Adversarial-Machine-Learnin.../Filter_Analysis/fgsm.py

186 lines
6.1 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
from mnist import Net
import defense_filters
TESTED_STRENGTH_COUNT = 5
MAX_EPSILON = 0.3
EPSILON_STEP = 0.025
epsilons = np.arange(0.0, MAX_EPSILON+EPSILON_STEP, EPSILON_STEP)
pretrained_model = "mnist_cnn_unfiltered.pt"
use_cuda=False
torch.manual_seed(69)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data/', train=False, download=True, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
])),
batch_size=1, shuffle=True)
print("CUDA Available: ", torch.cuda.is_available())
device = torch.device("cuda" if use_cuda and torch.cuda.is_available() else "cpu")
model = Net().to(device)
model.load_state_dict(torch.load(pretrained_model, map_location=device))
model.eval()
def fgsm_attack(image, epsilon, data_grad):
# Collect the element-wise sign of the data gradient
sign_data_grad = data_grad.sign()
# Create the perturbed image by adjusting each pixel of the input image
perturbed_image = image + epsilon*sign_data_grad
# Adding clipping to maintain [0, 1] range
perturbed_image = torch.clamp(perturbed_image, 0, 1)
return perturbed_image
def denorm(batch, mean=[0.1307], std=[0.3081]):
"""
Convert a batch of tensors to their original scale.
Args:
batch (torch.Tensor): Batch of normalized tensors.
mean (torch.Tensor or list): Man used for normalization.
std (torch.Tensor or list): Standard deviation used for normalization.
Returns:
torch.Tensor: batch of tensors without normalization applied to them.
"""
if isinstance(mean, list):
mean = torch.tensor(mean).to(device)
if isinstance(std, list):
std = torch.tensor(std).to(device)
return batch * std.view(1, -1, 1, 1) + mean.view(1, -1, 1, 1)
def test(model, device, test_loader, epsilon):
# Original dataset correct classifications
orig_correct = 0
# Attacked dataset correct classifications
unfiltered_correct = 0
# Attacked, filtered dataset correct classifications
filtered_correct_counts = []
test_step = 0
for data, target in test_loader:
print("[" + "="*int(20*test_step/len(test_loader)) + " "*(20 - int(20*test_step/len(test_loader))) + "]", f"{100*test_step/len(test_loader)}%", end='\r')
test_step += 1
data, target = data.to(device), target.to(device)
data.requires_grad = True
output_orig = model(data)
orig_pred = output_orig.max(1, keepdim=True)[1]
# Calculate the loss
loss = F.nll_loss(output_orig, target)
# Zero all existing gradients
model.zero_grad()
# Calculate gradients of model in backward pass
loss.backward()
# Collect ''datagrad''
data_grad = data.grad.data
# Restore the data to its original scale
data_denorm = denorm(data)
# Apply the FGSM attack
perturbed_data = fgsm_attack(data_denorm, epsilon, data_grad)
# Reapply normalization
perturbed_data_normalized = transforms.Normalize((0.1307,), (0.3081,))(perturbed_data)
# Evaluate the model on the attacked image
output_unfiltered = model(perturbed_data_normalized)
# Evaluate performance for
for i in range(TESTED_STRENGTH_COUNT):
strength = (2*i + 1)/10
# Apply the filter with the specified strength
filtered_input = defense_filters.threshold_filter(perturbed_data_normalized, batch_size=len(perturbed_data_normalized), threshold=strength)
# Evaluate the model on the filtered images
filtered_output = model(filtered_input)
# Get the predicted classification
filtered_pred = filtered_output.max(1, keepdim=True)[1]
# Count up correct classifications
if filtered_pred.item() == target.item():
while i >= len(filtered_correct_counts):
filtered_correct_counts.append(0)
filtered_correct_counts[i] += 1
# Get the predicted classification
unfiltered_pred = output_unfiltered.max(1, keepdim=True)[1]
# Count up correct classifications for each case
if orig_pred.item() == target.item():
orig_correct += 1
if unfiltered_pred.item() == target.item():
unfiltered_correct += 1
# Calculate the overall accuracy of each case
orig_acc = orig_correct/float(len(test_loader))
unfiltered_acc = unfiltered_correct/float(len(test_loader))
filtered_accuracies = []
for correct_count in filtered_correct_counts:
filtered_accuracies.append(correct_count/float(len(test_loader)))
print(f"====== EPSILON: {epsilon} ======")
print(f"Clean (No Filter) Accuracy = {orig_correct} / {len(test_loader)} = {orig_acc}")
print(f"Unfiltered Accuracy = {unfiltered_correct} / {len(test_loader)} = {unfiltered_acc}")
for i in range(TESTED_STRENGTH_COUNT):
strength = (2*i + 1)/10
print(f"Threshold Filter (threshold = {strength}) = {filtered_correct_counts[i]} / {len(test_loader)} = {filtered_accuracies[i]}")
return unfiltered_acc, filtered_accuracies
unfiltered_accuracies = []
filtered_accuracies = []
for eps in epsilons:
unfiltered_accuracy, filtered_accuracy = test(model, device, test_loader, eps)
unfiltered_accuracies.append(unfiltered_accuracy)
filtered_accuracies.append(filtered_accuracy)
# Plot the results
plt.figure(figsize=(16,9))
plt.plot(epsilons, unfiltered_accuracies, label="Attacked Accuracy")
for i in range(TESTED_STRENGTH_COUNT):
filtered_accuracy = [filter_eps[i] for filter_eps in filtered_accuracies]
plt.plot(epsilons, filtered_accuracy, label=f"Threshold Filter (threshold = {(2*i + 1)/10})")
plt.legend(loc="upper right")
plt.title("Threshold Filter Performance")
plt.xlabel("Attack Strength ($\\epsilon$)")
plt.ylabel("Accuracy")
plt.savefig("Images/ThresholdFilterPerformance.png", )