import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms import numpy as np import matplotlib.pyplot as plt import cv2 from mnist import Net from pykuwahara import kuwahara epsilons = np.arange(0.05,0.35,0.05) pretrained_model = "mnist_cnn_unfiltered.pt" use_cuda=False torch.manual_seed(69) test_loader = torch.utils.data.DataLoader( datasets.MNIST('data/', train=False, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)), ])), batch_size=1, shuffle=True) print("CUDA Available: ", torch.cuda.is_available()) device = torch.device("cuda" if use_cuda and torch.cuda.is_available() else "cpu") model = Net().to(device) print(type(model)) model.load_state_dict(torch.load(pretrained_model, map_location=device)) model.eval() def fgsm_attack(image, epsilon, data_grad): # Collect the element-wise sign of the data gradient sign_data_grad = data_grad.sign() # Create the perturbed image by adjusting each pixel of the input image perturbed_image = image + epsilon*sign_data_grad # Adding clipping to maintain [0, 1] range perturbed_image = torch.clamp(perturbed_image, 0, 1) return perturbed_image def denorm(batch, mean=[0.1307], std=[0.3081]): """ Convert a batch of tensors to their original scale. Args: batch (torch.Tensor): Batch of normalized tensors. mean (torch.Tensor or list): Man used for normalization. std (torch.Tensor or list): Standard deviation used for normalization. Returns: torch.Tensor: batch of tensors without normalization applied to them. """ if isinstance(mean, list): mean = torch.tensor(mean).to(device) if isinstance(std, list): std = torch.tensor(std).to(device) return batch * std.view(1, -1, 1, 1) + mean.view(1, -1, 1, 1) def test(model, device, test_loader, epsilon): # Original dataset correct classifications orig_correct = 0 # Attacked dataset correct classifications attacked_correct = 0 # Filtered attacked dataset correct classifications filtered_correct = 0 adv_examples = [] for data, target in test_loader: data, target = data.to(device), target.to(device) data.requires_grad = True output_orig = model(data) orig_pred = output_orig.max(1, keepdim=True)[1] # Calculate the loss loss = F.nll_loss(output_orig, target) # Zero all existing gradients model.zero_grad() # Calculate gradients of model in backward pass loss.backward() # Collect ''datagrad'' data_grad = data.grad.data # Restore the data to its original scale data_denorm = denorm(data) # Apply the FGSM attack perturbed_data = fgsm_attack(data_denorm, epsilon, data_grad) # Reapply normalization perturbed_data_normalized = transforms.Normalize((0.1307,), (0.3081,))(perturbed_data) # Filter the attacked image perturbed_data_filtered = filtered(perturbed_data_normalized, len(perturbed_data_normalized)) # evaluate the model on the attacked and filtered images output_attacked = model(perturbed_data_normalized) output_filtered = model(perturbed_data_filtered) attacked_pred = output_attacked.max(1, keepdim=True)[1] filtered_pred = output_filtered.max(1, keepdim=True)[1] if orig_pred.item() == target.item(): orig_correct += 1 if attacked_pred.item() == target.item(): attacked_correct += 1 if epsilon == 0 and len(adv_examples) < 5: adv_ex = perturbed_data.squeeze().detach().cpu().numpy() adv_examples.append( (orig_pred.item(), attacked_pred.item(), adv_ex) ) if filtered_pred.item() == target.item(): filtered_correct += 1 if epsilon == 0 and len(adv_examples) < 5: adv_ex = perturbed_data.squeeze().detach().cpu().numpy() adv_examples.append( (orig_pred.item(), filtered_pred.item(), adv_ex) ) orig_acc = orig_correct/float(len(test_loader)) attacked_acc = attacked_correct/float(len(test_loader)) filtered_acc = filtered_correct/float(len(test_loader)) print(f"Epsilon: {epsilon}") print(f"Original Accuracy = {orig_correct} / {len(test_loader)} = {orig_acc}") print(f"Attacked Accuracy = {attacked_correct} / {len(test_loader)} = {attacked_acc}") print(f"Filtered Accuracy = {filtered_correct} / {len(test_loader)} = {filtered_acc}") print(f"Filtered:Attacked = {filtered_acc} / {attacked_acc} = {filtered_acc/attacked_acc}") return attacked_acc, filtered_acc, adv_examples def filtered(data, batch_size=64): # Turn the tensor into an image images = None try: images = data.numpy().transpose(0,2,3,1) except RuntimeError: images = data.detach().numpy().transpose(0,2,3,1) # Apply the Kuwahara filter filtered_images = np.ndarray((batch_size,28,28,1)) for i in range(batch_size): filtered_images[i] = kuwahara(images[i], method='gaussian', radius=5, image_2d=images[i]) # Modify the data with the filtered image filtered_images = filtered_images.transpose(0,3,1,2) return torch.tensor(filtered_images).float() attacked_accuracies = [] filtered_accuracies = [] ratios = [] examples = [] print(f"Model: {pretrained_model}") for eps in epsilons: aacc, facc, ex = test(model, device, test_loader, eps) attacked_accuracies.append(aacc) filtered_accuracies.append(facc) ratios.append(facc/aacc) examples.append(ex) # Plot the results plt.subplot(121) plt.plot(epsilons, attacked_accuracies, label="Attacked Accuracy") plt.plot(epsilons, filtered_accuracies, label="Filtered Accuracy") plt.legend() plt.subplot(122) plt.plot(epsilons, ratios, label="Filtered:Attacked") plt.legend() plt.show()