim}{#1}{#2}#3\end{claim}}
|
||||
\newcommand{\wc}[2]{\begin{wconc}{#1}{}\setlength{\parindent}{1cm}#2\end{wconc}}
|
||||
\newcommand{\thmcon}[1]{\begin{Theoremcon}{#1}\end{Theoremcon}}
|
||||
\newcommand{\ex}[2]{\begin{Example}{#1}{#2}\end{Example}}
|
||||
\newcommand{\dfn}[2]{\begin{Definition}[colbacktitle=red!75!black]{#1}{}#2\end{Definition}}
|
||||
\newcommand{\dfnc}[2]{\begin{definition}[colbacktitle=red!75!black]{#1}{}#2\end{definition}}
|
||||
\newcommand{\qs}[2]{\begin{question}{#1}{}#2\end{question}}
|
||||
\newcommand{\pf}[2]{\begin{myproof}[#1]#2\end{myproof}}
|
||||
\newcommand{\nt}[1]{\begin{note}#1\end{note}}
|
||||
|
||||
\newcommand*\circled[1]{\tikz[baseline=(char.base)]{
|
||||
\node[shape=circle,draw,inner sep=1pt] (char) {#1};}}
|
||||
\newcommand\getcurrentref[1]{%
|
||||
\ifnumequal{\value{#1}}{0}
|
||||
{??}
|
||||
{\the\value{#1}}%
|
||||
}
|
||||
\newcommand{\getCurrentSectionNumber}{\getcurrentref{section}}
|
||||
\newenvironment{myproof}[1][\proofname]{%
|
||||
\proof[\bfseries #1: ]%
|
||||
}{\endproof}
|
||||
|
||||
\newcommand{\mclm}[2]{\begin{myclaim}[#1]#2\end{myclaim}}
|
||||
\newenvironment{myclaim}[1][\claimname]{\proof[\bfseries #1: ]}{}
|
||||
|
||||
\newcounter{mylabelcounter}
|
||||
|
||||
\makeatletter
|
||||
\newcommand{\setword}[2]{%
|
||||
\phantomsection
|
||||
#1\def\@currentlabel{\unexpanded{#1}}\label{#2}%
|
||||
}
|
||||
\makeatother
|
||||
|
||||
|
||||
|
||||
|
||||
\tikzset{
|
||||
symbol/.style={
|
||||
draw=none,
|
||||
every to/.append style={
|
||||
edge node={node [sloped, allow upside down, auto=false]{$#1$}}}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
% deliminators
|
||||
\DeclarePairedDelimiter{\abs}{\lvert}{\rvert}
|
||||
\DeclarePairedDelimiter{\norm}{\lVert}{\rVert}
|
||||
|
||||
\DeclarePairedDelimiter{\ceil}{\lceil}{\rceil}
|
||||
\DeclarePairedDelimiter{\floor}{\lfloor}{\rfloor}
|
||||
\DeclarePairedDelimiter{\round}{\lfloor}{\rceil}
|
||||
|
||||
\newsavebox\diffdbox
|
||||
\newcommand{\slantedromand}{{\mathpalette\makesl{d}}}
|
||||
\newcommand{\makesl}[2]{%
|
||||
\begingroup
|
||||
\sbox{\diffdbox}{$\mathsurround=0pt#1\mathrm{#2}$}%
|
||||
\pdfsave
|
||||
\pdfsetmatrix{1 0 0.2 1}%
|
||||
\rlap{\usebox{\diffdbox}}%
|
||||
\pdfrestore
|
||||
\hskip\wd\diffdbox
|
||||
\endgroup
|
||||
}
|
||||
\newcommand{\dd}[1][]{\ensuremath{\mathop{}\!\ifstrempty{#1}{%
|
||||
\slantedromand\@ifnextchar^{\hspace{0.2ex}}{\hspace{0.1ex}}}%
|
||||
{\slantedromand\hspace{0.2ex}^{#1}}}}
|
||||
\ProvideDocumentCommand\dv{o m g}{%
|
||||
\ensuremath{%
|
||||
\IfValueTF{#3}{%
|
||||
\IfNoValueTF{#1}{%
|
||||
\frac{\dd #2}{\dd #3}%
|
||||
}{%
|
||||
\frac{\dd^{#1} #2}{\dd #3^{#1}}%
|
||||
}%
|
||||
}{%
|
||||
\IfNoValueTF{#1}{%
|
||||
\frac{\dd}{\dd #2}%
|
||||
}{%
|
||||
\frac{\dd^{#1}}{\dd #2^{#1}}%
|
||||
}%
|
||||
}%
|
||||
}%
|
||||
}
|
||||
\providecommand*{\pdv}[3][]{\frac{\partial^{#1}#2}{\partial#3^{#1}}}
|
||||
% - others
|
||||
\DeclareMathOperator{\Lap}{\mathcal{L}}
|
||||
\DeclareMathOperator{\Var}{Var} % varience
|
||||
\DeclareMathOperator{\Cov}{Cov} % covarience
|
||||
\DeclareMathOperator{\E}{E} % expected
|
||||
|
||||
% Since the amsthm package isn't loaded
|
||||
|
||||
% I prefer the slanted \leq
|
||||
\let\oldleq\leq % save them in case they're every wanted
|
||||
\let\oldgeq\geq
|
||||
\renewcommand{\leq}{\leqslant}
|
||||
\renewcommand{\geq}{\geqslant}
|
||||
|
||||
% % redefine matrix env to allow for alignment, use r as default
|
||||
% \renewcommand*\env@matrix[1][r]{\hskip -\arraycolsep
|
||||
% \let\@ifnextchar\new@ifnextchar
|
||||
% \array{*\c@MaxMatrixCols #1}}
|
||||
|
||||
|
||||
%\usepackage{framed}
|
||||
%\usepackage{titletoc}
|
||||
%\usepackage{etoolbox}
|
||||
%\usepackage{lmodern}
|
||||
|
||||
|
||||
%\patchcmd{\tableofcontents}{\contentsname}{\sffamily\contentsname}{}{}
|
||||
|
||||
%\renewenvironment{leftbar}
|
||||
%{\def\FrameCommand{\hspace{6em}%
|
||||
% {\color{myyellow}\vrule width 2pt depth 6pt}\hspace{1em}}%
|
||||
% \MakeFramed{\parshape 1 0cm \dimexpr\textwidth-6em\relax\FrameRestore}\vskip2pt%
|
||||
%}
|
||||
%{\endMakeFramed}
|
||||
|
||||
%\titlecontents{chapter}
|
||||
%[0em]{\vspace*{2\baselineskip}}
|
||||
%{\parbox{4.5em}{%
|
||||
% \hfill\Huge\sffamily\bfseries\color{myred}\thecontentspage}%
|
||||
% \vspace*{-2.3\baselineskip}\leftbar\textsc{\small\chaptername~\thecontentslabel}\\\sffamily}
|
||||
%{}{\endleftbar}
|
||||
%\titlecontents{section}
|
||||
%[8.4em]
|
||||
%{\sffamily\contentslabel{3em}}{}{}
|
||||
%{\hspace{0.5em}\nobreak\itshape\color{myred}\contentspage}
|
||||
%\titlecontents{subsection}
|
||||
%[8.4em]
|
||||
%{\sffamily\contentslabel{3em}}{}{}
|
||||
%{\hspace{0.5em}\nobreak\itshape\color{myred}\contentspage}
|
||||
|
||||
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% TABLE OF CONTENTS
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\usepackage{tikz}
|
||||
\definecolor{doc}{RGB}{0,60,110}
|
||||
\usepackage{titletoc}
|
||||
\contentsmargin{0cm}
|
||||
\titlecontents{chapter}[3.7pc]
|
||||
{\addvspace{30pt}%
|
||||
\begin{tikzpicture}[remember picture, overlay]%
|
||||
\draw[fill=doc!60,draw=doc!60] (-7,-.1) rectangle (-0.9,.5);%
|
||||
\pgftext[left,x=-3.5cm,y=0.2cm]{\color{white}\Large\sc\bfseries Chapter\ \thecontentslabel};%
|
||||
\end{tikzpicture}\color{doc!60}\large\sc\bfseries}%
|
||||
{}
|
||||
{}
|
||||
{\;\titlerule\;\large\sc\bfseries Page \thecontentspage
|
||||
\begin{tikzpicture}[remember picture, overlay]
|
||||
\draw[fill=doc!60,draw=doc!60] (2pt,0) rectangle (4,0.1pt);
|
||||
\end{tikzpicture}}%
|
||||
\titlecontents{section}[3.7pc]
|
||||
{\addvspace{2pt}}
|
||||
{\contentslabel[\thecontentslabel]{2pc}}
|
||||
{}
|
||||
{\hfill\small \thecontentspage}
|
||||
[]
|
||||
\titlecontents*{subsection}[3.7pc]
|
||||
{\addvspace{-1pt}\small}
|
||||
{}
|
||||
{}
|
||||
{\ --- \small\thecontentspage}
|
||||
[ \textbullet\ ][]
|
||||
|
||||
\makeatletter
|
||||
\renewcommand{\tableofcontents}{%
|
||||
\chapter*{%
|
||||
\vspace*{-20\p@}%
|
||||
\begin{tikzpicture}[remember picture, overlay]%
|
||||
\pgftext[right,x=15cm,y=0.2cm]{\color{doc!60}\Huge\sc\bfseries \contentsname};%
|
||||
\draw[fill=doc!60,draw=doc!60] (13,-.75) rectangle (20,1);%
|
||||
\clip (13,-.75) rectangle (20,1);
|
||||
\pgftext[right,x=15cm,y=0.2cm]{\color{white}\Huge\sc\bfseries \contentsname};%
|
||||
\end{tikzpicture}}%
|
||||
\@starttoc{toc}}
|
||||
\makeatother
|
||||
|
Reference in New Issue
Block a user