Adversarial-Machine-Learnin.../Filter_Analysis/fgsm.py
2024-04-06 22:31:31 -04:00

265 lines
10 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import numpy as np
import matplotlib.pyplot as plt
import cv2
from mnist import Net
from pykuwahara import kuwahara
epsilons = np.arange(0.0,0.35,0.05)
pretrained_model = "mnist_cnn_unfiltered.pt"
use_cuda=False
torch.manual_seed(69)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data/', train=False, download=True, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
])),
batch_size=1, shuffle=True)
print("CUDA Available: ", torch.cuda.is_available())
device = torch.device("cuda" if use_cuda and torch.cuda.is_available() else "cpu")
model = Net().to(device)
print(type(model))
model.load_state_dict(torch.load(pretrained_model, map_location=device))
model.eval()
def fgsm_attack(image, epsilon, data_grad):
# Collect the element-wise sign of the data gradient
sign_data_grad = data_grad.sign()
# Create the perturbed image by adjusting each pixel of the input image
perturbed_image = image + epsilon*sign_data_grad
# Adding clipping to maintain [0, 1] range
perturbed_image = torch.clamp(perturbed_image, 0, 1)
return perturbed_image
def denorm(batch, mean=[0.1307], std=[0.3081]):
"""
Convert a batch of tensors to their original scale.
Args:
batch (torch.Tensor): Batch of normalized tensors.
mean (torch.Tensor or list): Man used for normalization.
std (torch.Tensor or list): Standard deviation used for normalization.
Returns:
torch.Tensor: batch of tensors without normalization applied to them.
"""
if isinstance(mean, list):
mean = torch.tensor(mean).to(device)
if isinstance(std, list):
std = torch.tensor(std).to(device)
return batch * std.view(1, -1, 1, 1) + mean.view(1, -1, 1, 1)
def test(model, device, test_loader, epsilon):
# Original dataset correct classifications
orig_correct = 0
# Attacked dataset correct classifications
attacked_correct = 0
kuwahara_correct = 0
bilateral_correct = 0
gaussian_blur_correct = 0
random_noise_correct = 0
attacked_snap_color_correct = 0
adv_examples = []
for data, target in test_loader:
data, target = data.to(device), target.to(device)
data.requires_grad = True
output_orig = model(data)
orig_pred = output_orig.max(1, keepdim=True)[1]
# Calculate the loss
loss = F.nll_loss(output_orig, target)
# Zero all existing gradients
model.zero_grad()
# Calculate gradients of model in backward pass
loss.backward()
# Collect ''datagrad''
data_grad = data.grad.data
# Restore the data to its original scale
data_denorm = denorm(data)
# Apply the FGSM attack
perturbed_data = fgsm_attack(data_denorm, epsilon, data_grad)
# Reapply normalization
perturbed_data_normalized = transforms.Normalize((0.1307,), (0.3081,))(perturbed_data)
# Filter the attacked image
kuwahara_data = filtered(perturbed_data_normalized, len(perturbed_data_normalized), filter="kuwahara")
bilateral_data = filtered(perturbed_data_normalized, len(perturbed_data_normalized), filter="bilateral")
gaussian_blur_data = filtered(perturbed_data_normalized, len(perturbed_data_normalized), filter="gaussian_blur")
random_noise_data = filtered(perturbed_data_normalized, len(perturbed_data_normalized), filter="noise")
attacked_snap_color_data = filtered(perturbed_data_normalized, len(perturbed_data_normalized), filter="snap_color")
# evaluate the model on the attacked and filtered images
output_attacked = model(perturbed_data_normalized)
output_kuwahara = model(kuwahara_data)
output_bilateral = model(bilateral_data)
output_gaussian_blur = model(gaussian_blur_data)
output_random_noise = model(random_noise_data)
output_attacked_snap = model(attacked_snap_color_data)
# Get the predicted class from the model for each case
attacked_pred = output_attacked.max(1, keepdim=True)[1]
kuwahara_pred = output_kuwahara.max(1, keepdim=True)[1]
bilateral_pred = output_bilateral.max(1, keepdim=True)[1]
gaussian_blur_pred = output_gaussian_blur.max(1, keepdim=True)[1]
random_noise_pred = output_random_noise.max(1, keepdim=True)[1]
attacked_snap_color_pred = output_attacked_snap.max(1, keepdim=True)[1]
# Count up correct classifications for each case
if orig_pred.item() == target.item():
orig_correct += 1
if attacked_pred.item() == target.item():
attacked_correct += 1
if kuwahara_pred.item() == target.item():
kuwahara_correct += 1
if bilateral_pred.item() == target.item():
bilateral_correct += 1
if gaussian_blur_pred.item() == target.item():
gaussian_blur_correct += 1
if random_noise_pred.item() == target.item():
random_noise_correct += 1
if attacked_snap_color_pred.item() == target.item():
attacked_snap_color_correct += 1
# Calculate the overall accuracy of each case
orig_acc = orig_correct/float(len(test_loader))
attacked_acc = attacked_correct/float(len(test_loader))
kuwahara_acc = kuwahara_correct/float(len(test_loader))
bilateral_acc = bilateral_correct/float(len(test_loader))
gaussian_blur_acc = gaussian_blur_correct/float(len(test_loader))
random_noise_acc = random_noise_correct/float(len(test_loader))
attacked_snap_color_acc = attacked_snap_color_correct/float(len(test_loader))
print(f"Epsilon: {epsilon}")
print(f"Clean (No Filter) Accuracy = {orig_correct} / {len(test_loader)} = {orig_acc}")
print(f"Attacked (No Filter) Accuracy = {attacked_correct} / {len(test_loader)} = {attacked_acc}")
print(f"Attacked (Kuwahara Filter) Accuracy = {kuwahara_correct} / {len(test_loader)} = {kuwahara_acc}")
print(f"Attacked (Bilateral Filter) Accuracy = {bilateral_correct} / {len(test_loader)} = {bilateral_acc}")
print(f"Attacked (Gaussian Blur) Accuracy = {gaussian_blur_correct} / {len(test_loader)} = {gaussian_blur_acc}")
print(f"Attacked (Random Noise) Accuracy = {random_noise_correct} / {len(test_loader)} = {random_noise_acc}")
print(f"Attacked (Snapped Color) Accuracy = {attacked_snap_color_correct} / {len(test_loader)} = {attacked_snap_color_acc}")
return attacked_acc, kuwahara_acc, bilateral_acc, gaussian_blur_acc, random_noise_acc, attacked_snap_color_acc
def filtered(data, batch_size=64, filter="kuwahara"):
# Turn the tensor into an image
images = None
try:
images = data.numpy().transpose(0,2,3,1)
except RuntimeError:
images = data.detach().numpy().transpose(0,2,3,1)
# Apply the Kuwahara filter
filtered_images = np.ndarray((batch_size,28,28,1))
if filter == "kuwahara":
for i in range(batch_size):
filtered_images[i] = kuwahara(images[i], method='gaussian', radius=5, image_2d=images[i])
elif filter == "aniso_diff":
for i in range(batch_size):
img_3ch = np.zeros((np.array(images[i]), np.array(images[i]).shape[1], 3))
img_3ch[:,:,0] = images[i]
img_3ch[:,:,1] = images[i]
img_3ch[:,:,2] = images[i]
img_3ch_filtered = cv2.ximgproc.anisotropicDiffusion(img2, alpha=0.2, K=0.5, niters=5)
filtered_images[i] = cv2.cvtColor(img_3ch_filtered, cv2.COLOR_RGB2GRAY)
plt.imshow(filtered_images[i])
plt.show()
elif filter == "noise":
for i in range(batch_size):
mean = 0
stddev = 180
noise = np.zeros(images[i].shape, images[i].dtype)
cv2.randn(noise, mean, stddev)
filtered_images[i] = cv2.addWeighted(images[i], 1.0, noise, 0.001, 0.0).reshape(filtered_images[i].shape)
elif filter == "gaussian_blur":
for i in range(batch_size):
filtered_images[i] = cv2.GaussianBlur(images[i], ksize=(5,5), sigmaX=0).reshape(filtered_images[i].shape)
elif filter == "bilateral":
for i in range(batch_size):
filtered_images[i] = cv2.bilateralFilter(images[i], 5, 50, 50).reshape(filtered_images[i].shape)
elif filter == "snap_color":
num_colors = 2
for i in range(batch_size):
# If the channel contains any negative values, define the lowest negative value as black
min_value = np.min(images[i])
if (min_value < 0):
filtered_images[i] = images[i] + min_value
# If the color space extends beyond [0,1], re-scale all of the colors to that range
max_value = np.max(filtered_images[i])
if (max_value > 1):
filtered_images[i] *= (num_colors/max_value)
filtered_images[i] = filtered_images[i].astype(int).astype(float)*(max_value/num_colors)
else:
filtered_images[i] *= num_colors
filtered_images[i] = filtered_images[i].astype(int).astype(float)/num_colors
if (min_value < 0):
filtered_images[i] -= min_value
# Modify the data with the filtered image
filtered_images = filtered_images.transpose(0,3,1,2)
return torch.tensor(filtered_images).float()
attacked_accuracies = []
kuwahara_accuracies = []
bilateral_accuracies = []
gaussian_blur_accuracies = []
random_noise_accuracies = []
attacked_snap_color_accuracies = []
print(f"Model: {pretrained_model}")
for eps in epsilons:
aacc, kacc, bacc, gacc, nacc, sacc = test(model, device, test_loader, eps)
attacked_accuracies.append(aacc)
kuwahara_accuracies.append(kacc)
bilateral_accuracies.append(bacc)
gaussian_blur_accuracies.append(gacc)
random_noise_accuracies.append(nacc)
attacked_snap_color_accuracies.append(sacc)
# Plot the results
plt.plot(epsilons, attacked_accuracies, label="Attacked Accuracy")
plt.plot(epsilons, kuwahara_accuracies, label="Kuwahara Accuracy")
plt.plot(epsilons, bilateral_accuracies, label="Bilateral Accuracy")
plt.plot(epsilons, gaussian_blur_accuracies, label="Gaussian Blur Accuracy")
plt.plot(epsilons, random_noise_accuracies, label="Random Noise Accuracy")
plt.plot(epsilons, attacked_snap_color_accuracies, label="Snapped Color Accuracy")
plt.legend()
plt.show()