import torch import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt import numpy as np import torch.optim as optim import torch.nn as nn import torch.nn.functional as F #import dla EPOCHS = 200 class CifarCNN(nn.Module): def __init__(self): super(CifarCNN, self).__init__() self.conv1 = nn.Conv2d(3, 96, 3, 1) self.conv2 = nn.Conv2d(96, 192, 3, 1) self.dropout1 = nn.Dropout(0.25) self.dropout2 = nn.Dropout(0.5) self.fc1 = nn.Linear(37632, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.conv2(x) x = F.relu(x) x = F.max_pool2d(x,2) x = self.dropout1(x) x = torch.flatten(x,1) x = self.fc1(x) x = F.relu(x) x = self.dropout2(x) x = self.fc2(x) output = F.log_softmax(x, dim=1) return output def train(model, trainloader, optimizer, epoch): running_loss = 0.0 for i, [data, target] in enumerate(trainloader, 0): # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() # print statistics running_loss += loss.item() if i % 2000 == 1999: # print every 2000 mini-batches print(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}') running_loss = 0.0 def test(model, testloader, classes): correct = 0 total = 0 # since we're not training, we don't need to calculate the gradients for our outputs with torch.no_grad(): for data, target in testloader: # calculate outputs by running images through the network output = model(data) # the class with the highest energy is what we choose as prediction _, predicted = torch.max(output.data, 1) total += target.size(0) correct += (predicted == target).sum().item() print(f'Accuracy of the network on the 10000 test images: {100 * correct // total} %') # prepare to count predictions for each class correct_pred = {classname: 0 for classname in classes} total_pred = {classname: 0 for classname in classes} # again no gradients needed with torch.no_grad(): for data, target in testloader: output = model(data) _, predictions = torch.max(output, 1) # collect the correct predictions for each class for label, prediction in zip(target, predictions): if label == prediction: correct_pred[classes[label]] += 1 total_pred[classes[label]] += 1 # print accuracy for each class for classname, correct_count in correct_pred.items(): accuracy = 100 * float(correct_count) / total_pred[classname] print(f'Accuracy for class: {classname:5s} is {accuracy:.1f} %') def main(): transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) batch_size = 4 trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') model = CifarCNN().to(device) optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9) for epoch in range(EPOCHS): train(model, trainloader, optimizer, epoch) test(model, testloader, classes) PATH = './cifar_cnn.pth' torch.save(model.state_dict(), PATH) if __name__ == "__main__": main()