Enhancing Image **Classifiers** with **Denoising Filters**

AIDAN SHARPE

Advisor: Dr. Robi Polikar

Rowan University, Henry M. Rowan College of Engineering, Glassboro, NJ 08028

Problem Statement

Neural networks are vulnerable to adversarial attacks [1], [7]. This project investigates the efficacy of various image processing techniques at improving the robustness of image classifier models.

Requirements

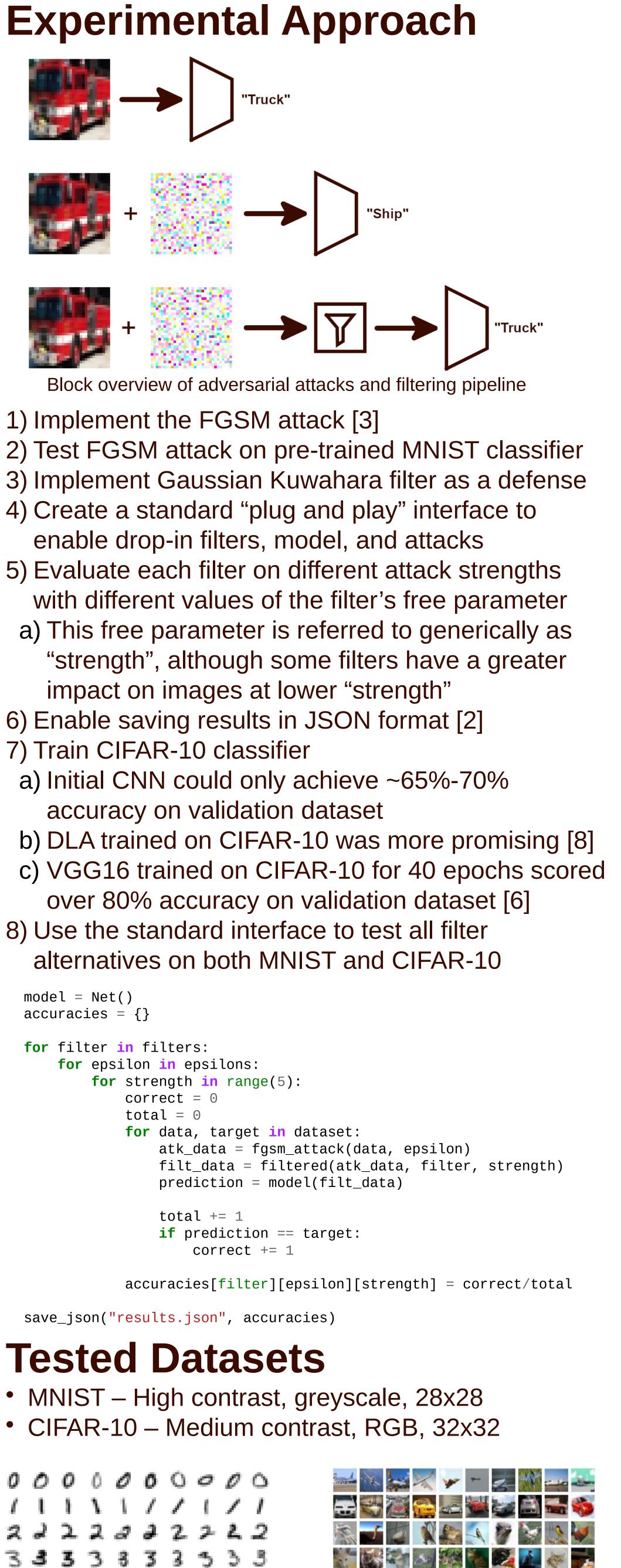
- 1) Examine whether image preprocessing filters are effective at defending adversarial attacks
- 2) Compare the efficacy of different filters at different attack and filtering strengths
- 3) Investigate the transferability of image preprocessing defenses across different datasets and classifier architectures

Constraints

- Limited computing resources
- Restricted the resolution of datasets used
- Limited model complexity (parameters, epochs, etc.)
- Maximum file size of 100 MB
- Models with too many parameters would be untrackable by git

Engineering Standards

- ECMA 404 [2]
- The JSON data interchange syntax
- IEEE 3129-2023 [4]
- IEEE Standard for Robustness Testing and Evaluation of Artificial Intelligence (AI)-based Image Recognition Service



16 KH KA 🥐 🎼 🛠 📉 🔛 🚳

1976 🔨 🔊 🙈 🥂 🔊 🔊 🕅

🚔 🐟 💯 法 👘 🕅 📷 🛠 💒 🕷

🗃 🍻 🛋 👛 🥧 💉 🕍 🦛

🚄 🌃 💒 🎯 🚝 📷 🖓 🚔

CIFAR-10 Excerpt

- Fast Gradient Sign Method (FGSM) [3]
- Carlini and Wagner (Planned) [1]

4484444444

55555555555

モフクフフフィ**クク**ク

88888888888

999999999999

MNIST Excerpt

Tested Attacks

6666666

Alternative Filters

 Gaussian Blur Blurs edges and smooth areas Removes high frequency information (lowpass) Gaussian Kuwahara Filter Blurs smooth area, but preserves edges • Has an oil painting-like effect Mean Kuwahara Filter Similar effect as Gaussian Kuwahara Slightly different way of calculating pixel values Bilateral Filter Edge-preserving smoothing filter Random Noise • May outweigh effects of adversarial noise Threshold Filter

Removes all low-amplitude information Bit-Depth Reduction Acts like multiple thresholds to multiple values

Effect of filtering a sample from MNIST attacked with FGSM at ε =0.2

Health & Safety Considerations

Self-driving systems must respond rapidly and accurately to ensure passenger safety • A lightweight filtering approach was chosen over

an ML-based defense to reduce the time between perception and classification

Social Considerations

• All software & data is free and open source (FOSS)

Ensures full and equal access to all who wish to recreate the results or defend their own models

Environmental

Considerations

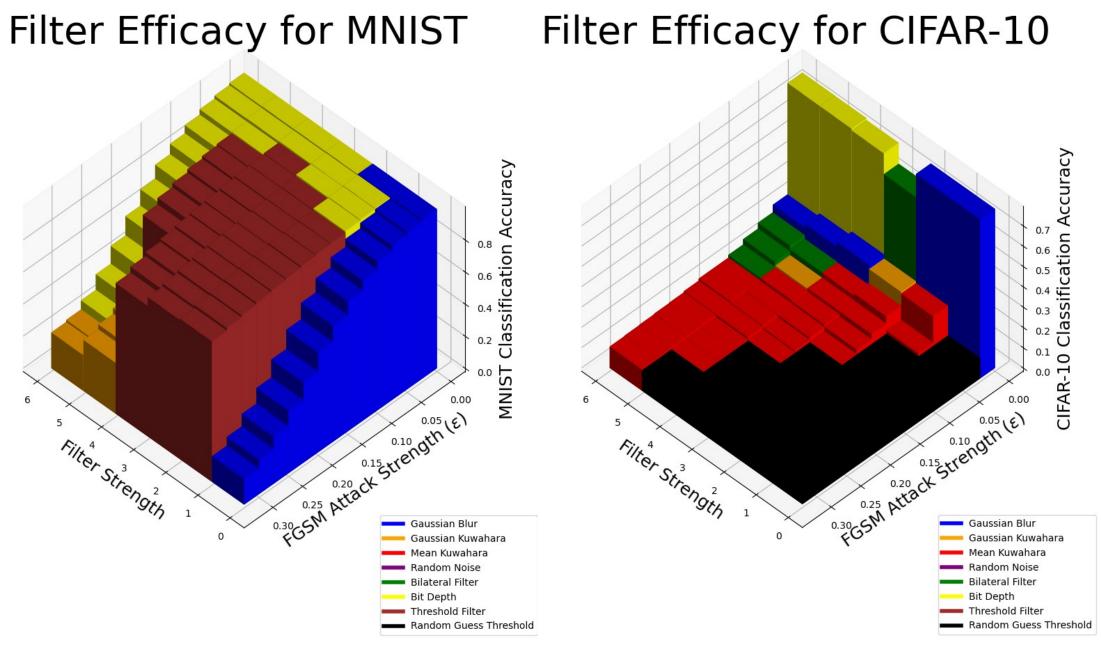
Using image processing eliminates the

- computationally expenive training process found in ML-based defenses
- While untested, denoising filters may also be more energy-efficient than ML-based defenses during use

Economic Considerations

- Costs are minimized by prioritizing lightweight, power-saving algorithms
- Less computationally intense filters with similar results should rank higher

Experimental Results



Conclusions

Future Work

- Median blur

Evaluation Criteria

• The **accuracy** of a classifier model is given by:

Correct Classifications Accuracy =Total Classifications

 The random guessing threshold is the expected accuracy if a class was guessed at random • A filter is deemed **ideally effective** if it prevents the accuracy of the classifier from changing with increasing attack strength

A filter is deemed **minimally effective** if it keeps accuracy above the random guessing threshold Being at least minimally effective means that a boosting technique can be used [5]

 MNIST classifier does better than random guessing even without a defense (strength=0 case) CIFAR-10 is more strongly affected by FGSM (strength=0 case)

• MNIST filtering maintains accuracy at higher ε • The threshold filter on MNIST is almost ideally effective for strengths 1, 2, and 3 • The most effective filters on CIFAR-10 are at best

minimally effective regardless of strength

 Implement and test Carlini and Wagner attack [1] Implement and test ImageNet dataset Implement more filters • JPEG compression • Anisotropic diffusion Test the power consumption of an image processing defense against an ML-based defense • Standardize the meaning of strength SNR-based definition Lp norm-based definition

