
A BROAD SPECTRUM DEFENSE AGAINST ADVERSARIAL EXAMPLES

by

Sean McGuire

A Thesis

Submitted to the
Department of Electrical & Computer Engineering

College of Engineering
In partial fulfillment of the requirement

For the degree of
Master of Science in Electrical & Computer Engineering

at
Rowan University

June 20, 2022

Thesis Chair: Robi Polikar, Ph.D., Department Head, Department of Electrical &
Computer Engineering

Committee Members:
Umashanger Thayasivam, Ph.D., Professor, Department of Mathematics

Ravi Ramachandran, Ph.D., Professor, Department of Electrical & Computer Engineering
Ghulam Rasool, Ph.D., Professor, Department of Electrical & Computer Engineering



© 2022 Sean McGuire



Dedication

This thesis is dedicated to my parents. For their persistent love and encouragement.



Acknowledgements

Throughout the writing of this dissertation I have received a great deal of support

and assistance.

I would first like to express my sincere gratitude to my thesis advisor, Dr. Robi

Polikar for his continuing support and guidance throughout this process. Your feedback

and expertise was invaluable in the development of this thesis.

I would like to thank Muhammed Umer, Glenn Dawson, and Jacob Epifano for the

stimulating research discussions leading to breakthroughs in this work.

I would also like to thank my parents for their constant support and encouragement.

I am deeply grateful to my friends and family for their unwavering support and belief in

me.

The work was partly supported by the US Department of Education through the

Graduate Assistance in Areas of National Need (GAANN) program, Award Number P200A180055.

iv



Abstract

Sean McGuire
A BROAD SPECTRUM DEFENSE AGAINST ADVERSARIAL EXAMPLES

2021-2022
Robi Polikar, Ph.D.

Master of Science in Electrical & Computer Engineering

This work focuses on developing a new adversarial machine learning defense capa-

ble of detecting and rejecting adversarial examples. Adversarial examples are data points

crafted to fool a model into giving an incorrect prediction. Everyday, machine learning

is used to solve more problems. As our dependence on these models increases, it is vital

to recognize their vulnerability to adversarial samples. This defense, called simply Broad

Spectrum Defense (BSD), is designed to work across a wide range of datasets and attacks

while requiring as few hyperparameters as possible. Another benefit of the proposed BSD

over existing defenses is its reliance only on test data: Unlike most other approaches, BSD

does not train its detectors using adversarial data, removing an inherent biases present in

other works. Extensive set of experiments showed that BSD outperforms existing detector

based methods such as MagNet and Feature Squeezing. We believe BSD will inspire a new

direction in adversarial machine learning to create a robust defense capable of generalizing

to existing and future attacks.

v



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation: Adversarial Machine Learning Defenses . . . . . . . . . . . . 1

1.2 Adversarial Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Scope of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2: Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Adversarial Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Attack Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Attack Taxonomy with Respect Attacker’s Available Information . 6

2.1.3 Attack Taxonomy with Respect to Attacker’s Goals . . . . . . . . . 8

2.1.4 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.5 Denoising Autoencoder . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 3: Related Work: Evasion Attack and Defense Strategies . . . . . . . . . . 20

3.1 Terminology and Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Evasion Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Fast Gradient Sign Method (FGSM) . . . . . . . . . . . . . . . . . 22

3.2.2 Jacobian Saliency Map Attack (JSMA) . . . . . . . . . . . . . . . 24

vi



Table of Contents (Continued)

3.2.3 Projected Gradient Decent (PGD) . . . . . . . . . . . . . . . . . . 27

3.2.4 DeepFool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.5 Carlini Wagner Attack . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.6 Elastic Net Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.7 Spatial Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.8 Shadow Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Existing Defense Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Adversarial Training . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Shortcomings of Current Approaches . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Certified Robustness Within an ε Ball . . . . . . . . . . . . . . . . 53

3.4.2 Training on Adversarial Data . . . . . . . . . . . . . . . . . . . . . 54

3.4.3 Inability to Generalize to Other Datasets . . . . . . . . . . . . . . . 55

Chapter 4: A Broad Spectrum Defense Against Evasion Adversarial Attacks . . . . 56

4.1 Inspiration for Proposed Defense . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Training Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.2 Setting Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.3 Reconstruction Error Based Detectors . . . . . . . . . . . . . . . . 58

4.1.4 JSD Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Proposed Defense: Broad Spectrum Defense (BSD) . . . . . . . . . . . . . 62

4.2.1 Class Divergence Detector (Unique to BSD) . . . . . . . . . . . . . 63

4.2.2 BSD Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vii



Table of Contents (Continued)

Chapter 5: Experiments, Results and Comprehensive Analysis of BSD . . . . . . . 68

5.1 Metrics Used to Evaluate Robustness . . . . . . . . . . . . . . . . . . . . . 68

5.1.1 True / False Positive Trade Off . . . . . . . . . . . . . . . . . . . . 69

5.2 Datasets Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 CIFAR10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.3 CIFAR100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.4 TinyImageNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.5 ImageNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Description of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3.1 Defenses for Comparisons . . . . . . . . . . . . . . . . . . . . . . 75

5.3.2 Adversarial Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.2 Benign Accuracy Evaluation . . . . . . . . . . . . . . . . . . . . . 78

5.4.3 Performance on All Attacks . . . . . . . . . . . . . . . . . . . . . 79

5.5 CIFAR10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.5.2 Benign Accuracy Evaluation . . . . . . . . . . . . . . . . . . . . . 81

5.5.3 Performance on Wide Spectrum of Attacks . . . . . . . . . . . . . 83

5.6 CIFAR100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6.1 Benign Accuracy Evaluation . . . . . . . . . . . . . . . . . . . . . 84

5.6.2 Evaluation on Adversarial Data . . . . . . . . . . . . . . . . . . . 86

viii



Table of Contents (Continued)

5.7 TinyImageNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.7.1 Benign Accuracy Evaluation . . . . . . . . . . . . . . . . . . . . . 87

5.7.2 Evaluation on Adversarial Data . . . . . . . . . . . . . . . . . . . 88

5.8 ImageNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.8.1 Benign Accuracy Evaluation . . . . . . . . . . . . . . . . . . . . . 90

5.8.2 Evaluation on Adversarial Data . . . . . . . . . . . . . . . . . . . 91

5.9 Summarized Results Over Datasets . . . . . . . . . . . . . . . . . . . . . . 92

Chapter 6: Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

ix



List of Figures

Figure Page

Figure 1. Example of a Backdoor Attack on Physical Object . . . . . . . . . . . . . 11

Figure 2. Example of an Evasion Attack . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 3. Visual Depiction of Autoencoder . . . . . . . . . . . . . . . . . . . . . . 16

Figure 4. Demonstration of Denoising Autoencoder . . . . . . . . . . . . . . . . . 19

Figure 5. FGSM Attack Applied to an Example Image from TinyImageNet . . . . . 24

Figure 6. JSMA Attack Applied to an Example Image from TinyImageNet . . . . . 27

Figure 7. PGD Attack Applied to an Example Image from TinyImageNet . . . . . . 28

Figure 8. DeepFool Attack Applied to an Example Image from TinyImageNet . . . 31

Figure 9. Carlini Wagner Attack Applied to a Sample Image from TinyImageNet . . 35

Figure 10. Elastic Net Attack Applied to a Sample Image from TinyImageNet . . . . 38

Figure 11. Spatial Attack Applied to an Example Image from TinyImageNet . . . . . 41

Figure 12. Shadow Attack Applied to an Example Image from TinyImageNet . . . . 43

Figure 13. Feature Squeezing Block Diagram . . . . . . . . . . . . . . . . . . . . . 49

Figure 14. MagNet Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 15. Demonstration of Reconstruction Error Detector . . . . . . . . . . . . . . 60

Figure 16. Demonstration of Class Divergence Detector . . . . . . . . . . . . . . . . 65

Figure 17. Broad Spectrum Defense Block Diagram . . . . . . . . . . . . . . . . . . 66

Figure 18. MNIST Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 19. CIFAR10 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 20. CIFAR100 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 21. TinyImageNet Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 22. ImageNet Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 23. Impact of Detectors on MNIST . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 24. Impact of Detectors on CIFAR10 . . . . . . . . . . . . . . . . . . . . . . 82

Figure 25. Accuracy of Clean Data for CIFAR100 . . . . . . . . . . . . . . . . . . . 85

Figure 26. Accuracy of Clean Data for TinyImageNet . . . . . . . . . . . . . . . . . 88

x



Figure 27. Accuracy of Clean Data for ImageNet . . . . . . . . . . . . . . . . . . . 91

xi



List of Tables

Table Page

Table 1. Table of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Table 2. Comparison of Detector Based Defenses . . . . . . . . . . . . . . . . . 47

Table 3. MNIST Classifier Architecture . . . . . . . . . . . . . . . . . . . . . . 78

Table 4. MNIST Adversarial Accuracy at β = 0.05 . . . . . . . . . . . . . . . . . 80

Table 5. CIFAR10 Classifier Architecture . . . . . . . . . . . . . . . . . . . . . 81

Table 6. CIFAR10 Adversarial Performance at β = 0.05 . . . . . . . . . . . . . . 84

Table 7. CIFAR100 ResNet Architecture Adversarial Performance at β = 0.05 . . 86

Table 8. TinyImageNet Adversarial Performance at β = 0.05 . . . . . . . . . . . 89

Table 9. ImageNet Adversarial Performance at β = 0.05 . . . . . . . . . . . . . . 92

xii



Chapter 1

Introduction

1.1 Motivation: Adversarial Machine Learning Defenses

Machine Learning models are now an indispensable tool used across a wide array

of fields from medicine to business to defense among many others. Adversarial machine

learning explores the process of attacking and defending these models. It is vital that we

recognize the inherent vulnerability of these models and develop strong defenses to secure

them against malicious attacks.

1.2 Adversarial Machine Learning

Adversarial machine learning (AML) refers to scenarios where an adversary, pre-

sumably with malicious intent, is present in the environment. The adversary seeks to ma-

nipulate the data to compromise the model. An AML framework typically includes two

actors: the adversary (the attacker) and the model creator (the defender). The attacker’s

goal may simply be to cause the model to generally perform poorly, or perhaps cause the

model to misclassify a specific set of instances. The defender, on the other hand, wants

to ensure that the model is secure and robust to attacks. The adversary may be aware of

a potential defender and attempt to craft an attack that then bypasses the defense. This

cat and mouse game continues perpetually. It is widely accepted that the attacker is at an

advantage as defenders often react to new attacks, but there has not been much work on

developing a proactive defense which can generalize to a wide spectrum of attacks.

1



1.3 Problem Statement

Machine learning models are susceptible to adversarial attacks, which can exploit

inherent vulnerabilities of a classifier. Due to these vulnerabilities, an adversary can easily

perturb a sample very slightly and force an incorrect classification of that sample. As

more machine learning models are implemented in critical tasks, it is vital that a defense is

constructed to secure these models.

While new defense mechanisms have been developed – and continue to be devel-

oped – many of these existing defenses are reactionary, and only work on a subset of attacks

or datasets for which they are specifically designed. Additionally, some defenses work by

learning to approximate attacks, but those defenses are typically trained on one type of at-

tack. In such cases, it is unrealistic to assume that a defense designed to mitigate one type

of attack will generalize to different types of attacks. An effective defense must generalize

across a variety of attacks and datasets without being biased by any form of training on any

given attack.

1.4 Scope of Thesis

This thesis introduces the formulation of a broad spectrum defense (BSD) that is

capable of detecting adversarial samples. The primary focus of this work is on neural

networks, but BSD can be suitably modified to work with any classification model. This

work demonstrates the proposed defense’s ability to detect adversarial samples on a wide

variety of attack types and datasets, and further shows that it outperforms many of the

existing works. An analysis of the defense is performed under a gray box scenario that

assumes the attacker has access to a realistic amount of information about the model.

2



1.5 Research Contributions

A proactive defense strategy is proposed, developed and evaluated in this effort.

The proposed broad spectrum defense:

1. introduces a proactive approach providing considerable – often significant – improve-

ment over many of the existing evasion attacks;

2. is capable of generalizing to future attacks;

3. scales to large models and datasets, compatible with networks of any size and can

analyze data with little delay;

4. has the ability to work in an online setting, as it does not require any retraining of the

existing classifier;

5. is data agnostic, that is, it can be used with image and non image data;

6. can be suitably modified to work with non-neural network type classifiers;

7. while primarily designed for evasion attacks, it has the potential to generalize to

poisoning attacks.

1.6 Organization of the Thesis

Chapter 2 provides an overview and background for neural networks and adversar-

ial machine learning, and also introduces the important terminology used throughout this

thesis. In Chapter 3, existing adversarial attack and defense approaches are discussed in

detail. Chapter 4 introduces the broad spectrum defense and discusses the modules used to

3



construct the defense including the Class Divergence Detector. Chapter 5 covers a discus-

sion of the experiments performed, the results of these experiments, as well as comparisons

between BSD and existing approaches. Chapter 6 concludes this thesis and explores possi-

ble avenues for future work.

4



Chapter 2

Background

2.1 Adversarial Machine Learning

Adversarial machine learning includes the process of attacking and defending ma-

chine learning models. Machine learning models are inherently vulnerable to adversarial

attacks, an adversarial attack describes the process of generating a sample which is mis-

classified even though it is highly similar to samples that are classified correctly [15]. De-

fending against such attacks has proven to be a difficult challenge as every time a defense

is proposed, other attacks appear that thwart the defense. This cat and mouse game contin-

ues endlessly, but it appears that the attacker always has the upper hand. Before exploring

specific attacks and defenses one must understand the environment in which an attacker

operates, along with the attackers goals. This section will introduce a high level taxonomy

used to describe adversarial attacks and defenses.

2.1.1 Attack Taxonomy

The attack taxonomy is used to describe the nature of the attacks based on the

amount and nature of information available to the attacker. The first attack taxonomy was

formulated by Barreno et al., whose taxonomy introduced the now commonly used termi-

nology such as causative (poisoning), explorative (evasion), targeted and indiscriminate

[1]. Barreno’s taxonomy primarily reflects the attacker’s intentions. The next taxonomy

was developed by Biggio et al., whose taxonomy then introduced the concepts of perfect

knowledge (white box), limited knowledge (gray box), and no-knowledge (black box) at-

tacks [3]. Biggio’s taxonomy, on the other hand, reflects the amount of information that

5



is available to the attacker. Depending on such amount and nature of information avail-

able, the attacker can craft stronger or more strategic attacks. An agreed upon taxonomy is

helpful in describing the intended environment for an attack or defense.

2.1.2 Attack Taxonomy with Respect Attacker’s Available Information

2.1.2.a Black Box Attacks. Attacks designed based on the amount of information

available to the attacker starts by the assumption of little or no information being available

to the attacker, introducing the idea of a zero knowledge scenario, also known as the black

box attacks. In the black box setting, the attacker does not know anything about the model

architecture or its parameters. In most black box formulations, however, the attacker is

assumed to know, possibly, about the application domain, and may have access to the test

data. Given one or more samples from the test distribution, an attacker has an initial point

used to construct adversarial examples. Without this point, the problem becomes incredibly

difficult as the adversary would not have a ground truth that could be perturbed. Evaluating

defenses in a black box scenario reveals performance of the model when an attacker can

only probe the classifier by passing in test data points and receiving a classification. The

attacker can utilize this feedback to craft an attack point with more impact. The simplest

black box attacks can be done by perturbing the original test data to the point of misclas-

sification. Two of these naı̈ve methods are additive uniform noise and Gaussian blur [11].

These two types of attacks perturb the sample by adding Gaussian or uniform noise to the

data. If the samples classification remains unchanged, the magnitude of noise is increased

until misclassification occurs. It is important to evaluate a defense on these naı̈ve methods

as a robust defense should prove effective against against a large variety of attacks.

6



2.1.2.b White Box Attacks. In the opposite scenario of white box attacks the at-

tacker has complete access and knows everything there is to know about the model. That

level of information includes the model itself, its parameters, training and test data as well

as any defenses used along with their parameters. A white box attack is unrealistic, of

course, but it represents the worst case scenario from the model’s (and therefore the de-

fender’s) perspective. Some examples of white box attacks include Fast Gradient Sign

Method (FGSM), Projected Gradient Decent (PGD), the Carlini Wagner attack, and many

other that will be introduced in the next chapter.

2.1.2.c Gray Box Attacks. A more realistic - and often used - attack type is the so-

called gray box attacks. Gray box attacks describe any scenario along the spectrum between

complete knowledge (white box) and zero knowledge (black box) cases. Some of these

variations include when the attacker is aware of the model (or perhaps even the defense

applied), but not its parameters. In this case the attacker would attempt to construct the

model (or its defense) itself with some arbitrary parameters, attack the model and transfer

these adversarial samples onto the target classifier. Another example of gray box attack can

allow the attacker to access all parameters of the classification model, but not its defenses.

The attacker may then attempt to craft white box attacks against the classifier and attempt

to transfer them to the defended model. The gray box scenario often includes the use

of surrogate models. A surrogate model is a model selected by the attacker; the attacker

trains the surrogate and creates attack samples against it. Finally, the attacker transfers

these samples to the target model. Some examples of gray box attacks include the above

mentioned attacks such as FGSM, PGD, and the Carlini Wagner attack. In a gray box

7



scenario, these attacks would be performed against a surrogate model (a model thought to

approximate that used by the defender). In the gray box scenario described in this work,

the adversary has complete knowledge of the model, but the adversary has no knowledge

of the defense, so in this case the attacker launches a “white box” attack against the model,

but the attack is really “gray box” as the samples are operating on a defended model.

2.1.3 Attack Taxonomy with Respect to Attacker’s Goals

2.1.3.a Targeted Attacks. In a targeted attack, an adversary is interested in forcing a

misclassification to a specific class. For example a targeted attack may involve an adversary

seeking to have all stop signs classified as speed limit signs. In a targeted attack, the attacker

has a narrow goal of just impacting or classifying samples into a single “target” class. Any

of the above mentioned attacks can function as targeted attacks by slightly modifying the

attacks parameters.

2.1.3.b Untargeted (Indiscriminate) Attacks. An untargeted attack occurs when

the adversary seeks to force a misclassification to any class and does not care the class

into which the sample is misclassified. An untargeted attack is successful if the sample

is classified as any class besides the correct class. Untargeted attacks are able to generate

adversarial samples with smaller perturbations than their targeted counter parts. This can be

understood by considering a classification problem with 100 different classes. The targeted

adversary may need to perturb one image towards the classification boundary of a class

which resides on the opposite side of the decision surface. An untargeted attack can perturb

the image until it crosses any decision boundary which can result smaller distortions. Some

8



of the above mentioned attacks are originally implemented in an untargeted form, so these

require no modification, while other attacks that are natively “targeted” can be made to be

“untargeted” by performing attacks against every class and selecting the sample with the

smallest perturbation.

2.1.3.c Poisoning Attacks. In a poisoning attack, the adversary has the ability to

insert a number of samples into the training set. The samples inserted into the training set

can be used to completely devastate the entire model, or they can be used to target a specific

region of the model. The first mention of learning with adversarial data in the training set

can be traced back to Kearns et al. in the 1998 paper titled Learning in the Presence of

Malicious Errors [18]. However the concept of a poisoning attack, or intentionally com-

prising a machine learning model at training time was first introduced in 2008 by Nelson

et al. [31]. A poisoning attack aims to manipulate the behavior of a given model typically

by introducing maliciously crafted data points into the training data. A poisoning attack

can have different goals: for example, one can seek to introduce the greatest amount of

error into the model by crafting attack samples which will cause the misclassification of

test samples, as was the case with the poisoning attack against the spam filter in Nelsons

work. One downside of the poisoning attack that seeks to compromise the classifier – from

the attacker’s perspective – is that the attack may be obvious. When the model is attacked,

the classification performance may be significantly degraded, which can then be easily de-

tected.

A more modern approach to poisoning attacks is a targeted poisoning attack. In a targeted

poisoning attack, the adversary seeks to control a small region of the feature or label space

9



by inserting malicious samples into the training set defining a specific region of that space.

After training, the model will return a high test performance overall, but unbeknownst to

the victim, the adversary has inserted a backdoor which can be exploited. The purpose of

the backdoor attack is to insert samples into the training set which have some (possibly

imperceptible) pattern. The model then learns to associate this pattern with a given class

as chosen by the attacker. After training is complete, the adversary can then insert any data

point with the backdoor and cause the intended and targeted misclassification. This process

was first demonstrated by Chen et al. in 2018 [7].

There exists many real life situations in which a backdoor attack can be effectively used.

One example is facial recognition: if the adversary has inserted backdoor samples with

pink sunglasses with the incorrect label as an authorized user, an unauthorized user can

then walk through security with pink sunglasses and bypass the facial recognition model.

A different example comes in the form of autonomous vehicles. Autonomous vehicles

often use deep learning models to detect and classify objects in their surroundings. If a

backdoor is added to the model which associates the presence of a sticker with a speed

limit sign, the sticker can be placed on “Stop” signs and the model will then recognize a

stop sign as a speed limit sign, with potentially deadly consequences. Physical backdoors

were explored by Eykholt et al. where they demonstrated that they can make backdoor pat-

terns that mimic normal events in the real world such as stickers on the stop sign as shown

in Figure 1 [10].

10



Figure 1
Example of a Backdoor Attack on Physical Object from [10]

2.1.3.d Evasion Attacks. The focus of this thesis is on developing defenses against

a broad spectrum of evasion attacks. Evasion attacks are therefore explained in more detail

below, with specific strategies and types of evasion attacks described in Chapter 3.

Unlike poisoning attacks, evasion attacks typically occur at test time. In an evasion

attack, the adversary seeks to perturb a sample, pass it to the model for evaluation with a

deliberate goal of having it misclassified. The first mention of an adversary at test time

in the machine learning domain comes from Dalvi et al. [8]. Dalvi mentions the pres-

ence of an adversary and a game that occurs between the adversary and the classifier, in

which the classifier attempts to protect itself against the attack (describing the presence of

the defender). This cat and mouse game describes the iterative nature of the creation of

adversarial attacks and the response of creating robust defenses. Dalvi explains in detail

how an adversary can craft samples that can be misclassified using dynamic programming.

11



More recently, however, evasion attacks have been brought to center stage by Goodfellow

et al’s work in the – now widely cited – panda example, illustrated in Figure 2 [15]. The

figure demonstrates that the original image of a panda can be perturbed with some small

modification to pixel values, resulting in the classification of a gibbon.

Figure 2
Example of Evasion Attack taken from [15]

As mentioned above, one key difference between evasion and poisoning attacks is

the time of attack: test time for evasion attacks and training time for poisoning attacks. As a

result, poisoning attacks seek to corrupt a model while it is being trained, typically with the

goal of having an overall poorly performing classifier. Evasion attacks, on the other hand,

are crafted to misclassify specific test samples while performing well on other samples.

The adversarial sample is typically generated by applying some perturbation to the original

data. Ideally, the adversarial sample should look indistinguishable from the original data,

while being misclassified by the model. The goal of misclassification is achieved by apply-

ing carefully crafted perturbations to the sample, where the perturbation is designed such

that an appropriate distance metric – between the original and the perturbed instance – is

12



minimized, while the loss function of the model is maximized.

The strength of an evasion attack can be described using two metrics. The first

metric is the distance between the original and the perturbed sample, computed using the

LP norm as described in Equation 2.1.

||x− x′ ||P = (
n∑
i=1

|xi − x
′

i|P )
1
P (2.1)

In Equation 2.1, x and x′ are the original and perturbed instances, respectively, and n is the

dimensionality of x. A small value means that the perturbed sample (x′) is very similar to

the original (x), while a larger value describes a more heavily perturbed sample. The most

commonly used metrics are the L0, L2, L∞ norms. The L0 norm refers to the number of

non zero elements in the difference as shown in Equation 2.2, where we define 00 = 0.

When minimizing the L0 norm, the attack is attempting to modify the fewest number of

pixels to create as strong of an attack as possible.

||x− x′||0 =
∑
i

|xi − x
′

i|0 (2.2)

The L2 norm measures the Euclidean distance between x and x′ as shown in Equa-

tion 2.3. The L2 distance is not sensitive to the changes in individual pixels and instead

looks at average mean squared distance across the entire sample. An attack that uses L2

norm tends to apply smaller perturbations across many pixels.

||x− x′ ||2 =

√√√√ n∑
i=1

|xi − x′|2 (2.3)

TheL∞ norm measures the maximum distance between any two pixels ||x−x′||∞ =

max(|x1 − x′1|, ..., |xn − x′n|). The L∞ distance returns the maximum perturbation for a

13



given pixel across the entire sample, for example, an image.

||x− x′||∞ = max(x− x′
) (2.4)

Adversarial evasion attacks attempt to create a sample which is misclassified by

the model while looking almost identical to the original sample. To keep the adversarial

sample as close to the original as possible, many attacks use the LP norm to restrict the

perturbation. Evasion attacks differ in optimization problems, but most attacks minimize

the LP norm to restrict the amount of perturbation which can be applied. So although the

attack functions differ, the attacks work with the same underlying similarity metric, for this

reason it is vital to evaluate defenses against LP norm based attacks. Some newer evasion

attacks move away from utilizing the same similarity metric of an LP norm. These attacks

develop different similarity metric which lead to the development of structurally different

attack points. As the non-LP norm attacks often succeed in evading the classifier, these

samples must also be evaluated.

The second metric used to describe evasion attacks is the attack success rate. The attack

success rate is essentially the rate at which the adversarial attack achieves its goal. In

evasion attacks, the goal can be an untargeted attack, or a targeted attack. In an untargeted

attack, the attacker’s only objective is to force the sample simply to be misclassified as any

class other than the correct class. More specifically, let the set (X, Y ) contain pairs of data

and labels, where Y is the set of all classes. A sample has the label yo ∈ Y , here yo is

the original (true) label of the sample. In an untargeted attack, the adversary adds some

perturbation to the data x′ = x + ε to achieve the goal yut ∈ Y ∧ yut 6= yo, where the

new label yut is any class other than the true label Yo. In a targeted attack, the attacker also

14



introduces a perturbation x′ = x + ε, but in this case the attacker seeks a misclassification

of yt selected by the attacker to be any specific label other than the original yo. In this work,

we develop BSD against untargeted attacks, as such attacks result in stronger adversarial

examples. It is important to note that in some attacks the “untargeted” version is the process

of performing a targeted attack against all classes and selecting the class that resulted in

misclassification with the lowest distance.

2.1.4 Autoencoders

Autoencoders, in the form of an encoder-decoder combination, were first introduced

by DeMers in 1992 [9]. Autoencoders seek to learn the representation of a set of data,

and reconstruct said data. Autoencoders have many practical applications such as noise

removal, data generation, dimensionality reduction, and image compression. Autoencoders

are a specific neural network structure, which seeks to take data X and reduce it to a latent

representation F using an encoder as shown in Equation 2.5. This latent representation is

then passed through decoding layers that results in the reconstructed sample X̂ , which is

shown in Equation 2.6.

φ : X −→ F (2.5)

ψ : F −→ X̂ (2.6)

Figure 3 shows the process of passing data X through the encoding layers shown

in blue, generating the latent representation F shown in red, which is then passed to the

decoding layers shown in yellow, yielding the reconstructed data X̂ .

15



Figure 3
Visual Depiction of Autoencoder

The encoder layers are standard, full interconnected feed forward neural network

layers, with each encoding layer having fewer nodes than the previous layer. The reduction

in nodes over the layers is what allows the data to be compressed into a reduced latent

representationF . For example, if the data originally has 100 features appearing at the input

layer, there may be a layer of 75 nodes followed by a layer of 50 nodes in the encoding

section of the autoencoder. Therefore, the latent space is then constructed with 50 values as

opposed to the 100 features used to originally describe the data. The encoder can be made

of any number of hidden layers. After the data are encoded into its latent representation

F , they are decoded into the reconstructed sample x̂. The decoder also consists of several

hidden layers, with increasing number of nodes from one layer to the next. The increase in

16



the number of nodes is what allows for the compressed latent data to be expanded back to

the original size.

The goal of the autoencoder is to learn the weights needed to compress x into some

latent space F and generate a reconstructed sample x̂ to be as close to x as possible. To

keep x̂ as close as possible to x, the autoencoder is trained to minimize some reconstruction

error, or difference, between x and x̂, where this difference can be computed using any LP

norm. In this work, we use the L2 norm. Equation 2.7 shows x̂ can be substituted with the

forward propagation of sample x through the encoder and decoder. Replacing x̂ allows one

to define the loss in terms of the weights of the encoder, decoder and sample x. In Equation

2.7 W and b refer to the weights and biases of the encoder, whereas W ′ and b′ refer to

the weights and biases of the decoder. With the loss in terms of X and the weights, the

network can be trained using backpropagation. In summary, an autoencoder is a specific

neural network architecture trained to minimize the difference between input and output,

and contains a latent representation of the data.

L(x, x̂) = ||x− x̂||p = ||x− σ(W ′(σ(Wx+ b)) + b′)||p (2.7)

2.1.5 Denoising Autoencoder

Earliest discussions on denoising autoencoders were provided by Vincent et al. in

2008 [38]. Denoising autoencoders take in a corrupted input x̃, and pass it through the

autoencoder resulting in the auto-encoded sample x̂. The goal is to obtain an x̂ that is

very close to the original uncorrupted sample x with respect to some distance metric. The

corruption used by the authors involved setting random inputs to zero. Denoising autoen-

17



coders are not restricted to a single form of corruption, however, and have been shown to

be effective with respect to Gaussian noise, uniform noise, and randomly setting values to

zero [38]. An important behavior of denoising autoencoders – which is employed in our

broad spectrum defense – is the ability of the autoencoder to project data back towards the

manifold. Figure 4 shows the black x marks laid on the data manifold and the corrupted x̃

that lie further away from the manifold. The blue x in Figure 4 shows a data point laying

on the data manifold. To train the autoencoder, the sample is corrupted by adding noise to

the data, this noise is bound by some radius from the original point (blue x), demonstrated

by the dotted red circle in Figure 4. When the x̃ sample is passed through the denoising

autoencoder, it is brought closer to the data manifold, as indicated with the dotted purple

arrows in Figure 4. x̃ can be moved along the dotted purple arrow towards the data man-

ifold. Denoising autoencoders are trained with the goal of removing noise from the data.

Since adversarial data can be seen as adversarial noise, denoising autoencoders may be able

to mitigate the impact of an adversarial example. We will discuss how we use denoising

autoencoders in the development of the broad spectrum defense (BSD) in Chapter 4.

18



Figure 4
Demonstration of Denoising Autoencoder adapted from [38]

19



Chapter 3

Related Work: Evasion Attack and Defense Strategies

In order to develop a broad spectrum defense against evasion attacks, it is important

to understand the underlying premise and general characteristics of evasion attacks. There-

fore, in this chapter, we first review a wide spectrum of evasion attacks that have been

developed over the last several years. This chapter will explore the strengths and weak-

nesses of each attack and the conditions under which they can be most effective. We then

look at some of the more effective defensive strategies developed against evasion attacks

and review their strengths and shortcomings.

3.1 Terminology and Expressions

Much of the existing work on evasion attacks introduce and use their preferred

nomenclature in referring to certain parameters and variables, even though similar parame-

ters might have been defined by others for different attack strategies. In order to make their

comparison easier to follow, we first present a unified set of nomenclature for variables and

parameters as summarized below in Table 1.

20



Table 1

Table of Variables

Variable Name Description
x Original data point Unmodified test sample
y Original label Unmodified label of the sample

x′ Adversarial sample Sample with added adversarial perturbation
t Target class Class adversary desires for misclassification
I Iterations Number of iterations to run a loop

k Confidence parameter Confidence of selected adversarial example

θ Network parameters Parameters of neural network classifier

Z(x) Logits resulting from x Output of last layer of network before softmax

η Perturbation Changes added to image by adversary
α Scaling factor Parameter which scales perturbation

β Elastic net weighting Weighting between L1 and L2 norms
ε Perturbation bound Upper bound to restrict perturbation

f Neural network classifier Neural network used for classification

f(x) Softmax output Softmax output values of sample x

x̂ Autoencoded version of x The result of passing x through the autoencoder
C Number of classes Number of output classes and nodes
M Number of features Number of features or pixels in an image
Υ Maximum distortion Number of pixels acceptable to modify image
F Flow field Flow field defined over pixels of an image

3.2 Evasion Attacks

We now review some of the most common and well-established evasion attack

strategies. Many of these attacks are so-called gradient-based attacks, as the attack strategy

is based on minimizing (or maximizing) a cost function along its gradient. For each attack

strategy, we describe the underlying premise, its algorithmic pseudo-code, as well as its

strengths or shortcomings as appropriate. Note that an attack’s relative utility is often re-

lated to its date of conception and more recent attacks tend to generate stronger adversarial

21



examples.

In all cases, the attacker creates the attack point x′ as a perturbation to a genuine

test data sample in the form of x′ = x+ η, where η is the perturbation.

Attack samples were generated with the help of the Adversarial Robustness Toolbox

[32].

3.2.1 Fast Gradient Sign Method (FGSM)

The Fast Gradient Sign Method (FGSM) is a simple yet effective attack method de-

veloped by Ian Goodfellow et al.. [15] FGSM utilizes the gradient of the cost function used

in the training of the classifier model (typically a neural network) to create adversarial ex-

amples. Equation 3.1 shows the general formulation of FGSM, where η is the perturbation

added to the genuine test sample x, x′ is the resulting attack point, y is the correct label,

and α is a factor for scaling the amount of perturbation added to the data. J(θ, x, y) is then

the cost function used to train the neural network, where θ are model parameters. We note

that, when used in a typical image data, η perturbs all pixels that contribute to increasing

the cost.

η = α sign(∇xJ(θ, x, y)) (3.1)

FGSM is very sensitive to the α value as this scales the magnitude of the perturba-

tion: lower values typically result in a low success rate (weak attack), whereas values that

are too high result in obvious and easy to detect attack points. For this reason, one should

attempt the attack with a set of various α values and verify that the resulting perturbed

samples are highly similar to the original unperturbed samples. The FGSM attack com-

22



putes the gradient of the cost function given the sample and label, the sign is then taken

and multiplied with α so the perturbation η will be α or −α. This η value is then added to

the pixel to create the modified adversarial example. Algorithm 1 demonstrates the FGSM

attack in two steps, in one step the gradient of the cost function is computed and η is set to

±α, finally, η is then applied to the image by adding it to the pixel value. The FGSM attack

was one of the first evasion attacks developed. The attack modifies the images pixels by

increasing and decreasing each pixel by a value of η causing an increase in the cost func-

tion eventually leading to misclassification. As the FGSM attack can be implemented with

low cost and it quickly generates adversarial samples, it can be used to rapidly evaluate the

baseline efficacy of any adversarial defense.

Algorithm 1 FGSM Attack Algorithm
J cost function
θ model parameters
α step size
η adversarial perturbation

1: procedure FGSM(α,J(θ, x, y))
2: η = α sign(∇xJ(θ, x, y))
3: x′ = x+ η
4: return x′

Figure 5 shows an example image from the TinyImageNet dataset with the FGSM

attack applied with different α values. Note that as α is increased the perturbation becomes

more obvious.

23



Figure 5

FGSM Attack Applied to an Example Image from TinyImageNet

(a) Original Image (b) α = 0.03 (c) α = 0.3 (d) α = 3

3.2.2 Jacobian Saliency Map Attack (JSMA)

Another gradient-based method is the Jacobian Saliency Map Attack (JSMA) [33].

In this attack, saliency maps are constructed on the inputs of the neural network based

on the forward derivatives, which reveal enough information to craft strong adversarial

examples. The saliency map shows how much each pixel contributes towards the prediction

of the class for a given image. Knowing the pixels that contribute to a classification, the

attack can then modify these pixels forcing the image to be misclassified. The JSMA attack

is an L0 attack, which attempts to minimize the number of modified elements, or pixels.

The first step in JSMA is to compute the forward derivative of the network with respect to

the sample x as shown in Equation 3.2. In this equation xi refers to the ith pixel or feature

of image x, and j refers to the jth hidden layer of the network (f ), up to the total number

of hidden layers represented by N . The number of pixels range from 1 to M . In JSMA the

derivative of the network is taken directly to determine the contribution of the input pixels

on the output classification.

∇f(x) =
∂fj(x)

∂xi i:1,...,M ;j:1,...,N

(3.2)

24



Next, a saliency map – as shown in Equation 3.3 – is computed using the gradient

for every input feature and the target class. This means that a matrix of size N × C is

needed, where N is the number of pixels in an image and C is the number of classes. For

each element of this matrix, the forward derivatives of the network with respect to x are

calculated recursively. This forward propagation of the gradient demonstrates the input

components’ contribution to the output classification. Algorithm 2 shows in line 5 that the

pixel with the maximum value imax in the sailency map S is selected for modification.

S(x, t)[i] =


0, if ∂ft(x)

∂xi
< 0 or

∑
j 6=t

∂fj(x)

∂xi
> 0

(∂ft(x)
∂xi

)|
∑

j 6=t
∂fj(x)

∂xi
|, otherwise

(3.3)

The attacker’s goal is to increase the probability of misclassification of the target

class, and decreasing the weighting of any other classification. If the gradient of a pixel

given the target class is negative, then the saliency map is assigned a zero for that feature.

Additionally, if the pixel’s gradient with respect to any other class is positive, the saliency

value is also set to zero as we would not want to increase the change of any classification

other than the target. However, if the gradient of the pixel given the target class is positive,

this positive gradient value is assigned to the sailency map for the given pixel, then by

changing this pixel we can steer the classification towards the target class. All of these

values generate the saliency map shown in Equation 3.3. The saliency map demonstrates

what pixels should be increased or decreased to classify the sample as the target class. The

last step involves a user defined parameter, Υ, which controls how many pixels can be

modified so the image remains recognizable to humans.

For an untargeted attack, the attack is performed for each given class with the ex-

25



ception of the true class and the class resulting in the lowest L0 norm is selected.

JSMA is a computationally expensive attack, requiring large amount of memory to

run on larger datasets. For this reason we are unable to perform JSMA on the large neural

network used for classification of ImageNet.

Algorithm 2 JSMA Attack Algorithm
f neural network
σ magnitude of change to introduce to the feature
t target class
Υ maximum distortion
δx number of features currently changed from the original

Input: x, t, f,Υ, σ
1: x′ ← x
2: η = 0
3: while f(x′) 6= t and ||η|| < Υ do
4: Generate saliency map S using Equation 3.3
5: Modify x′imax by σ s.t. imax = argmaxiS(x′, t)[i]
6: η ← x′ − x
7: return x′

Figure 6 shows an example image from the TinyImageNet dataset with the JSMA

attack applied with different σ values. As σ is increased, the perturbations become more

obvious.

26



Figure 6

JSMA Attack Applied to an Example Image from TinyImageNet

(a) Original Image (b) σ = 0.001 (c) σ = 0.01 (d) σ = 0.1

3.2.3 Projected Gradient Decent (PGD)

PGD is the process of performing multiple update steps descending the negative loss

function [27]. By performing this optimization, the loss is increased leading to a sample’s

misclassification. PGD attacks show that by taking multiple FGSM steps and projecting the

sample back to some ε ball, attack point placement can be optimized resulting in a more

powerful sample in exchange for additional computational cost. In Equation 3.4, xt is the

current placement of the sample, xt+1 refers to the updated attack point after step t, P is

the projection of the sample back towards the ε ball around the original sample, α is the

step size, and∇xJ(θ, x, y) is the gradient of the cost as seen in FGSM.

[h]xt+1 = P (xt + α sign(∇xJ(θ, x, y))) (3.4)

If only one step of PGD is performed, then the attack equates to FGSM. The power of PGD

comes from taking multiple steps ascending the loss function and projecting back towards

the original sample. The projection step of PGD prevents the optimization from generating

samples that are perceptually different from the original target sample. PGD outperforms

FGSM and results in stronger adversarial samples, and hence a stronger attack. PGD’s

27



stronger performance comes at a higher computational expense, but PGD does scale to

large architectures, unlike JSMA that requires a much larger amount of available memory.

Algorithm 3 PGD Attack Algorithm
I number of iterations
α step size of attack
∇xJ(θ, x, y) gradient of the cost
ε the radius of the ball which attack points are projected to
S a random location inside the ε ball around the sample

Input: α, ε,J(θ, x, y), S
1: x′ ← S
2: for i = 0 to I do
3: x′ = x′ + α sign(∇x′J(θ, x′, y))
4: x′ = max(min(x′, ε),−ε)
5: return x′

Figure 7 shows an example image from the TinyImageNet dataset with the PGD

attack applied with different ε values. Note that the smaller ε values result in very minor

changes to the original image while the largest ε value results in a very obvious adversarial

example.

Figure 7

PGD Attack Applied to an Example Image from TinyImageNet

(a) Original Image (b) ε = 0.03 (c) ε = 0.3 (d) ε = 3

28



3.2.4 DeepFool

DeepFool is a more recent attack strategy that finds the decision boundary for each

class, after finding the decision boundaries it projects the sample onto the closest classes

decision boundary and then the sample is pushed past the boundary forcing a missclassi-

fication [30]. Algorithm 4 demonstrates the process for creating a DeepFool adversarial

example. The DeepFool attack works by iterating until the classification of the original

sample x differs from the classification of the generated adversarial sample x′. For ever

class y′ in the set of all classes C besides the correct class, the difference in gradients are

computed and the difference in logit values are computed. For example line 4 of Algo-

rithm 4 shows w′k ← ∇Fk(x′) − ∇Fk(x)(x′), here the difference in gradients between the

adversarial sample and a given adversarial class are subtracted from the gradients of the

original sample and original class. This same process is repeated in line 5 for the output

values associated with each class. The class that has the closest logit values divided by

gradients is then declared l̂, which is the class with the closest decision boundary. Next, we

calculate ri, the minimal vector to project x onto the closest decision boundary computed

in line 6. This computed ri value is added to x′ and the loop is repeated. When the sample

is misclassified the loop is finished and the sample is finally generated by generating the

final perturbation η by summing over all r values and the final adversarial sample x + η is

returned.

The DeepFool attack takes a different approach from the previously mentioned attack as

instead of performing gradient decent on the loss function, the DeepFool attack finds the

closest decision boundary, perturbs the sample towards that boundary and recursively re-

29



peats the process until the sample is misclassified. The DeepFool method generates strong

adversarial examples with moderate computational complexity and scales well to large ar-

chitectures. The DeepFool attack is considered a very strong attack and is very useful in

bench-marking adversarial defenses.

Algorithm 4 DeepFool Attack Algorithm
f model
x original sample
w′ stores the difference in gradients
f ′ store the difference in logit values
C set of all classes
y Original class
l̂ closest class to the original
I Maximum Number of iterations

Input: x, f
1: x′ ← x, i← 0
2: while argmax f(x′) = y and i < I do
3: for y′ ∈ C where y′ 6= y do
4: w′y′ ← ∇fy′(x′)−∇fy(x)
5: f ′y′ ← fy′(x

′)− fy(x)

6: l̂← argmin
y′ 6=y

|f ′
y′ |

||w′
y′ ||

2

7: ri ←
|f ′

l̂
|

||w′
l̂
||2w

′
l̂

8: x′ ← x′ + ri
9: i← i+ 1

10: η =
∑

i ri
11: return x+ η

Figure 8 shows an example image from the TinyImageNet dataset with the Deep-

Fool attack applied with different maximum iteration (I) values. In this case the parameter

of maximum iteration has no impact on the sample generated as a valid adversarial example

is found before 10 iterations so the samples show with 10, 100, and 1000 are the same.

30



Figure 8

DeepFool Attack Applied to an Example Image from TinyImageNet

(a) Original Image (b) I = 0.03 (c) I = 0.3 (d) I = 3

3.2.5 Carlini Wagner Attack

The Carlini Wagner (CW) attack attempts to simultaneously solve the min-max

problem of minimizing the distance from the original sample to the adversarial example

while also maximizing the likelihood that the sample is misclassified [5]. The CW attack

differs from other attacks in one critical way: instead of simply constraining the attack

to a certain perturbation, the amount of perturbation is dynamically solved to achieve an

optimal trade off between attack strength and detectability. The distance metric utilized

can be any of the L0, L2, or L∞ norms. The Carlini-Wagner attack solves the multifaceted

optimization problem of minimizing the distance between the adversarial sample and the

true sample while also forcing the classification of the sample to the target class. One of

the most sensitive parameters in the CW attack is the confidence k. A confidence value

of zero returns adversarial samples that have a small difference in logit values between the

most probable class and second most probable class. This small difference between output

values can be interpreted as the classifier having low confidence that the prediction is cor-

rect. For example, there may only be a one percent difference between output nodes of a

31



network. A higher confidence (k) value results in a larger gap between the most probable

and second most probable classes. For example if a confidence of 0 is selected, and the

original class of the attack sample is class-3, the sample may be classified as class-4 with

the corresponding (highest) output being .5 and the second highest output (being that of

class-3) with a value of .4. In this case the model would report the desired class, but with

low “confidence”. In certain critical classification operations, individuals analyze the out-

puts of a neural network and in this case if the attacker uses a low k (confidence value) it

could tip off a knowledgeable end user.

Equation 3.5 shows the formulation of the Carlini Wagner L2 attack. In this formulation,

the ||1
2
(tanh(ω) + 1) − x||22 term minimizes the difference between the adversarial sam-

ple and the original sample. This distance ensures the created adversarial sample is highly

similar to the original sample. The c ·F (1
2
(tanh(ω) + 1)) term describes the strength of the

adversarial example. The c term is found by performing a line search over values of c to

find the best solution to minimizing Equation 3.5. The c term encourages the solver to min-

imize both portions of Equation 3.5 simultaneously instead of optimizing over each term

sequentially. Equation 3.5 represents the adversarial example x′ as 1
2
(tanh(ω) + 1) where

ω is the variable we are solving. The change of variables is used to ensure that the new ad-

versarial example will have values between 0 and 1. This is ensured as−1 ≤ tanh(ω) ≤ 1,

so it follows that 0 ≤ x + η ≤ 1. The adversarial sample x′ is equal to x + η and also

equates to tanh(ω). The function F is applied in Equation 3.5 and is explained in Equation

3.6. Equation 3.6 is selecting the maximum logit value Z(x′)i where the selected class i

cannot be that of the target class t. This condition ensures the sample is classified as the

32



target class. The logit value of the desired target class Z(x′)t is subtracted from the largest

logit value Z(x′)i. The difference in logit values is then compared to the confidence k, if

the difference in logit values is lower than −k, the value returned is −k. When optimizing

this attack, the parameter k encourages the solver to find an adversary x′ which is classified

as t with a high confidence, this higher confidence often comes with a larger distance from

the original sample so this trade off must be considered.

minimize
(
||1

2
(tanh(ω) + 1)− x||22 + c · F (

1

2
(tanh(ω) + 1))

)
(3.5)

F (x′) = max{−k,max
i 6=t

[Z(x′)i]− Z(x′)t} (3.6)

The Carlini Wagner attack currently stands as one of the strongest evasion attacks. Due

to the simultaneous minimization of the distance and maximization of the strength of the

samples, the attack generates perceptually similar adversarial examples that cause the clas-

sifier to incorrectly classify the sample with very high confidence. The added power of

the Carlini Wagner attack comes with added computational overhead compared to a simple

attack like FGSM, but the added computational expense is often warranted to generate such

quality and effective adversarial examples.

33



Algorithm 5 Carlini Wagner Attack Algorithm
x original sample
k confidence parameter
t target class
Z Logit Values (Pre softmax)
I Iterations
η perturbation

Input: x, k, t, I, Z
1: for j in Binary Search Steps do
2: Select c by minimize (||η||22 + c · f(x+ η)))
3: 1

2
(tanh(ω) + 1) = x′ = x+ η

4: for i = 0 to I do
5: minimize

(
||1
2
(tanh(ω) + 1)− x||22 + c · F (1

2
(tanh(ω) + 1))

)
6: Perform optimization step with Adam and updating ω
7: x′ = tanh(ω)
8: return x′

Figure 9 shows a sample image from the TinyImageNet dataset with the CW attack

applied with different confidence (k) values. In this case the images look extremely similar,

but all of the images generated are imperceptibly different. Recall that higher k values

encourage the solver to generate examples with larger differences on the output of the

neural network while smaller k values allow smaller differences between the outputs of the

network. In this case, all of the generated examples look identical to the human eye.

34



Figure 9

Carlini Wagner Attack Applied to a Sample Image from TinyImageNet

(a) Original Image (b) k = 0 (c) k = 10 (d) k = 100

3.2.6 Elastic Net Attack

Elastic net attack is a special case of the Carlini Wagner attack [6]. Equation 3.7

shows the objective function that is minimized to find an elastic net attack adversarial sam-

ple. The c ·max{−k,max
i 6=t

[Z(x′)i]−Z(x′)t} term of this equation is identical to the Carlini

Wagner attack, in the β||x′ − x||1 + ||x′ − x||22 term instead of just minimizing the L2 dis-

tance, the elastic net representation is used where the L1 and L2 norms are minimized and

the weighting is decided by β. In the elastic net attack, the change of variable approach

used by Carlini no longer works due to the addition of the L1 norm.

g(x) = c ·max{−k,max
i 6=t

[Z(x′)i]− Z(x′)t}+ β||x′ − x||1 + ||x′ − x||22 (3.7)

x′ = Sβ(x′ − α∇g(x′)) (3.8)

[Sβ(z)]i =



min{zi − β, 1}, if zi − x0i > β

x0i, if |zi − x0i| ≤ β

max{zi + β, 0}, if zi − x0i < −β

(3.9)

35



For this reason, the iterative shrinkage-thresholding algorithm (ISTA) is used. ISTA, de-

scribed by Equation 3.9, performs an additional step of shrinking and thresholding at each

iteration. The elastic net attack can generate adversarial examples stronger than the Carlini

Wagner attack as it considers both the L1 and L2 norms, while also shrinking and thresh-

olding the perturbation (x′ − α∇g(x′)) at every step. The ISTA process is similar to the

projection back to the ε ball explained in the PGD attack. Utilizing both L1 and L2 norms

to constrain the attack resulting in a sample with low total perturbation over the image (L1)

and low average perturbation over the image (L2). The β parameter shown in Equation 3.9

is used shrink the deviation from the original pixel value if the deviation is greater than

β and does not change the pixel value if the deviation is less than β. The pesudocode of

elastic net attack is listed in Algorithm 6. Lines 5 to 7 of the algorithm demonstrate that the

best adversarial example for each original sample is selected as a sample that is misclassi-

fied with the lowest distortion metrics. The distortion metric used for the EAD attack can

be a combination of L1 and L2 (Elastic-Net) or the L1 distortion relative to x.

The Elastic Net attack was developed as an extension of the Carlini Wagner attack

so it brings all of the strengths of the Carlini Wagner attack such as generating high quality

imperceptible adversarial examples. The Elastic Net attack also introduces another param-

eter, β; if this parameter is tuned correctly, the Elastic Net attack can outperform the Carlini

Wagner attack. However, if this parameter is not tuned correctly, the Elastic Net attack can

generate weaker attack samples. If one wishes to generate the strongest adversarial attack

with the Elastic Net attack, they should ensure that the β parameter is tuned correctly by

performing a search over a range of β values to find the value that works best for your

36



classifier and data. If one is constrained by computational cost, however, it would be best

to use the Carlini Wagner attack instead of the Elastic Net attack.

Algorithm 6 Elastic Net Attack Algorithm
β Elastic Net Norm Weighting
x original sample
α step size
I maximum number of iterations

Input: x, β, α, I
1: Initialization: x(0) = y(0) = x0
2: for j = 0 to I − 1 do
3: x(j+1) = Sβ(y(j) − α∇g(y(k)))
4: y(j+1) = x(j+1) + j

j+3
(x(j+1) − x(j))

5: X = {argmax(f(x(j))) 6= argmax(f(x))}Ij=1

6: for x′ ∈ X do
7: select x′ with lowest Elastic Net or L1 distance from x

8: return x′

Figure 10 shows a sample image from the TinyImageNet dataset with the EAD

attack applied with different confidence (β) values. As the β value is increased the L1

norm is weighted more heavily and the L2 norm is given less weight. This is demonstrated

by Figure 10 as sub-image b shows modified values over many pixels and sub-image d with

a β of 1 shows stronger modifications made to fewer pixels.

37



Figure 10

Elastic Net Attack Applied to a Sample Image from TinyImageNet

(a) Original Image (b) β = 0 (c) β = 0.5 (d) β = 1

3.2.7 Spatial Attack

One example of an attack that does not utilize an LP norm is the Spatial Attack

[39]. All of the previously mentioned attacks use some form of an LP norm to constrain

or limit the perturbation to make sure that the generated adversarial sample looks similar

to the original. The spatial attack is the first attack presented that is limited to image data,

all previously mentioned attacks work on any form of data. To create spatial adversarial

examples, the authors begin by defining a per-pixel flow fieldF to create adversarial sample

x′ using pixels from the input x. The flow field defines a mapping of how the image

will be perturbed. Let x′(i) denote the i-th pixel of the image with flow field coordinates

(u′(i), v′(i)). The amount of displacement in each image dimension is optimized using the

flow vector Fi := (∆u(i),∆v(i)). This flow vector relates the adversarial pixel x′(i) to the

corresponding pixel in the original image x(i). If the flow vector is solved around for x(i)

then, (u(i), v(i)) = (u′(i)+∆u(i), v′(i)+∆v(i)). The values of (u(i), v(i)) exist on a continuous

spectrum so the differentiable bilinear interpolation is used to create the adversarial image.

38



Now x′(i) can be calculated as:

x′(i) =
∑

q∈N(u(i),v(i))

x(q)(1− |u(i) − u(q)|)(1− |v(i) − v(q)|) (3.10)

N(u(i), v(i)) contains the four neighboring pixels from (u(i), v(i)) corresponding to the top-

left, top-right, bottom-left, and bottom-right pixels. Equation 3.10 then yields the adver-

sarial image when calculated over all pixels.

Other works rely on the use of an LP norm to constrain the perturbation, in this work a new

regularization loss, the Lflow loss is used to minimize the local distortion within the image.

Given an image x, the optimal flow field F∗ is obtained by minimizing:

F∗ = argmin
F

(Ladv(x,F) + τLflow(F)) (3.11)

Here, the two terms represent the attackers two goals. The first term Ladv encourages the

adversarial examples to be misclassified by the target classifier. The second term Lflow

exists to minimize the local distortion. The τ parameter exists to allow tuning of the trade

off between the two terms. This τ term resembles the c term from the Carlini Wagner attack

as both terms control the strength vs detectability trade off.

TheLadv term is constructed to represent the goal, in a targeted attack, argmax f(x′) =

t where t is the target class which does not equal the ground truth label y. To reiterate, in

an untargeted attack, the target can be any label besides the ground truth. The objective

function for Ladv follows the implementation by Carlini and Wagner.

Ladv(x,F) = max(max
i 6=t

[Z(x′)i]− Z(x′)t,−k) (3.12)

In Equation 3.12 Z(x) represents the logit values on input x, Z(x)i represents the i-th

element of the logit vector also known as the logit value of the i-th class. k is used to define

39



the confidence level of the attack. The k parameter controls the gap between confidences of

the attack class and all other classes. At low k values, the difference between any other class

and the target class must be at least a value of k. As the k value increases the targeted class

will result in a higher logit value while the other classes’ logit values decrease. This larger

separation between logit values implies that the classifier believe the adversarial example

with high confidence, which is where the confidence parameter k gets its name.

Lflow is computed using the sum of spacial movement distance between any two adjacent

pixels. Given a pixel p and its neighbors N(p), Lflow is defined as:

Lflow(F) =

all pixels∑
p

∑
q∈N(p)

√
||∆u(p) −∆u(q)||22 + ||∆v(p) −∆v(q)||22 (3.13)

By minimizing Equation 3.13 the perceptual quality can be maintained as adjacent pixels

tend to move in similar directions and distances. Equation 3.13 quantifies the difference

between pixels and their neighbors in the flow field. The difference is found by summing

the squares of ∆u(p) −∆u(q) and ∆v(p) −∆v(q) and taking the square root. The process is

repeated for every pixel and its corresponding neighbors.

The Spatial Attack is capable of generating strong adversarial examples using a method

substantially different from traditional LP norm attacks. In developing a broad spectrum

defense, one must verify the defense offers improved robustness against non-LP norm at-

tacks. Testing against non-LP norm attacks reveals information about how well the defense

can generalize to unseen attacks. The strength of the Spatial Attack comes at the cost of

additional computational overhead as the loss function now involves computing statistics

over all pixels in the image in addition to the loss function used by Carlini and Wagner.

40



Figure 11 shows the original test image and the result of applying the spatial attack

with different τ values. All images shown appear identical demonstrating that varying

the τ parameters does not significantly modify the perception of the generated adversarial

sample.

Figure 11

Spatial Attack Applied to an Example Image from TinyImageNet

(a) Original Image (b) τ = 1 (c) τ = 10 (d) τ = 100

3.2.8 Shadow Attack

The Shadow Attack is another form of a non-LP norm attack. In the Shadow Attack,

the adversarial example is constrained by three different penalty terms [13]. Similar to the

Spatial attack, the constraints are designed assuming that the input is an image. Equation

3.14 introduces the equation used to find the η or the perturbation added to the original

sample to yield the adversarial sample x′ = x + η. Equation 3.14 shows that the loss is

to be maximized while minimizing the three terms controlled by λc, λtv, and λs. The λ

values ensure that aspects of the adversarial image remain very close to the original image

yielding a strong sample. Applying the aforementioned constraints force the sample to

look indistinguishable from the original while forcing an increase in the loss causing the

41



misclassification of the sample.

max
η

[L(θ, x+ η)− λcC(η)− λtvTV (η)− λsDissim(η)] (3.14)

The TV (η) term constrains the total variation across the image, encouraging the

smoothness within the image. Following the terminology used above, η describes the

perturbation added to the data. The total variation term is defined in Equation 3.15, the

anisotropic total variation describes the difference in vertical and horizontal components of

the perturbation.

TV (ηi,j) = anisotropic-TV(ηi,j)
2 = (Σ

i,j
|ηi+1,j − ηi,j|+ |ηi,j+1 − ηi,j|)2 (3.15)

The C(η) constrains the change in mean of each color channel. C(η) is defined in

Equation 3.16. In this equation, the element wise absolute value is taken of each channel

and the average of the absolute values is computed.

C(η) = ||Avg(|ηR|), Avg(|ηG|), Avg(|ηB|)||22 (3.16)

The last penalty term, Dissim(η) focuses on maintaining the color balance of the

image. This term will keep the perturbations to the red, green, and blue channels similar

so the resulting perturbation to the image will minimally disturb the color balance and will

result in a darker or lighter pixel. There are two forms of the Dissim(η) term, the first

method generates a single array to represent all color channels, and is called 1-channel,

and in this case Dissim(η) = 0 as all channels change together. The other case is where all

three channels can be modified, in this case the Dissim(η) is defined in Equation 3.17.

Dissim(η) = ||(ηR − ηG)2, (ηR − δB)2, (ηG − ηB)2|| (3.17)

42



Equation 3.17 shows that the dissimilarity in the 3-channel scenario is quantified

as the squared difference between each pair of color channels. This metric encourages the

perturbations applied to each color channel to be similar to the perturbations applied to

other channels.

It is important to note that the Shadow attack does not directly constrain the LP

norm of the generated adversarial samples. The Shadow attack ensures the adversarial

image looks similar to the original with out explicitly restricting the LP norm. Due to

the potentially high LP norm values, the attack can be effective against defenses that only

evaluate robustness against LP norm attacks.

Figure 12 shows an example image from the TinyImageNet dataset with the Shadow

attack applied with different total variation (λtv) weightings. In this case the parameter of

total variation did not significantly change the output image and in all cases the images

generated appeared to be a darker version of the original (hence the name, shadow attack).

Figure 12

Shadow Attack Applied to an Example Image from TinyImageNet

(a) Original Image (b) λtv = 0.3 (c) λtv = 0.6 (d) λtv = 0.9

43



3.3 Existing Defense Theory

Existing defenses vary greatly in their approaches. Some defenses attempt to utilize

information about attacks to defend the feature space of the model. Other defenses try to

flag and remove potential adversarial samples. One commonality is the trade off between

model security and impact on non-adversarial data, a defense that can correctly identify

a majority of adversarial samples comes at the expense of incorrectly identifying benign

samples as adversarial. One example of this trade off is the tuning of evasion detectors.

Detectors trained to detect evasion attacks attempt to remove adversarial samples, these

defenses do not need to return a classification if the sample is deemed adversarial. Some

detectors can detect these adversaries at a high rate, but the high detection rate comes at the

expense of falsely detecting some non-adversarial data as well.

3.3.1 Adversarial Training

Adversarial training (AT) is a defensive method that relies on crafting attack sam-

ples and training the classifier on these attack samples. The central premise of this defense

is that by training on the attack samples, the defender can hope to define and learn the fea-

ture space around these adversarial samples and – when one appears – the model will return

the proper classification. One potential problem with adversarial training is that it can be

considered as a reactive approach, where the defender is utilizing information about exist-

ing and known attacks to craft a defense. Since adversarial training is a reactive approach,

it is unlikely that the defense would generalize to new attacks, as it was trained specifically

with one type of attack. Goodfellow et al. argue that the adversarial samples used to train

44



the defense appropriately approximate the adversarial space[15]. The adversarial space is

incredibly large and it is unlikely that adversarial training would provide adequate coverage

over every “nook and cranny” in the entire adversarial space. The AT defense has shown

strong performance against samples that were slightly perturbed using strong attacks such

as the Carlini Wagner attack, but they can be vulnerable to fundamentally different attacks

such as Spatial and Shadow attacks. To address ATs vulnerability to Spatial attacks, Zhang

and Wang proposed AT while incorporating spatial attack samples [41]. Their paper also

showed that in exchange for the added robustness, overall performance decreased. Zhang

and Wang demonstrate that adversarial training is a reactive defense that relies on knowl-

edge of existing attacks to make the defense robust.

3.3.2 Detectors

A different approach to adversarial example defenses utilizes detectors. Detector-

based defenses aim to remove adversarial points as opposed to adversarial training, which

attempts to return the correct classification for adversarial samples. As the detectors do

not have to return a classification, the idea is to detect anomalies that are suspected to be

adversarial. Detectors also offer a simpler solution to adversarial examples as they do not

have to give a classification. For some attack samples with larger perturbations, it can be

very difficult to recover the correct classification. One example of such situation would an

image of random values. It is impossible to know the correct classification, but in this case,

a detector based defense can simply reject the sample.

There are several detector-based defenses with varying levels of success. Typically, the per-

formances of detector-based approaches are dataset specific – some performing well only

45



on more simplistic datasets such as MNIST or CIFAR10, whereas others only perform well

against datasets such as ImageNet. Another problem with some detector-based defenses is

they may work well against LP attacks such as the Carlini Wagner attack, but they may

not work well against a spatial attack or shadow attack that is not constrained on the LP

norm. A comparison of different detector methods is listed in Table 2. This table shows

that most detector-based defenses are trained using existing adversarial examples. Using

adversarial examples to train the detectors has the consequence of constraining the defense

to perform well only on similar style attacks, limiting the defenses’ ability to generalize

to other existing or future attacks. Each defense in Table 2 was also evaluated against the

Carlini Wagner attack, whose results are also displayed in Table 2. Defenses selected for

comparison in this work had to meet the criteria of performing well on Carlini Wagner

attack and not requiring adversarial data to train. These criteria resulted in the comparison

of Feature Squeezing, MagNet, and the (proposed) broad spectrum defense.

46



Table 2

Comparison of Detector Based Defenses

Defense Effective on Trained Using
Carlini Wagner Adversarial Data

Hendrycks’s [17] x X

Li’s [22] x x
Grosse’s [16] X X

Gong’s [14] X X

Bhagoji’s [2] x X

Feinman’s [12] x X

Metzen’s [29] x X

RBF-SVM [25] X X

Feature Squeezing (FS) [40] X x

Noise Reduction (NR) [23] X X

Steganalysis [24] X X

MagNet [28] X x

Broad Spectrum Defense X x

3.3.2.a Feature Squeezing. Feature Squeezing is a defense with a demonstrated

strong performance against all datasets for L0 and L2 norm attacks [40]. Feature Squeezing

is not trained using adversarial examples, and therefore no inherent bias is introduced when

deploying this defense. Feature squeezing works by applying filters to images to create a

new image, with the hope that the new image will remove adversarial perturbations. The

authors decide to apply two styles of filters, a color depth filter and spatial filters. The

color depth filter simply reduces the number of bits available for all colors, for example a

gray-scale image is 8-bit and contains 256 values for each pixel, a reduced version could be

a 4-bit image that contains 16 values for each pixel. Color images by default are 24-bit (8

47



bit over 3 channels), which contain about 16 million different colors. Bit depth reduction

can bring this down to 12-bit or 4096 colors.

Feature squeezing also uses a variety of spatial filters such as Gaussian smoothing, mean

smoothing, or median smoothing. These methods are considered local methods as they

make use of nearby pixels to smooth the pixel in question. These filters are applied pixel

by pixel across the whole image. Other spatial filters utilized include non-local methods

that smooth over a broader area. For example, non-local methods find similar patches over

an area of the image and replace the center of the patches with the average of the similar

patches.

The Feature Squeezing defense, depicted in Figure 13, uses the squeezers to preprocess

the data, generating additional predictions for each sample. For each filter, the outputs of

the neural network are taken and subtracted from the outputs of the neural network on the

original sample. If the squeezed images output minus the original images output exceeds

the threshold, the sample is rejected as adversarial.

48



Figure 13
Feature Squeezing Block Diagram adapted from [40]

Model

Model

Model

Sq
u

eezer
1

Sq
u

eezer
2

Prediction0

Prediction1

Prediction2

L1

L2

max(d1,d2)> T

d1

d2

Yes

Adversarial

No

Legitimate

In describing their feature squeezing approach, the authors demonstrate that when

the correct combination of filters are selected for any given dataset, feature squeezing is

robust to L2 and L0 attacks [40]. Unfortunately, they also show that even with the best

possible filter selection, this defense only recognizes 20.8% and 55% of Fast Gradient Sign

Method (FGSM) and Basic Iterative Method (BIM) samples on CIFAR-10 (L∞ attacks).

FGSM and BIM are not computationally expensive, and are often some of the first at-

tacks attempted. On the ImageNet dataset, the FGSM and BIM based adversarial samples

once again evade the defense with rates of 43% and 64.4%. Feature squeezing demon-

strates strong performance on other attacks such as the Carlini Wagner attack and Jacobian

Saliency Map Attack (JSMA). Feature Squeezing makes an excellent benchmark defense

as it defends against the Carlini Wagner attack across a variety of datasets and does not

require adversarial data to create the defense.

49



3.3.2.b MagNet: A Dual Detector Approach. MagNet is a detector based defense

that seeks to either remove or reform adversarial examples. MagNet seeks to detect and

remove adversarial examples without training the model on adversarial data. As the de-

fense does not have access to adversarial data, it must attempt to approximate the boundary

between the adversarial and legitimate data. This defense passes a test sample x through an

autoencoder yielding x̂, the auto-encoded version of x. The reconstruction error between

x̂ and x is then calculated and compared to a threshold. This reconstruction error can also

be described as the distance between x̂ and x. A legitimate sample would be expected to

have a small reconstruction error as the autoencoder was trained to minimize the distance

between the input and outputs of the autoencoder. An adversarial sample may exist in a

subspace of the autoencoder that is not well defined and can return a larger reconstruc-

tion error. The second detector used in MagNet is called the Jean Shannon Divergence

(JSD) detector. The JSD detector calculates the Jean Shannon Divergence between F (x)

and F (x̂), where F (x) refers to the softmax values at the output of the network. If the

difference in JSD values exceeds a threshold then the sample is deemed adversarial and is

removed. The threshold is defined as a percentage, and the percentage selected corresponds

to the amount of acceptable false positive detections. The JSD detector is added to remove

samples with low reconstruction errors that induce a large change in the outputs of the net-

work. The samples found by the JSD detector have an unusually high change in the outputs

of the network, this usually implies that the sample is adversarial causing this massive shift

in output values. If the sample passes both detectors, then the resulting classification Ŷ is

considered the predicted classification.

50



Figure 14 shows a block diagram of the MagNet defense. The diagram shows the

the autoencoder, and the model (also known as the classifier). The original sample x is

passed through the model yielding the classification Z(x). x is also passed through the

autoencoder yielding the auto-encoded version of x, x̂. The auto-encoded sample is also

passed through the same model yielding the classification Z(X̂). The diagram demon-

strates using the sample, an autoencoder, and softmax outputs of the model, adversarial

samples can be detected. If a sample is not detected as adversarial by the JSD or recon-

struction error detectors then the final classification is returned as Z(x̂).

Figure 14
MagNet Block Diagram

𝑥 ො𝑥

Autoencoder

𝑌

𝑍(ො𝑥)𝑍(𝑥)

ModelModel

Jean
Shannon

Divergence
𝐽𝑆𝐷[𝑍 𝑥 ] − 𝐽𝑆𝐷[𝑍(ො𝑥)] > 𝑇ℎ𝑟𝑒𝑠ℎ

Reconstruction 
Error

(𝑥 − ො𝑥)2> 𝑇ℎ𝑟𝑒𝑠ℎ

Reject sample if

or

Else return classification 𝑌

MagNet and the detectors used in MagNet are explored in detail in chapter 4.

3.3.2.c Adaptive Noise Reduction. A different detector-based defense is Adaptive

Noise Reduction, a defense that modifies an original image by applying transformations,

51



and then compares the resulting images’ classification to the classification of the original

[23]. The idea here is that if an image is adversarial by applying some filters, some image

close to the original can be recovered and the classification for the adversarial and original

will not match. In the adaptive noise reduction defense different filters are applied to the

image, this generates new slightly different images. Adaptive noise reduction states that if

the classification of these new images differs from the original image, the sample is likely

adversarial. The rationale is that neural networks should be robust to small changes within

an image and the network would be expected to retrieve the correct classification. Adver-

sarial samples are caused by minor imperceptible changes to the image and the filters can

disturb the delicately crafted adversarial sample and force a change in classification.

Adaptive noise reduction has many hyperparameters that need to be selected to fit the

problem. To select these hyperparameters, the authors use a validation set to generate

FGSM attack points and tune the parameters to these attack points. This tuning process

has the unintentional consequence of biasing the defense towards detecting FGSM gener-

ated adversarial samples and/or samples that behave similar to those generated by FGSM.

This shortcoming was demonstrated when the authors found that the defense fails against

simple attacks such as the L0 (Jacobian Saliency Map Attack) JSMA. JSMA samples are

relatively easy to craft and they bypass the adaptive noise reduction defense at ease - a sig-

nificant problem for the defense. Another issue is that the epsilons used were hand picked to

be very small numbers. Recall from Section 3.2.2 that the epsilon values control how much

the attack perturbs the sample. The theory is that if the epsilon is too large the resulting at-

tack point (adversarial sample) can be recognized by a human, but adaptive noise reduction

52



shows that as epsilon increases the detection rate decreases. This defense does not have

any way of handling larger epsilon values that may be slightly visible but still difficult for

a human to detect. Larger epsilon attack samples may still evade a humans perception and

should be evaluated against. In this paper the authors only demonstrate performance on

the Carlini Wagner attack from k = 0 to k = 4, whereas other works have shown results

for k = 0 to k = 40. The authors have shown that as the confidence is increased to 4

the detection rate of this method diminishes. Adaptive noise reduction does not include

any mechanisms to handle these attack samples with larger perturbations so it would be

expected that the downward trend would continue towards k = 40. This paper also states

that adaptive noise reduction does not perform well against larger perturbations such as

those induced by L0 attacks such as the JSMA. Based on performance against L0 attacks, it

appears that adaptive noise reduction would also suffer in performance against spatial and

shadow attacks as they tend to introduce even larger perturbations than L0 attacks.

3.4 Shortcomings of Current Approaches

3.4.1 Certified Robustness Within an ε Ball

One major limitation of existing adversarial defenses is their inability to work

across a variety of attacks with a variety of ε values. Many of the more recently pro-

posed defenses attempt to argue some level of certifiable robustness. Certifiable robustness

shows a defense’s resilience to attack within some ε ball of the original image. In practice,

certifiable robustness helps to defend against stronger attacks, such as the Carlini Wagner

attack, but as soon as the epsilon parameter of the attack is increased the defense no longer

offers any claims on robustness. Certifiable robustness relies on that epsilon ball, but some

53



attacks do not utilize distance metrics when crafting points. One example of such an attack

is the shadow attack. In shadow attack, the loss is maximized but the constraint is hand

crafted to keep the attack image similar to the original [13]. This local distortion can cre-

ate rather high ε values, but these attack samples can remain indistinguishable to humans.

Ghiasi et al. demonstrate that by using the shadow attack, they can even create samples

that evade defenses that were supposed to be robust within the ε ball.

3.4.2 Training on Adversarial Data

Another issue with many existing defenses is the requirement that the training data

for the defense must include adversarial examples. Using adversarial examples during

training allows for high accuracy for detecting similar types of adversarial examples, that

use similar attacks. When a defense strategy relies on adversarial data, the defender is

explicitly showing (and training) the defense the kind of examples the adversary may use.

This logic is fundamentally flawed as it is impossible to predict a priori and subsequently

represent the entire adversarial space. One simple example of the vastness of the adversarial

space is the non-LP norm attacks. These attacks are structurally different than LP norm

based attacks. Non-LP norm attacks bypass defenses trained with LP norm attack data

achieving high success rates.

A more effective approach to create a robust defense that can generalize is to define

the region of true data, rather than that of the adversarial data. Any data that exist outside

of the “true data” region can then be deemed adversarial.

54



3.4.3 Inability to Generalize to Other Datasets

It is perhaps unreasonable to expect a given defense to work on all datasets. In

particular, certain defenses that work on simpler datasets may not work on more complex

datasets. For example, some simple defenses work very well on the MNIST dataset, but

do not scale to larger datasets such as ImageNet and CIFAR-100 [16] [14] [17] [2] [12].

However, perhaps more curiously, the opposite problem also occurs: for example, a detec-

tor based defense using Steganalysis (the process of detecting concealed messages inside

another message) was proposed by Liu et al. [24]. This defense performs very well on

ImageNet, but the defense fails on the simpler / smaller MNIST and CIFAR-10 datasets, as

they cannot provide enough samples to construct the features required for the defense.

55



Chapter 4

A Broad Spectrum Defense Against Evasion Adversarial Attacks

The goal of the proposed defense is to detect and remove adversarial attack points,

and return the correct classification for the remaining data. A desired characteristic for

our proposed defense is the ability to generalize across a variety of models, datasets, and

attacks. We strive to create a truly robust defense capable of generalizing to existing and

future attacks. While the performance against all attacks may not be perfect, we seek to

develop a defense that offers meaningful improvement over the lack of a defense in all

cases. As such, we refer to our approach as broad spectrum defense.

4.1 Inspiration for Proposed Defense

Our inspiration for the broad spectrum defense (BSD) comes from MagNet: a Two-

Pronged Defense against Adversarial Examples [28]. MagNet has demonstrated itself as a

strong defense against evasion attacks on the MNIST and CIFAR10 datasets. The formu-

lation of the MagNet defense also allows for a great deal of flexibility as the defense can

scale to larger datasets and networks. The added overhead comes in the form of training a

more robust autoencoder. The performance of MagNet against a variety of attacks has been

evaluated, and it has been found that the performance suffers on non-LP norm attacks [37].

Carlini and Wagner also demonstrated that the MagNet defense can be easily compromised

if the attacker is aware that the defense is applied [4] .

The adaptive noise reduction defense also uses a concept that has been explored in this

work [23]. The adaptive noise reduction defense applies filters to the images and compares

56



the classification of the unfiltered image to the classification of the filtered image. If the

two classifications do not match, then the sample is rejected as adversarial. Adaptive noise

reduction shows strong performance on samples attacked with small perturbations, but the

defense is weak against larger perturbations.

4.1.1 Training Autoencoders

As stated in chapter 3, MagNet requires a trained denoising autoencoder. The

amount of noise used in training the autoencoder is an important parameter as too much

noise added will result in a fuzzy output making it difficult for the classifier to generalize.

If this occurs the accuracy on the auto-encoded test set will be significantly lower than the

accuracy on the unmodified test set. A different problem occurs if very little noise is added:

in this case the autoencoder will learn weights that result in a near perfect duplicate of the

original image. If the autoencoder learns a 1 to 1 mapping of the input, it is not changing

the image at all, and is not contributing to the overall defense performance. There exists

a Goldilocks zone – so to speak – where the performance on the test data is not dramati-

cally decreased, while the autoencoder is modifying the image enough to detect adversarial

samples with the Jean Shannon Divergence and reconstruction detectors.

4.1.2 Setting Thresholds

Both detectors in MagNet relies on a threshold. The threshold determines the trade-

off between false positives (improperly detecting a real sample as adversarial) and false

negatives (missing an adversarial sample). The threshold, defined as β, is the percentage

of the training set that is acceptable as false positives. A β of 0.0 sets the thresholds to the

57



largest value such that no training samples will be detected as adversarial. A low β sets

the thresholds to result in small amount of false positives, but may not be as sensitive to

capturing adversarial data. As β is increased, the sensitivity of the defense is also increased

at the cost of a lower specificity. Another important note is that the β is defined per detector

so a β of 0.01 will detect 1% of the training data with the reconstruction error detector and

will detected 1% of the data with the JSD detector. In other words, although each detector

detects 1% of the training data, the total false positives can range between 1% to 2% – 1%

if all samples are detected by both detectors and they are the same, or 2%, if the samples

detected by the two detectors are all different, and between 1% and 2% if in case of a

mixture of the two. It is also vital to evaluate the false positive rate of the defense at test

time as quantifying the false positive rate is an important aspect when considering applying

a defense.

4.1.3 Reconstruction Error Based Detectors

The reconstruction error detectors aim to detect samples that have abnormally high

reconstruction errors. More specifically, a sample x is passed through an autoencoder yield-

ing x̂. If the LP norm between x and x̂ is greater than a user-defined threshold, then the

sample is deemed adversarial and removed from the data-stream. This threshold is estab-

lished by applying a specified false positive threshold β to the training set. The reconstruc-

tion error threshold is selected based on the β value following practices explained above.

The autoencoders are trained so all genuine samples result in the smallest reconstruction

error possible. A non-adversarial sample x passed through the autoencoder yields the mod-

58



ified sample x̂. The reconstruction error is computed from |x̂ − x|P and is expected to

be less than or equal to the threshold as the sample is not adversarial. When an adversar-

ial sample x′ passes through the autoencoder, however, the reconstructed image x̂′ should

modify x′ so that x̂′ lies closer than x′ to the correct classes classification boundary. The

reconstruction error on x′ should ideally result in a detection. Controlling the false positive

rate controls how many samples are detected, which allows for detection of more adversar-

ial examples at the expense of detecting more real samples as false positives.

Figure 15 demonstrates the reconstruction error detector. In this figure, the red X refers to

an original sample, the blue X̂ refers to the auto-encoded sample and the arrow is the re-

construction error of the sample. The upper left of the figure shows the samples that belong

to class 3, the reconstruction error of these samples are small therefore they are not detected

as adversarial. In the top right, an adversarial sample (a modified ”3”) can be seen as it is

across the decision boundary and far away from the cluster of data points that belong to

class 3. The adversarial sample in the top right is passed through the autoencoder resulting

in the X̂ seen closer the boundary. The arrow pointing from the original sample to the auto-

encoded sample is much larger than that of the true data points. This large reconstruction

error would result in the detection of this sample.

59



Figure 15
Demonstration of Reconstruction Error Detector

X

X

X

X

X

X

4.1.4 JSD Detector

The Jean Shannon Divergence (JSD) detector is also used in MagNet. The JSD

detector attempts to analyze the outputs of f(x) and f(x̂): if the divergence between them

is greater than some threshold, the sample is removed as adversarial. The output of f(x)

is equal to the softmax of the logits, or the values contained in the last layer of the neural

network classifier. Softmax is defined in equation 4.1 where li refers to the ith element of

the output vector. As the JSD detector requires softmax outputs, this detector is limited

to neural networks and classifiers that can provide such probabilistic outputs. The JSD

detector looks for a significant difference between the distributions of outputs. This detector

works well for detecting an adversarial sample that has dramatically different output values

on f(x) and f(x̂). For example, if an image of 7 is perturbed and classified as a 9 with high

60



confidence, but after passing the sample through the autoencoder it is classified as a 9 with

much lower confidence, the sample would be flagged by the JSD detector. Adversarial

examples seek to modify the classification of a target sample, while achieving this goal

of modifying the classification the outputs of the classifier must be modified. The JSD

detector works to analyze the outputs of the classifier checking the difference between

f(x) and f(x̂) values against the threshold and detecting the sample if the difference is

above the threshold.

softmax(li) =
exp(li)∑n
j=1 exp(lj)

(4.1)

Equation 4.2 shows the Jean Shannon Divergence between two distributions P and

Q, where D is the KL divergence. The number resulting from this calculation quantifies the

difference between the distributions. A smaller JSD implies that the distributions are close

together and a larger JSD implies a larger difference between (dissimilar) distributions. The

JSD detector relies heavily on the threshold selected, which is selected following the same

methodology explained above.

JSD(P ||Q) =
1

2
D(P ||M) +

1

2
D(Q||M) (4.2)

M =
1

2
(P +Q) (4.3)

As Meng et al. have found, the softmax often saturates towards the highest probability

class, which heavily skews the distribution of the outputs [28]. To prevent the saturating

of the softmax outputs, a temperature variable, T , is added to the softmax, which softens

the probabilities and reduces over saturation to the most likely class. This modification is

applied to the softmax and is shown in equation 4.4.

softmax(li) =
exp(li/T )∑n
j=1 exp(lj/T )

(4.4)

61



4.2 Proposed Defense: Broad Spectrum Defense (BSD)

The proposed defense does not rely on any existing attacks to define the region

in which the adversarial samples may reside. Instead we attempt to bound the region in

which genuine data reside, any data found outside of the bounded genuine data would

then be considered adversarial data. The proposed defense is constructed by combining

different detectors to attempt to cover as much of the adversarial space as possible, while

also minimizing the amount of overlap with the distribution of genuine data. The broad

spectrum defense builds off of the MagNets’ detectors described above.

We refer to our proposed approach as broad spectrum defense (BSD), which uses an

autoencoder to measure the error between the genuine input sample x and its reconstructed

output x̂. For genuine data, such an error should be small. A large error, i.e., a large distance

between a sample and its reconstructed image (based on training with genuine data) is an

indication of an adversarial sample. Hence, such samples with high reconstruction errors

are deemed adversarial and removed from the data stream. Such a reconstruction error

detector should ideally remove all adversarial examples that yield high reconstruction error

when passed through the autoencoder. We retain the use the Jean Shannon divergence

(JSD) detector from MagNet as well. As explained above, the JSD detector evaluates the

difference between the softmax outputs of the neural network f(x) and f(x̂). If the JSD

between the two is above a threshold determined from the training data, the sample is

deemed adversarial and rejected. As done in MagNet, the JSD detector is applied with two

different temperature values, 10 and 40. The softmax values of f(x) and f(x̂) are divided

by each temperature and a detector is built for each. The temperature values are utilized

62



to help avoid the saturation that occurs near high and low values of the softmax function.

We note that these samples are removed in a way that only relies on the true distribution of

genuine data points used to train the autoencoder, and hence no existing attacks are used in

the training of the BSD. In other words, BSD does not require or rely on the availability of

any adversarial data to be used for training.

4.2.1 Class Divergence Detector (Unique to BSD)

The Class Divergence Detector (CDD) is a new detector we add to enhance MagNet

and provide additional coverage against a broader spectrum of adversarial attacks. As ex-

pected, additional coverage comes at the expense of a higher false positive rate. In chapter

5 we demonstrate this trade off. To further restrict the adversary’s attack space, we add

an additional detector to MagNet, the Class Divergence Detector (CDD). To explain the

CDD we must first review some terminology. During inference time, the classifier - when

presented with the input x - produces the label y. The classifier is then presented with x̂,

or the auto encoded representation of the sample, resulting in ŷ. The idea of this detector

is that by transforming the sample with the autoencoder, the classification of this new data

x̂ would result in the same classification if the sample is not malicious, or would result

in a different classification for adversarial examples. A true sample and its auto-encoded

variant are expected to be very close in distance and therefore result in the same classifi-

cation. An adversarial sample carefully manipulates the data to change the classification,

but remain close to the decision boundary. Passing this adversarial sample through the au-

toencoder may result in a change in classification and this will result in a detection. The

CDD does not have any hyperparameters to tune, and is only a function of the classifier

63



and the auto-encoded sample. In the case of a benign sample, the classification from the

original sample will equal the classification of the auto-encoded sample, y == ŷ, and the

sample will not be detected. In the case of an adversarial sample, the classification from

the original sample will not equal the classification of the auto-encoded sample, y 6= ŷ,

and the sample will be detected. Figure 16 demonstrates how the class divergence detector

functions. The red X marks the location of the adversarial example. In this case it will be

classified as a “9” as the adversary has forced the sample across the boundary by adding

the extra white pixels. After the sample is passed through the autoencoder, it now resides at

the blue x̂, note that now it is on the side of the decision boundary which will be classified

as a “3”. The change in classification from the original sample to the auto-encoded sample

is what allows for the detection of the data. It is very possible that this sample could have

bypassed MagNets reconstruction error detector (the distance auto-encoded sample is close

to the adversarial sample), and JSD detector (the output softmax values from f(x̂) could be

close to f(x)). For example, if the sample was classified as “9“ with similar probability to

“3“, then passing it through the autoencoder yielded a classification of “3“, the CDD would

detect the sample as the class has changed, but the JSD may not detect it if the distributions

are highly similar. Through our experiments in Chapter 5 we show that the CDD does in

fact capture these samples missed by MagNets detectors.

64



Figure 16
Demonstration of Class Divergence Detector

X

X

X

X

X

X

X

X

X

X

4.2.2 BSD Summary

For an adversarial sample to defeat BSD, the adversarial sample must be bound in

reconstruction error, must satisfy y == ŷ (the classification of the test sample must match

the classification of the auto-encoded sample), and still maintain the JSD between f(x) and

f(x̂) that is below the thresholds established on the training dataset. The resulting defense

is therefore able to detect adversarial examples with very small perturbations, all the way

up to examples with large perturbations. Hence the proposed BSD is designed to detect a

wide array of adversaries, while also minimizing false positives.

Figure 17 shows a block diagram of the broad spectrum defense. At inference time,

the sample x is passed through the autoencoder yielding the auto-encoded sample x̂. The

sample and its auto-encoded variant are then passed through the model yielding two sets

65



of logits and predictions. Using the logits, predictions, and auto-encoded sample, the test

point can be evaluated against the reconstruction error, Jean Shannon divergence, class

divergence detectors and, if the sample is not flagged as adversarial, its classification ŷ is

returned.

Figure 17
Broad Spectrum Defense Block Diagram

𝑥 ො𝑥

Autoencoder

𝑌𝑌

𝑍(ො𝑥)𝑍(𝑥)

ModelModel

Jean
Shannon

Divergence
𝐽𝑆𝐷[𝑍 𝑥 ] − 𝐽𝑆𝐷[𝑍(ො𝑥)] > 𝑇ℎ𝑟𝑒𝑠ℎ

Class
Divergence 𝑌 ≠ 𝑌

Reconstruction 
Error (𝑥 − ො𝑥)2> 𝑇ℎ𝑟𝑒𝑠ℎ

Reject sample if

or

or

Else return classification 𝑌

66



Algorithm 7 Broad Spectrum Defense
x original sample
AE autoencoder
Z classifier Logit Values (Pre softmax)
f classifier
β percentage of training data acceptable as false positives

Input: x,AE,Z, f, β
1: Establish Trecon and TJSD from training set using β
2: x̂ = AE(x)
3: y = f(x)
4: ŷ = f(x̂)
5: Erecon =

√
(x− x̂)2

6: EJSD = |JSD[Z(x)]− JSD[Z(x̂)]|
7: if y == ŷ & Erecon < Trecon & EJSD < TJSD then
8: Return classification y for sample x
9: else

10: Sample is detected as adversarial

67



Chapter 5

Experiments, Results and Comprehensive Analysis of BSD

5.1 Metrics Used to Evaluate Robustness

It is difficult to evaluate the robustness of a detector-based defense as it is difficult

to make any theoretical robustness claims given we are not able to map the entire adver-

sarial attack surface. In some works, the authors discuss robustness with respect to some

ε ball of a given data point. For example, Ghiasi et al. [13] demonstrate that robustness

within an ε ball results in classifiers vulnerable to larger, non-LP norm attacks, such as

the Shadow attack and Spatial attack. We take a more holistic and empirical approach to

evaluate robustness by generating a variety of attacks using different distance metrics and

methodologies. Evaluating the proposed defense against a wide variety of existing attacks

paints a picture of the utility of this defense. The proposed broad spectrum defense (BSD)

does not utilize any information from existing attacks, therefore BSD is not biased towards

any attack style, allowing better generalization to other future attacks. The accuracy on ad-

versarial data is reported as the adversarial accuracy, the rate at which adversarial samples

are detected or classified correctly, as shown in Equation 5.1. In Equation 5.1 D refers to

the set of adversarial examples detected by the defense. This equation computes the success

rate of the defense, recall that a detector defense succeeds by detecting and identifying the

adversarial sample as adversarial. Also recall that MagNet, BSD, and Feature Squeezing

pass the samples through filters and/or autoencoders and then classify these samples. If a

sample passes the detector (i.e., not deemed or caught as adversarial), it passes through the

filters and then the model for a final classification. This process gives the defense an oppor-

tunity to filter / rectify a potential adversarial sample that happened to pass the detector, so

68



that its final classification is in fact correct. If the defense is able to rectify the adversarial

example resulting in a correct classification, the defense has succeeded on that sample. The

adversarial accuracy metric quantifies the success rate of remedying (detecting or correctly

classifying) an adversarial sample.

Accadv =

∑N
i=1 yi = argmax[f(xi)] or xi ∈ D

N
(5.1)

5.1.1 True / False Positive Trade Off

When evaluating the performance of a detector, the false positive rate is an impor-

tant consideration. A false positive occurs when a non-adversarial sample is detected (and

hence declared) as adversarial. An optimal defense would have a zero false positive rate

while detecting all of the adversarial samples (also known as true positives). In reality, a

trade off exists in which a zero false positive rate would result in missed adversarial sam-

ples (also known as missed detection (false negative)). On the other hand, a 100% success

rate at detecting adversaries (i.e., zero missed detection) would result in a non-zero false

positive detection rate. In this work, the trade off is controlled by the parameter β. The

β parameter controls the user’s threshold for false positives, i.e., how much of the data is

acceptable as false positive detections. This parameter has a valid range of 0 to 1: with

β = 0, the detectors are selected as to not detect any of the data in the training set (as

adversarial). With β = 0.01, the thresholds are established such that 1% of the data in the

training set are flagged as adversarial for each detector.

In this work we compute measures of sensitivity and specificity using separate ad-

versarial and non adversarial data. More specifically, we evaluated BSD in two distinct

69



environments to quantify performance. First we evaluate the defense in an environment

that consists of only adversarial (positive) test examples. In this case we find the sensitiv-

ity, the true positives (detected as adversarial or classified correctly) divided by the number

of all test samples (all of which are adversarial) 5.2. The sensitivity reveals how well the

defense is able to identify adversarial samples. As described earlier, Equation 5.1 or the

adversarial accuracy is a measure of sensitivity as it is measuring the rate at which the

defense succeeds on positive samples.

Sensitivity =
TP

TP + FN
(5.2)

We then evaluate the defense in an environment consisting of only benign (clean) samples.

In this case our experiments reflect the specificity or the rate at which benign images are

correctly identified as benign.

Specificity =
TN

TN + FP
(5.3)

To demonstrate how many false positives are detected, each defense is evaluated

against the benign test set. On such a benign (clean) test set, any detection (i.e., any in-

stance flagged as adversarial) is considered as a misclassification - a false positive. Benign

accuracy is computed as the ratio of all correctly classified samples that were not detected

(as adversarial) to the total number of samples, as demonstrated in equation 5.4. Ideally,

the set of detected samples would be empty on the test set (zero false positives). Equation

5.4 captures the performance loss incurred by incorrectly detecting test samples. Note,

Equation 5.4 reflects the sensitivity of the defense, or its ability to correctly identify benign

samples without flagging them.

Accbenign =

∑N
i=1[yi = argmax[f(xi)] and xi 6∈ D]

N
(5.4)

70



5.2 Datasets Used

Various datasets were utilized to evaluate the performance of BSD. The datasets

vary in resolution of images, number of channels, number of classes, and number of images

per class. Sample images from each dataset are shown below.

5.2.1 MNIST

The MNIST dataset contains hand written digits 0 to 9, leading to a 10-class classi-

fication problem. The MNIST dataset contains 70,000 gray scale 28x28 images, examples

are shown in Figure 18. This dataset is split into two subsets: 60,000 images for training

and 10,000 images for testing. [21] The MNIST dataset has been used for years to bench-

mark the performance of simple image classifiers [20], and achieving above 99% testing

accuracy on MNIST is possible. MNIST is also widely used in adversarial machine learn-

ing as adversarial samples can be generated and visualized rapidly with low computational

overhead. Many works have focused on attempting to secure a MNIST classifier against all

adversarial samples, but none have succeeded yet [36].

71



Figure 18
MNIST Dataset

5.2.2 CIFAR10

CIFAR10 dataset contains 32x32 color images of 10 objects: airplane, automobile,

bird, cat, deer, dog, frog, horse, ship, and truck [19]. Examples of CIFAR10 images are

shown in Figure 19. This data set consists of 50,000 training images and 10,000 test im-

ages, that breaks down to 5000 training images per class and 1000 test images per class.

Compared to MNIST, CIFAR10 is a color dataset with 3 channels, and CIFAR10 increases

the resolution to 32x32 from 28x28. This dataset offers an incremental increase in com-

plexity from MNIST without taking too large of a step.

72



Figure 19
CIFAR10 Dataset

5.2.3 CIFAR100

CIFAR100 is very similar to CIFAR10 as it contains 32x32 color images of 100

classes, representative examples are shown in Figure 20. The dataset still consists of 50,000

training images and 10,000 testing images making it a more difficult task than CIFAR10.

In CIFAR100 there are 500 training images per class and 100 test images per class. [19]

Figure 20
CIFAR100 Dataset

73



5.2.4 TinyImageNet

The TinyImageNet dataset consists of 200 classes with 500 training images each

(100,000 total) and 50 test images per class (10,000 total). These images are 64x64 res-

olution downsampled from the original 256x256 images. A sampling of TinyImageNet

are shown in Figure 21. The TinyImageNet problem doubles the number of classes from

CIFAR100, and also doubles the resolution of the images, resulting in a more challenging

classification problem that requires modern neural network architectures to achieve accept-

able results. [35]

Figure 21
TinyImageNet Dataset

5.2.5 ImageNet

ImageNet is one of the largest publicly available datasets with 1,261,406 training

images (668 to 3047 per class) and 50,000 images provided for testing (50 per class). The

images contained in ImageNet come from 1000 different classes and have a resolution of

256x256. Some representative examples of ImageNet are shown in Figure 22. In this work,

74



we used the Large Scale Visual Recognition Challenge 2012 version of the dataset. The

feature space of ImageNet is considerably larger than TinyImageNet as it has five times the

number of classes and four times the resolution. ImageNet is used to demonstrate how well

classifiers, attacks, and defense can scale towards real life problems. [35]

Figure 22
ImageNet Dataset

5.3 Description of Experiments

5.3.1 Defenses for Comparisons

Feature Squeezing and MagNet are used to compare and contrast the performance

of the Broad Spectrum Defense to existing defenses. MagNet was chosen in part because it

is a strong defense, and in part is a subset of the BSD, whereas Feature Squeezing was se-

lected because it has been shown to be one of the best performing detector-based defenses.

Another reason why we selected these two defenses is because they are not trained with

adversarial data. This attribute is critical and necessary to create a generalizable defense.

In the paper describing Feature Squeezing, the authors performed a direct comparison and

75



found that MagNet significantly outperformed Feature Squeezing on MNIST, and Feature

Squeezing outperformed MagNet on CIFAR-10, indicating a lack of clear winner between

the two [40]. Other defense approaches were excluded for reasons such as training with

adversarial data, only functioning on specific datasets, or only effective on a small subset

of adversarial attacks. Table 2 in Chapter 3 has shown that MagNet, Feature Squeezing and

BSD are the only defenses that meet this criteria.

In forming the comparison, MagNet and BSD are both controlled by the same β

parameter allowing for a one-to-one comparison. As the FS defense is created without the

β parameter, we omit this defense from the benign accuracy evaluation. The benign accu-

racy evaluation was performed to allow for a comparison between MagNet and BSD, this

comparison shows how much additional error is introduced by using the Class Divergence

Detector. For the Feature Squeezing defense, we defer to the author provided parameters

for each dataset presented in their work. We provide an adversarial performance compari-

son between FS, MagNet, and BSD.

5.3.2 Adversarial Evaluation

The adversarial robustness for Feature Squeezing, MagNet, and BSD is determined

by evaluating each against a variety of attacks. Each attack was crafted using the same

dataset used to train the same classifier, with the same attack data passed to each defense.

To show how well each defense generalizes, attacks of different norms (L0, L2, L∞) were

utilized. In addition to the traditional LP norm attacks, another set of attacks, that do

not utilize the Lp norm (shadow and spatial attacks), were also used. All defenses and

attacks were evaluated on MNIST, CIFAR10, CIFAR100, TinyImageNet, and ImageNet

76



datasets. BSD and MagNet were applied with a β value of 0.05, this β value was selected

to match the expected False Positive rate given in the Feature Squeezing paper [40]. The

aforementioned experiments provides a comprehensive comparison of defenses across a

wide spectrum of attacks and environments.

5.4 MNIST

5.4.1 Experimental Setup

On the MNIST dataset high classification accuracies can be achieved using rela-

tively simple convolutional neural network architectures. In these experiments, we used

a convolutional neural network with parameters specified in Table 3. In Table 3, the first

column specifies the layer type and the second column shows the layer parameters, such as

number of filters, number of nodes, or kernel size. We chose this specific network, because

it was used in prior works and serves as a benchmark classifier [34] [28].

The MNIST dataset was normalized to zero mean with -1 to 1 bounds. The bounds were

selected to line up with the output of the autoencoder: the activation function used on the

final layer of the autoencoder was the hyperbolic tangent (tanh) function, whose range is

also bounded between -1 to 1.

77



Table 3

MNIST Classifier Architecture

Layer Type Layer Parameters
Relu Convolution 32 filters (3x3)
Relu Convolution 32 filters (3x3)
Max Pooling 2x2
Relu Convolution 64 filters (3x3)
Relu Convolution 64 filters (3x3)
Max Pooling 2x2
Relu Fully Connect. 200 units
Relu Fully Connect. 200 units
Softmax 10 units

5.4.2 Benign Accuracy Evaluation

The benign accuracy for MNIST is shown in Figure 23. The blue line (BSD) and

pink line (MagNet) show the benign accuracy of each defense on the unmodified test set

of the MNIST dataset. We are able to form a one to one comparison between MagNet

and BSDs’ benign accuracy as they are both controlled by the same parameter β. Figure

23 shows that as the β value is increased towards 0.05, the accuracy drops from 100%

to 95%, an expected behavior. The “No Defense Accuracy” shown in Figure 23 refers

to the accuracy of the classifier operating on the same (non-adversarial) test set as the

MagNet and BSD defenses. Note that the accuracy of the classifier on the test data, or the

“No Defense Accuracy“ is independent of the β value and serves as a baseline (zero false

positive detections). Increasing β increases the quantity of false positives in the test set, so

we would expect a drop in performance on the clean test data as β is increased. On MNIST,

both defenses have an identical false positive rate at each β value (as shown by overlapping

78



blue and pink lines), indicating that the Class Divergence Detector has not increased the

number of false positive detections on MNIST.

Figure 23
Impact of Detectors on MNIST

0.01 0.02 0.03 0.04 0.05
 Value

0%

20%

40%

60%

80%

100%

Be
ni

gn
 a

cc
ur

ac
y

Benign Accuracy vs  value MNIST

No Defense Accuracy
MagNet Accuracy
BSD Accuracy

5.4.3 Performance on All Attacks

Table 4 shows the adversarial accuracy (Equation 5.1) of BSD, MagNet, and FS

against a variety of attacks. It is important to note that the attacks used include a variety

of L0, L2, L∞, and non-Lp norm based attacks. The attacks were all white box attacks,

the strongest – if unrealistic – attacks possible, generated with complete knowledge of the

classifier, parameters, and data. The attacks were not aware, however, of any defenses

potentially applied. A defense that is truly robust should offer protection against any ad-

79



versarial attack regardless of the distance metric or formulation. The table shows that in

all cases, BSD outperforms MagNet and FS on this dataset. It is important to note that

Figure 23 has shown that BSD can be applied without introducing additional false positive

detections over MagNet, and applying BSD can slightly improve adversarial accuracy over

the wide variety of attacks shown in Table 4.

Table 4

MNIST Adversarial Accuracy at β = 0.05

Attack Type BSD MagNet FS No Defense
FGSM 99.45 % 98.79 % 93.74 % 9.93 %
JSMA 94.45 % 94.42 % 76.98 % 9.70 %
PGD 100.00% 100.00% 91.45% 14.45%
DeepFool 99.44 % 99.42 % 76.98% 0.00 %

Carlini Wagner 91.38% 91.33% 89.48% 9.8%

EAD 96.56% 95.26% 96.02% 0.00 %
Spatial 86.16 % 85.68 % 76.41 % 0.00 %

Shadow 99.32 % 99.22 % 97.95 % 8.79 %

5.5 CIFAR10

5.5.1 Experimental Setup

To evaluate the performance of BSD on a more complex dataset, the results on the

CIFAR10 data set were analyzed. A classifier trained to 81.7% accuracy (under no attack)

was used to evaluate the defense. Table 5 shows the architecture of a simple convolutional

neural network. This CNN architecture we used is identical to the one used in defensive

distillation and related works. [34] [28]. In Table 5, the first column refers to the layer type,

the second column shows the layer parameters such as number of filters, number of nodes,

80



or kernel size.

To mimic the work done in On the Limitations of MagNet Defense Against L-1 Based

Adversarial Examples, the autoencoder contains 3 layers, the first two are kernel size of

3x3 with 256 filters, the last layer is kernel size of 3x3 with 3 filters [26]. The CIFAR10

data was normalized to zero mean with -1 to 1 bounds.

Table 5

CIFAR10 Standard Classifier Architecture

Layer Type Layer Parameters
Relu Convolution 64 filters (3x3)
Relu Convolution 64 filters (3x3)
Max Pooling 2x2
Relu Convolution 128 filters (3x3)
Relu Convolution 128 filters (3x3)
Max Pooling 2x2
Relu Fully Connect. 256 units
Relu Fully Connect. 256 units
Softmax 10 units

5.5.2 Benign Accuracy Evaluation

The benign accuracy (Equation 5.4) of the defense on the non-adversarial test set is

evaluated to determine the quantity of false positives. A sweep is performed over β values

to demonstrate the change in benign accuracy on the test set as the β parameter is increased.

Figure 24 shows that with a β of 0, 76% accuracy is achieved with MagNet and 73% is

achieved with BSD. The figure also shows that the No Defense Accuracy, or the accuracy of

the classifier on the benign test set with no defense applied, is 81%. The result is expected

81



as MagNet and BSD follow the same slope meaning that the β dependent components

are detecting the same samples. The β dependent components are the reconstruction error

based detector and the JSD detector. The constant difference between MagNet and BSD -

as seen in Figure 24 – is attributed to the Class Divergence Detector. As BSD includes an

additional detector, it will detect more clean samples as false positives than MagNet, but

– as we will see below – the extra detector will also catch more adversarial samples than

MagNet. As the threshold is increased, the accuracy on the test set declines linearly – as

expected – similar to the results observed on the MNIST set.

Figure 24
Impact of Detectors on CIFAR10

0.01 0.02 0.03 0.04 0.05
 Value

0%

20%

40%

60%

80%

100%

Be
ni

gn
 a

cc
ur

ac
y

Benign Accuracy vs  value CIFAR10

No Defense Accuracy
MagNet Accuracy
BSD Accuracy

82



5.5.3 Performance on Wide Spectrum of Attacks

Different adversarial attacks were performed against the neural network used for

classification, some of these attacks are fundamentally different in how they construct ad-

versarial examples. Table 6 shows that in most cases BSD offers a gain in accuracy over

other defenses - often with wide margins. This gain is most pronounced in the spatial and

shadow attacks. This result is expected as the spatial and shadow attacks do not optimize

using a LP norm, instead they utilize different similarity metrics to ensure the adversarial

images look like the original images. The table demonstrates that BSD offers an 32% gain

on the shadow attack over Feature Squeezing and an 23% gain over MagNet. Since the

primary difference between MagNet and BSD is the class divergence detector (CDD), the

23% performance gain can be attributed to the CDD. Another interesting take away from

the table is that MagNet and BSD both achieve 99.90% adversarial accuracy on PGD while

FS only achieves a 1.02%. Table 6 also shows that Elastic Net and Spatial attacks were un-

able to develop strong attacks as the accuracy of the classifier without a defense is as high

as 82.62% and 84.47 %. In both of these cases, applying BSD still leads to an increase in

performance as some of the adversarial samples successfully crafted are detected.

83



Table 6

CIFAR10 Adversarial Performance at β = 0.05

Attack Type BSD MagNet FS No Defense
FGSM 43.85 % 31.84 % 38.87 % 18.75 %
JSMA 97.36 % 69.33 % 62.99 % 2.15 %
PGD 99.90% 99.90% 1.02% 23.53%
DeepFool 86.43% 73.34% 39.89% 8.1%

Carlini Wagner 81.84 % 73.44 % 73.44 % 0.00 %

Elastic Net 90.63 % 77.34 % 77.54 % 82.62 %
Spatial 91.11 % 79.30 % 83.11 % 84.47 %

Shadow 77.15 % 53.61 % 44.92 % 45.51 %

5.6 CIFAR100

CIFAR100 is a significant increase in difficulty over CIFAR10 due to increase in

number of classes from 10 to 100. As a result, a simple neural network can only yield

results in the 20-30% range. Therefore, we used a Wide Res-Net, which achieved a 79%

accuracy with benign test data. The autoencoder used follows the same architecture used in

CIFAR10, but is retrained for CIFAR100. The same preprocessing steps are also repeated,

the data was normalized to zero mean with -1 to 1 bounds.

5.6.1 Benign Accuracy Evaluation

As shown in Figure 25, BSD – which adds the class divergence detector to MagNet

– results in a slight benign accuracy (Equation 5.4) decrease of 1.5% compared to MagNet.

As β is increased, we see the expected linear downtrend of benign accuracy of MagNet

and BSD. The surprising result in Figure 25 is the 40% drop caused by applying MagNet

and BSD to CIFAR100. This extreme reduction in benign performance can be attributed

to the fact that the target classifier used is a wide-resnet containing 36 million parameters

84



is able to achieve the 79% accuracy on the test set. Due to CIFAR100s relatively low

support of only 500 training images per class, the wide-resnet fits the dataset very tightly.

This tight fit is fine for classification of the test set, however in MagNet and BSD, the

images are passed through an autoencoder and are then classified. This process of passing

the images through the autoencoder causes enough disturbance to the image to chance the

classification resulting in the 40% benign performance. A possible remedy to the benign

performance drop involves retraining the autoencoder to introduce less modification in the

samples. Through experimentation we were unable to find a suitable autoencoder, once an

autoencoder would remedy the benign accuracy, the defense would lose ability to detect

adversarial samples.

Figure 25
Accuracy on Clean Data for CIFAR100 Wide ResNet

0.01 0.02 0.03 0.04 0.05
 Value

0%

20%

40%

60%

80%

100%

Be
ni

gn
 a

cc
ur

ac
y

Benign Accuracy vs  value CIFAR100

No Defense Accuracy
MagNet Accuracy
BSD Accuracy

85



5.6.2 Evaluation on Adversarial Data

A variety of attacks were launched against the CIFAR-100 dataset. Table 7 demon-

strates that on the CIFAR100 dataset, BSD out performed MagNet and Feature Squeezing

on every attack. In the case of FGSM, MagNet and BSD both achieved 100% adversarial

accuracy. BSD demonstrates very high performance gains of over 30% on JSMA, Deep-

Fool, Carlini Wagner, Elastic Net Attack (EAD), and Spatial attack. Although BSD does

provide excellent coverage against adversarial attacks on the CIFAR100 dataset, one must

also consider the extremely high cost in benign accuracy shown in Figure 25.

Table 7

CIFAR100 Simplified Adversarial Performance at β = 0.05

Attack Type BSD MagNet FS No Defense
FGSM 100 % 100 % 18.4 % 2.34 %
JSMA 98.93 % 45.89 % 19.04 % 0.01 %
PGD 99.90% 99.70% 8.67% 2.92%
DeepFool 92.09% 40.82% 35.04% 18.65%

Carlini Wagner 85.84 % 42.48 % 31.95 % 0.00 %

EAD 93.16 48.43 16.06% 4.79%
Spatial 94.14 % 45.31 % 13.91 % 12.54 %

Shadow 92.18 % 74.80 % 3.00 % 2.8 %

5.7 TinyImageNet

On TinyImageNet dataset, the Feature Squeezing defense was found to only detect

between 5 and 15% of adversarial examples for any given attack. We have utilized the

authors’ implementation of Feature Squeezing and used the same hyperparameters the au-

86



thors have selected for the TinyImageNet dataset. We believe the low performance of FS

comes from the fact that we have selected to evaluate the defenses on a ResNet18 network

consisting of 11.6 million parameters. The authors’ of Feature Squeezing used a MobileNet

architecture made up of only 5 million parameters. The FS defense relies on applying filters

to images and examining the classifications, a very tightly fit model (like ResNet18) will

have decision boundaries drawn closer to the samples than a model with a looser fit. Due

to the tight fit of the ResNet, we believe that the changes introduced by the filters of FS are

not able to push the adversarial samples across the decision boundary towards the correct

class. This inability to change the classification of samples by applying filters results in the

low 5% to 15% performance found on TinyImageNet.

5.7.1 Benign Accuracy Evaluation

A larger autoencoder is needed on this dataset since the feature space is consider-

ably larger compared to other datasets, and a more complex network is therefore required to

learn the underlying data distributions. Figure 26 demonstrates that BSD and MagNet can

be applied to TinyImageNet with minimal impact on the clean data performance. Note how

with a β of zero MagNet results in 1% loss in benign accuracy and BSD introduces a 2%

loss in benign accuracy (the additional 1% is attributed to the Class Divergence Detector).

87



Figure 26
Accuracy on Clean Data for TinyImageNet

0.01 0.02 0.03 0.04 0.05
 Value

0%

20%

40%

60%

80%

100%

Be
ni

gn
 a

cc
ur

ac
y

Benign Accuracy vs  value TinyImageNet

No Defense Accuracy
MagNet Accuracy
BSD Accuracy

5.7.2 Evaluation on Adversarial Data

To evaluate the TinyImageNet dataset on adversarial images we followed the same

procedure used on the other datasets. We performed the same set of attacks over the test set

of TinyImageNet and evaluated the adversarial accuracy of BSD, MagNet, and FS defenses

to compare them and highlight the differences in performance. This comparison is shown

in Table 8. As described earlier, the results for Feature Squeezing are between 5 and 15%

against every attack. It appears that for larger datasets, Feature Squeezing may need to

be tweaked to the specific model used for classification to achieve the best performance.

This is important to note as the goal of BSD is to design a defense that can be applied to

any model and any dataset without requiring the tuning of parameters. Table 8 shows that

88



in most of the attacks on TinyImageNet, MagNet is very close in adversarial accuracy or

ties the accuracy of BSD. In EAD and Spatial Attack the difference is more pronounced as

BSD achieves a 5.47% and 7.71% increase in adversarial accuracy.

Table 8

TinyImageNet Adversarial Performance at β = 0.05

Attack Type BSD MagNet FS No Defense
FGSM 100.00 % 100.00 % 9.75% 0.20 %
JSMA 99.41 % 97.85 % 14.26% 0.29 %
PGD 100.00% 100.00% 4.35% 2.54%
DeepFool 67.68 % 63.37 % 6.98% 0.00 %

Carlini Wagner 66.68 % 61.94 % 5.09% 0.25 %

EAD 73.24% 67.77% 5.7 % 58.59%
Spatial Attack 48.24 % 40.53 % 5.92 % 11.52 %

Shadow Attack 86.81 % 83.69 % 4.59% 21.48 %

5.8 ImageNet

The ImageNet dataset consists of very large 256x256 images. This dataset is used

to test the upper bound of BSD and see if it can continue to defense against adversarial

attacks in such a vast feature space. On the ImageNet dataset, the Feature Squeezing be-

havior mimicked the results on TinyImageNet data as Feature Squeezing was only able to

detect between 5% and 13% of adversarial examples on any given attack. Once again, this

could be attributed to the fact that we used the authors selected hyper-parameters instead

of attempting to tune the hyper parameters to the ResNet18 model used for classification.

Once again, this is an interesting result as the goal of BSD is to design a defense capable of

generalizing to any dataset and defending any model without adjusting hyper-parameters.

89



5.8.1 Benign Accuracy Evaluation

On ImageNet, we train a large autoencoder to learn to denoise the samples. Fig-

ure 27 shows that on ImageNet the classifier achieves a 69.81% accuracy on the clean test

dataset. At a β value of zero, BSD achieves a benign accuracy of 66.57% and MagNet

results in a benign accuracy of 68.41%. As the β parameter is increased, the benign accu-

racy quickly decreases. This decrease is attributed to the false detections by both the JSD

and the reconstruction error detector. These false detections are not coming from the CDD

as the CDD is independent of the β. Futhermore, the CDD can be seen by measuring the

constant difference between MagNet and BSD, in this case the CDD results in a 1.84%

decrease in benign accuracy from MagNet.

90



Figure 27
Accuracy on Clean Data for ImageNet

0.01 0.02 0.03 0.04 0.05
 Value

0%

20%

40%

60%

80%

100%

Be
ni

gn
 a

cc
ur

ac
y

Benign Accuracy vs  value ImageNet

No Defense Accuracy
MagNet Accuracy
BSD Accuracy

5.8.2 Evaluation on Adversarial Data

Imagenet is a very large dataset with a vast feature space, for this reason certain

attacks become infeasible to compute. One example is the JSMA attack, which requires

the creation of a matrix of forward derivatives for each input pixel, a process that requires

more than 12 gigabytes memory (the capacity of the Titan V GPU used to generate attacks),

therefor JSMA was not computed on ImageNet. Table 9 shows that in all cases BSD out

performs both MagNet and Feature Squeezing. In a few cases, the difference in adversarial

accuracy between BSD and MagNet is more pronounced. Two of these cases are the Spatial

and Shadow attacks where BSD outperforms MagNet by 7.82% and 8.6%. It appears that

over all data sets, BSD provides the most performance gain on these non-LP norm attacks.

91



Table 9

ImageNet Adversarial Performance at β = 0.05

Attack Type BSD MagNet FS No Defense
FGSM 98.20 % 97.76 % 1.10% 0.14 %
JSMA N/A N/A N/A N/A
PGD 82.03 80.27% 2.9% 28.32%
DeepFool 86.32% 81.84% 6.14% 78.51 %

Carlini Wagner 83.98 % 80.46 % 7.67 % 43.36%

EAD 96.48% 91.41 % 12.15 % 4.68%
Spatial Attack 63.28 % 55.46 % 8.22 % 38.87 %

Shadow 59.38% 50.78 % 4.29% 38.86%

5.9 Summarized Results Over Datasets

The results across all our experiments show that BSD does offer a significant im-

provement over MagNet and Feature Squeezing in all of the datasets shown, but this im-

provement comes at the cost of more false positive detections. The false positives occur

due to the additional CCD detector added to MagNet. This detector will at best, flag no

additional clean samples, but in reality few clean samples are detected as adversarial. The

benefit of applying BSD over MagNet becomes more pronounced as the complexity of the

dataset is increased. For example, applying BSD to MNIST offers only slight improve-

ment overall. Applying BSD to CIFAR10 results in a larger performance gain, and finally

applying BSD to TinyImageNet and ImageNet result in the largest performance gains over

MagNet and FS. These results show that the class divergence detector appears to scale with

complexity of datasets and models well. This result also makes sense as more complex

92



models are fit tightly, and a small disturbance can change the classification of the sample.

The class divergence detector was designed to solve this exact problem.

When looking at each defense by attack, it becomes apparent that BSD offers significant

accuracy gains on Shadow and Spatial attacks. This is promising as these attacks were de-

signed using non-LP similarity metrics resulting in fundamentally unique attacks. BSD’s

ability to improve performance against Shadow and Spatial attacks demonstrate promise

that BSD may also provide some level of robustness against future yet to be developed

attacks.

93



Chapter 6

Conclusion and Future Work

6.1 Conclusion

6.1.1 Overview

The Broad Spectrum Defense is designed to be a robust defense capable of general-

izing across a wide variety of evasion attacks on any neural network and dataset. There are

a variety of evasion attacks constructed with different metrics, methods, and loss functions.

All of these attacks share the same goal: to generate a data point indistinguishable from

the original while forcing a misclassifciation from the network. Many defenses have been

developed in recent years, but a majority of these defenses focus on a subsection of the

problem such as defending against all L2 norm attacks, or defending against all LP norm

attacks. Some defenses utilize adversarial data in training, these methods are directly bi-

ased towards one type of attack: the one on which they are trained. These type of defenses

do not generalize well to other types of attacks that may be developed in the future. As

such, these defenses are considered to be reactive approaches as they were developed in

response to a specific attack. The most effective evasion defense will be one which is not

reactive, but rather proactive. An optimal adversarial defense should be able to detect and

reject adversarial samples generated with any attack style on any dataset without flagging

legitimate samples.

94



6.1.2 Contributions

We designed the Broad Spectrum Defense to defend against a wide spectrum of

evasion attacks and subsequently to improve the performance of a network on any dataset

when under attack. The Broad Spectrum Defense can scale to protect any size classifier and

is not biased by adversarial data in the training phase. As adversarial data is not used in the

creation of this defense, we believe that the defense will generalize well to future adversar-

ial attacks providing some level of protection. The Broad Spectrum Defense falls short of

an optimal evasion defense as it does not achieve the ideal but unrealistic goal of detecting

100% of attack samples from every attack without flagging (detecting) any legitimate data

as adversarial. We observed that BSD is able to outperform Feature Squeezing and Mag-

Net – two state of the art approaches – in all explored cases. Although Broad Spectrum

Defense is not an optimal solution to the problem of detecting evasion samples, it appears

to contribute an additional level of robustness against existing attacks on all datasets.

In this work, we evaluated BSD against non-LP norm attacks, demonstrating the

difficulty of defending against such attacks. The unique nature of using different non-LP

attacks allow for the evaluation of attack samples that fall outside of the normally explored

LP norm attack space. The approach of using these non-LP norm attacks demonstrates the

importance of trying to define and reject the entire adversarial space as opposed to trying to

define the adversarial space explicitly using existing attacks. This work highlights the need

for an adversarial defenses capable of defending any dataset and classifier against any (or,

at least a broad spectrum of) attacks. The adversarial defense crafted to meet these three

criteria may even generalize to future attacks. BSD lays the foundation for creating and

95



evaluating such a defense.

6.2 Future Work

Future work should include designing an attack effective against this defense. Car-

lini has demonstrated that modifying the Carlini Wagner attack allows it to defeat MagNet,

the accuracy of BSD can be significantly degraded through this same white box attack[4].

A true white box attack, can be viewed as a worse case scenario, although it is very un-

realistic. BSD does not claim to be robust to a white box attack, improving its white box

performance is a possible avenue for future work.

The attack scenario analyzed in this work falls under “gray box” as the attacker has com-

plete access to the classifier, but is unaware of the defense. The “gray box” scenario is

realistic as an attacker can easily obtain a set of pretrained models and formulate attacks

against them. Often the classifier used by the defender is one of these pretrained models,

or the adversarial samples generated for the pretrained model are effective against the de-

fenders model. Future work can also involve benchmarking this defense against future gray

box attacks and attempting to build out the modular nature of this defense to increase its

robustness. When adding additional detectors one must weigh the increase in robustness

against the increase in false positive detections.

We hope that this work will inspire the creation of more proactive defenses that are robust

against LP and non-LP norm attacks. A robust defense should work on data of varying

scale from datasets as small as MNIST up to datasets as large (and potentially larger) than

96



ImageNet. A robust defense should be compatible with any neural network of any size from

a simple Convolutional Neural Network up to and beyond a complex EfficientNet model.

Another consideration for this potential defense is to manage the trade-off between the

ability to detect adversarial samples and the detection of false positives. A truly robust and

provably complete adversarial defense sounds like an impossibility, but BSD shows that

this impossible goal can be deconstructed into finite problems we can attempt to solve.

97



References

[1] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar. Can machine learning
be secure? Proceedings of the 2006 ACM Symposium on Information, Computer and
Communications Security, ASIACCS ’06, 2006(March):16–25, 2006.

[2] A. N. Bhagoji, D. Cullina, C. Sitawarin, and P. Mittal. Enhancing robustness of
machine learning systems via data transformations. 2018 52nd Annual Conference
on Information Sciences and Systems, CISS 2018, (1):1–5, 2018.

[3] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndic, P. Laskov, G. Giacinto, and
F. Roli. Evasion attacks against machine learning at test time, 2017.

[4] N. Carlini and D. Wagner. MagNet and ”Efficient Defenses Against Adversarial At-
tacks” are Not Robust to Adversarial Examples. pages 1–5, 2017.

[5] N. Carlini and D. Wagner. Towards Evaluating the Robustness of Neural Networks.
Proceedings - IEEE Symposium on Security and Privacy, pages 39–57, 2017.

[6] P. Y. Chen, Y. Sharma, H. Zhang, J. Yi, and C. J. Hsieh. EAD: Elastic-net attacks to
deep neural networks via adversarial examples. 32nd AAAI Conference on Artificial
Intelligence, AAAI 2018, pages 10–17, 2018.

[7] X. Chen, C. Liu, B. Li, K. Lu, and D. Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv, 2017.

[8] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma. Adversarial classifica-
tion. KDD-2004 - Proceedings of the Tenth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 99–108, 2004.

[9] D. DeMers and G. Cottrell. Non-Linear Dimensionality Reduction. Advances in
neural information processing systems, 5:580–587, 1992.

[10] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,
T. Kohno, and D. Song. Robust Physical-World Attacks on Deep Learning Models.
2017.

[11] A. Fawzi, S. M. Moosavi-Dezfooli, and P. Frossard. The Robustness of Deep Net-
works: A Geometrical Perspective. IEEE Signal Processing Magazine, 34(6):50–62,
11 2017.

[12] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner. Detecting Adversarial Sam-
ples from Artifacts. 3 2017.

[13] A. Ghiasi, A. Shafahi, and T. Goldstein. Breaking certified defenses: Semantic ad-
versarial examples with spoofed robustness certificates. pages 1–16, 2020.

[14] Z. Gong, W. Wang, and W.-S. Ku. Adversarial and Clean Data Are Not Twins. 4
2017.

98



[15] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial
examples. 3rd International Conference on Learning Representations, ICLR 2015 -
Conference Track Proceedings, pages 1–11, 2015.

[16] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. McDaniel. On the (Statis-
tical) Detection of Adversarial Examples. 2 2017.

[17] D. Hendrycks and K. Gimpel. Workshop track-ICLR 2017 EARLY METHODS FOR
DETECTING ADVERSARIAL IMAGES. Technical report.

[18] M. Kearns and M. Li. Learning in the presence of malicious errors. Proceedings of
the Annual ACM Symposium on Theory of Computing, 21(2012):267–280, 1988.

[19] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny im-
ages.(2009). Cs.Toronto.Edu, 2009.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep
convolutional neural networks. Neural Information Processing Systems (NIPS),
60(6):84–90, 2012.

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2323, 1998.

[22] X. Li and F. Li. Adversarial Examples Detection in Deep Networks with Convolu-
tional Filter Statistics. Proceedings of the IEEE International Conference on Com-
puter Vision, 2017-Octob:5775–5783, 2017.

[23] B. Liang, H. Li, M. Su, X. Li, W. Shi, and X. F. Wang. Detecting Adversarial Image
Examples in Deep Neural Networks with Adaptive Noise Reduction. IEEE Transac-
tions on Dependable and Secure Computing, pages 1–14, 2018.

[24] J. Liu, W. Zhang, Y. Zhang, D. Hou, Y. Liu, H. Zha, and N. Yu. Detection based de-
fense against adversarial examples from the steganalysis point of view. Proceedings
of the IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, 2019-June:4820–4829, 2019.

[25] J. Lu, T. Issaranon, and D. Forsyth. SafetyNet: Detecting and Rejecting Adversarial
Examples Robustly. Technical report, 2017.

[26] P. H. Lu, P. Y. Chen, K. C. Chen, and C. M. Yu. On the Limitation of MagNet Defense
Against L1-Based Adversarial Examples. Proceedings - 48th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks Workshops, DSN-W
2018, (i):200–214, 2018.

[27] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning
models resistant to adversarial attacks. 6th International Conference on Learning
Representations, ICLR 2018 - Conference Track Proceedings, 6 2018.

99



[28] D. Meng and H. Chen. MagNet: A Two-Pronged defense against adversarial ex-
amples. In Proceedings of the ACM Conference on Computer and Communications
Security, pages 135–147. Association for Computing Machinery, 10 2017.

[29] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff. On detecting adversarial
perturbations. 5th International Conference on Learning Representations, ICLR 2017
- Conference Track Proceedings, 2 2019.

[30] S. M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. DeepFool: A Simple and Ac-
curate Method to Fool Deep Neural Networks. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2016-Decem:2574–
2582, 2016.

[31] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph, B. I. Rubinstein, U. Saini, C. Sutton,
J. D. Tygar, and K. Xia. Exploiting machine learning to subvert your spam filter.
LEET 2008 - 1st USENIX Workshop on Large-Scale Exploits and Emergent Threats:
Botnets, Spyware, Worms, and More, (April), 2008.

[32] M.-I. Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat, M. Wistuba, V. Zant-
edeschi, N. Baracaldo, B. Chen, H. Ludwig, I. M. Molloy, and B. Edwards. Adver-
sarial Robustness Toolbox v1.0.0. pages 1–34, 2018.

[33] N. Papernot, P. Mcdaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The lim-
itations of deep learning in adversarial settings. Proceedings - 2016 IEEE European
Symposium on Security and Privacy, EURO S and P 2016, pages 372–387, 2016.

[34] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. Distillation as a Defense to
Adversarial Perturbations Against Deep Neural Networks. Proceedings - 2016 IEEE
Symposium on Security and Privacy, SP 2016, pages 582–597, 2016.

[35] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision, 115(3):211–252,
2015.

[36] L. Schott, J. Rauber, M. Bethge, and W. Brendel. Towards the first adversarially
robust neural network model on MnIsT. 7th International Conference on Learning
Representations, ICLR 2019, 3:1–16, 2019.

[37] M. Sharif, L. Bauer, and M. K. Reiter. On the Suitability of L p-norms for Creating
and Preventing Adversarial Examples. Technical report, 2018.

[38] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing
robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning - ICML ’08, volume 311, pages 1096–1103, New
York, New York, USA, 2008. ACM Press.

100



[39] C. Xiao, J. Y. Zhu, B. Li, W. He, M. Liu, and D. Song. Spatially transformed ad-
versarial examples. 6th International Conference on Learning Representations, ICLR
2018 - Conference Track Proceedings, pages 1–29, 2018.

[40] W. Xu, D. Evans, and Y. Qi. Feature Squeezing: Detecting Adversarial Examples in
Deep Neural Networks. (February), 2018.

[41] H. Zhang and J. Wang. Joint Adversarial Training: Incorporating both Spatial and
Pixel Attacks. 2019.

101


