186 lines
6.1 KiB
Python
186 lines
6.1 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
from torchvision import datasets, transforms
|
|
import numpy as np
|
|
from scipy import stats
|
|
import matplotlib.pyplot as plt
|
|
from mnist import Net
|
|
|
|
import defense_filters
|
|
|
|
|
|
|
|
TESTED_STRENGTH_COUNT = 5
|
|
|
|
MAX_EPSILON = 0.3
|
|
EPSILON_STEP = 0.025
|
|
epsilons = np.arange(0.0, MAX_EPSILON+EPSILON_STEP, EPSILON_STEP)
|
|
pretrained_model = "mnist_cnn_unfiltered.pt"
|
|
use_cuda=False
|
|
|
|
torch.manual_seed(69)
|
|
|
|
|
|
test_loader = torch.utils.data.DataLoader(
|
|
datasets.MNIST('data/', train=False, download=True, transform=transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.1307,), (0.3081,)),
|
|
])),
|
|
batch_size=1, shuffle=True)
|
|
|
|
print("CUDA Available: ", torch.cuda.is_available())
|
|
device = torch.device("cuda" if use_cuda and torch.cuda.is_available() else "cpu")
|
|
|
|
model = Net().to(device)
|
|
|
|
model.load_state_dict(torch.load(pretrained_model, map_location=device))
|
|
|
|
model.eval()
|
|
|
|
def fgsm_attack(image, epsilon, data_grad):
|
|
# Collect the element-wise sign of the data gradient
|
|
sign_data_grad = data_grad.sign()
|
|
|
|
# Create the perturbed image by adjusting each pixel of the input image
|
|
perturbed_image = image + epsilon*sign_data_grad
|
|
|
|
# Adding clipping to maintain [0, 1] range
|
|
perturbed_image = torch.clamp(perturbed_image, 0, 1)
|
|
|
|
return perturbed_image
|
|
|
|
def denorm(batch, mean=[0.1307], std=[0.3081]):
|
|
"""
|
|
Convert a batch of tensors to their original scale.
|
|
|
|
Args:
|
|
batch (torch.Tensor): Batch of normalized tensors.
|
|
mean (torch.Tensor or list): Man used for normalization.
|
|
std (torch.Tensor or list): Standard deviation used for normalization.
|
|
|
|
Returns:
|
|
torch.Tensor: batch of tensors without normalization applied to them.
|
|
"""
|
|
|
|
if isinstance(mean, list):
|
|
mean = torch.tensor(mean).to(device)
|
|
if isinstance(std, list):
|
|
std = torch.tensor(std).to(device)
|
|
|
|
return batch * std.view(1, -1, 1, 1) + mean.view(1, -1, 1, 1)
|
|
|
|
def test(model, device, test_loader, epsilon):
|
|
# Original dataset correct classifications
|
|
orig_correct = 0
|
|
|
|
# Attacked dataset correct classifications
|
|
unfiltered_correct = 0
|
|
|
|
# Attacked, filtered dataset correct classifications
|
|
filtered_correct_counts = []
|
|
|
|
test_step = 0
|
|
for data, target in test_loader:
|
|
print("[" + "="*int(20*test_step/len(test_loader)) + " "*(20 - int(20*test_step/len(test_loader))) + "]", f"{100*test_step/len(test_loader)}%", end='\r')
|
|
test_step += 1
|
|
|
|
data, target = data.to(device), target.to(device)
|
|
data.requires_grad = True
|
|
|
|
output_orig = model(data)
|
|
orig_pred = output_orig.max(1, keepdim=True)[1]
|
|
|
|
# Calculate the loss
|
|
loss = F.nll_loss(output_orig, target)
|
|
|
|
# Zero all existing gradients
|
|
model.zero_grad()
|
|
|
|
# Calculate gradients of model in backward pass
|
|
loss.backward()
|
|
|
|
# Collect ''datagrad''
|
|
data_grad = data.grad.data
|
|
|
|
# Restore the data to its original scale
|
|
data_denorm = denorm(data)
|
|
|
|
# Apply the FGSM attack
|
|
perturbed_data = fgsm_attack(data_denorm, epsilon, data_grad)
|
|
|
|
# Reapply normalization
|
|
perturbed_data_normalized = transforms.Normalize((0.1307,), (0.3081,))(perturbed_data)
|
|
|
|
# Evaluate the model on the attacked image
|
|
output_unfiltered = model(perturbed_data_normalized)
|
|
|
|
# Evaluate performance for
|
|
for i in range(TESTED_STRENGTH_COUNT):
|
|
strength = 2*i + 1
|
|
|
|
# Apply the filter with the specified strength
|
|
filtered_input = defense_filters.gaussian_blur(perturbed_data_normalized, batch_size=len(perturbed_data_normalized), ksize=(strength, strength))
|
|
# Evaluate the model on the filtered images
|
|
filtered_output = model(filtered_input)
|
|
# Get the predicted classification
|
|
filtered_pred = filtered_output.max(1, keepdim=True)[1]
|
|
|
|
# Count up correct classifications
|
|
if filtered_pred.item() == target.item():
|
|
while i >= len(filtered_correct_counts):
|
|
filtered_correct_counts.append(0)
|
|
filtered_correct_counts[i] += 1
|
|
|
|
# Get the predicted classification
|
|
unfiltered_pred = output_unfiltered.max(1, keepdim=True)[1]
|
|
|
|
# Count up correct classifications for each case
|
|
if orig_pred.item() == target.item():
|
|
orig_correct += 1
|
|
|
|
if unfiltered_pred.item() == target.item():
|
|
unfiltered_correct += 1
|
|
|
|
|
|
# Calculate the overall accuracy of each case
|
|
orig_acc = orig_correct/float(len(test_loader))
|
|
unfiltered_acc = unfiltered_correct/float(len(test_loader))
|
|
|
|
filtered_accuracies = []
|
|
for correct_count in filtered_correct_counts:
|
|
filtered_accuracies.append(correct_count/float(len(test_loader)))
|
|
|
|
|
|
print(f"====== EPSILON: {epsilon} ======")
|
|
print(f"Clean (No Filter) Accuracy = {orig_correct} / {len(test_loader)} = {orig_acc}")
|
|
print(f"Unfiltered Accuracy = {unfiltered_correct} / {len(test_loader)} = {unfiltered_acc}")
|
|
for i in range(TESTED_STRENGTH_COUNT):
|
|
strength = 2*i + 1
|
|
print(f"Gaussian Blur (strength = {strength}) = {filtered_correct_counts[i]} / {len(test_loader)} = {filtered_accuracies[i]}")
|
|
|
|
return unfiltered_acc, filtered_accuracies
|
|
|
|
|
|
unfiltered_accuracies = []
|
|
filtered_accuracies = []
|
|
|
|
for eps in epsilons:
|
|
unfiltered_accuracy, filtered_accuracy = test(model, device, test_loader, eps)
|
|
unfiltered_accuracies.append(unfiltered_accuracy)
|
|
filtered_accuracies.append(filtered_accuracy)
|
|
|
|
# Plot the results
|
|
plt.figure(figsize=(16,9))
|
|
plt.plot(epsilons, unfiltered_accuracies, label="Attacked Accuracy")
|
|
for i in range(TESTED_STRENGTH_COUNT):
|
|
filtered_accuracy = [filter_eps[i] for filter_eps in filtered_accuracies]
|
|
plt.plot(epsilons, filtered_accuracy, label=f"Gaussian Blur (strength = {2*i + 1})")
|
|
|
|
plt.legend(loc="upper right")
|
|
plt.title("Gaussian Blur Performance")
|
|
plt.xlabel("Attack Strength ($\\epsilon$)")
|
|
plt.ylabel("Accuracy")
|
|
plt.savefig("Images/GaussianBlurPerformance.png", )
|