1-Bit, color snapping, and pluality vote accuracies

This commit is contained in:
Aidan Sharpe 2024-04-07 12:04:46 -04:00
parent 30d8766e69
commit 8f264f7958
3 changed files with 134 additions and 84 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 163 KiB

View File

@ -4,6 +4,7 @@ import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
import cv2
from mnist import Net
@ -69,12 +70,14 @@ def test(model, device, test_loader, epsilon):
# Original dataset correct classifications
orig_correct = 0
# Attacked dataset correct classifications
attacked_correct = 0
unfiltered_correct = 0
kuwahara_correct = 0
bilateral_correct = 0
gaussian_blur_correct = 0
random_noise_correct = 0
attacked_snap_color_correct = 0
snap_color_correct = 0
one_bit_correct = 0
plurality_correct = 0
adv_examples = []
@ -111,30 +114,35 @@ def test(model, device, test_loader, epsilon):
bilateral_data = filtered(perturbed_data_normalized, len(perturbed_data_normalized), filter="bilateral")
gaussian_blur_data = filtered(perturbed_data_normalized, len(perturbed_data_normalized), filter="gaussian_blur")
random_noise_data = filtered(perturbed_data_normalized, len(perturbed_data_normalized), filter="noise")
attacked_snap_color_data = filtered(perturbed_data_normalized, len(perturbed_data_normalized), filter="snap_color")
snap_color_data = filtered(perturbed_data_normalized, len(perturbed_data_normalized), filter="snap_color")
one_bit_data = filtered(perturbed_data_normalized, len(perturbed_data_normalized), filter="1-bit")
# evaluate the model on the attacked and filtered images
output_attacked = model(perturbed_data_normalized)
output_unfiltered = model(perturbed_data_normalized)
output_kuwahara = model(kuwahara_data)
output_bilateral = model(bilateral_data)
output_gaussian_blur = model(gaussian_blur_data)
output_random_noise = model(random_noise_data)
output_attacked_snap = model(attacked_snap_color_data)
output_snap_color = model(snap_color_data)
output_one_bit = model(one_bit_data)
# Get the predicted class from the model for each case
attacked_pred = output_attacked.max(1, keepdim=True)[1]
unfiltered_pred = output_unfiltered.max(1, keepdim=True)[1]
kuwahara_pred = output_kuwahara.max(1, keepdim=True)[1]
bilateral_pred = output_bilateral.max(1, keepdim=True)[1]
gaussian_blur_pred = output_gaussian_blur.max(1, keepdim=True)[1]
random_noise_pred = output_random_noise.max(1, keepdim=True)[1]
attacked_snap_color_pred = output_attacked_snap.max(1, keepdim=True)[1]
snap_color_pred = output_snap_color.max(1, keepdim=True)[1]
one_bit_pred = output_one_bit.max(1, keepdim=True)[1]
predictions = [unfiltered_pred.item(), kuwahara_pred.item(), bilateral_pred.item(), gaussian_blur_pred.item(), random_noise_pred.item(), snap_color_pred.item(), one_bit_pred.item()]
plurality_pred = stats.mode(predictions)[0]
# Count up correct classifications for each case
if orig_pred.item() == target.item():
orig_correct += 1
if attacked_pred.item() == target.item():
attacked_correct += 1
if unfiltered_pred.item() == target.item():
unfiltered_correct += 1
if kuwahara_pred.item() == target.item():
kuwahara_correct += 1
@ -148,28 +156,38 @@ def test(model, device, test_loader, epsilon):
if random_noise_pred.item() == target.item():
random_noise_correct += 1
if attacked_snap_color_pred.item() == target.item():
attacked_snap_color_correct += 1
if snap_color_pred.item() == target.item():
snap_color_correct += 1
if one_bit_pred.item() == target.item():
one_bit_correct += 1
if plurality_pred == target.item():
plurality_correct += 1
# Calculate the overall accuracy of each case
orig_acc = orig_correct/float(len(test_loader))
attacked_acc = attacked_correct/float(len(test_loader))
unfiltered_acc = unfiltered_correct/float(len(test_loader))
kuwahara_acc = kuwahara_correct/float(len(test_loader))
bilateral_acc = bilateral_correct/float(len(test_loader))
gaussian_blur_acc = gaussian_blur_correct/float(len(test_loader))
random_noise_acc = random_noise_correct/float(len(test_loader))
attacked_snap_color_acc = attacked_snap_color_correct/float(len(test_loader))
snap_color_acc = snap_color_correct/float(len(test_loader))
one_bit_acc = one_bit_correct/float(len(test_loader))
plurality_acc = plurality_correct/float(len(test_loader))
print(f"Epsilon: {epsilon}")
print(f"====== EPSILON: {epsilon} ======")
print(f"Clean (No Filter) Accuracy = {orig_correct} / {len(test_loader)} = {orig_acc}")
print(f"Attacked (No Filter) Accuracy = {attacked_correct} / {len(test_loader)} = {attacked_acc}")
print(f"Attacked (Kuwahara Filter) Accuracy = {kuwahara_correct} / {len(test_loader)} = {kuwahara_acc}")
print(f"Attacked (Bilateral Filter) Accuracy = {bilateral_correct} / {len(test_loader)} = {bilateral_acc}")
print(f"Attacked (Gaussian Blur) Accuracy = {gaussian_blur_correct} / {len(test_loader)} = {gaussian_blur_acc}")
print(f"Attacked (Random Noise) Accuracy = {random_noise_correct} / {len(test_loader)} = {random_noise_acc}")
print(f"Attacked (Snapped Color) Accuracy = {attacked_snap_color_correct} / {len(test_loader)} = {attacked_snap_color_acc}")
print(f"Unfiltered Accuracy = {unfiltered_correct} / {len(test_loader)} = {unfiltered_acc}")
print(f"Kuwahara Filter Accuracy = {kuwahara_correct} / {len(test_loader)} = {kuwahara_acc}")
print(f"Bilateral Filter Accuracy = {bilateral_correct} / {len(test_loader)} = {bilateral_acc}")
print(f"Gaussian Blur Accuracy = {gaussian_blur_correct} / {len(test_loader)} = {gaussian_blur_acc}")
print(f"Random Noise Accuracy = {random_noise_correct} / {len(test_loader)} = {random_noise_acc}")
print(f"Snapped Color Accuracy = {snap_color_correct} / {len(test_loader)} = {snap_color_acc}")
print(f"1 Bit Accuracy = {one_bit_correct} / {len(test_loader)} = {one_bit_acc}")
print(f"Plurality Vote Accuracy = {plurality_correct} / {len(test_loader)} = {plurality_acc}")
return attacked_acc, kuwahara_acc, bilateral_acc, gaussian_blur_acc, random_noise_acc, attacked_snap_color_acc
return unfiltered_acc, kuwahara_acc, bilateral_acc, gaussian_blur_acc, random_noise_acc, snap_color_acc, one_bit_acc, plurality_acc
def filtered(data, batch_size=64, filter="kuwahara"):
@ -210,7 +228,7 @@ def filtered(data, batch_size=64, filter="kuwahara"):
elif filter == "bilateral":
for i in range(batch_size):
filtered_images[i] = cv2.bilateralFilter(images[i], 5, 50, 50).reshape(filtered_images[i].shape)
elif filter == "snap_color":
elif filter == "1-bit":
num_colors = 2
for i in range(batch_size):
# If the channel contains any negative values, define the lowest negative value as black
@ -228,36 +246,45 @@ def filtered(data, batch_size=64, filter="kuwahara"):
filtered_images[i] = filtered_images[i].astype(int).astype(float)/num_colors
if (min_value < 0):
filtered_images[i] -= min_value
elif filter == "snap_color":
for i in range(batch_size):
filtered_images[i] = (images[i]*4).astype(int).astype(float) / 4
# Modify the data with the filtered image
filtered_images = filtered_images.transpose(0,3,1,2)
return torch.tensor(filtered_images).float()
attacked_accuracies = []
unfiltered_accuracies = []
kuwahara_accuracies = []
bilateral_accuracies = []
gaussian_blur_accuracies = []
random_noise_accuracies = []
attacked_snap_color_accuracies = []
snap_color_accuracies = []
one_bit_accuracies = []
pluality_vote_accuracies = []
print(f"Model: {pretrained_model}")
for eps in epsilons:
aacc, kacc, bacc, gacc, nacc, sacc = test(model, device, test_loader, eps)
attacked_accuracies.append(aacc)
kuwahara_accuracies.append(kacc)
bilateral_accuracies.append(bacc)
gaussian_blur_accuracies.append(gacc)
random_noise_accuracies.append(nacc)
attacked_snap_color_accuracies.append(sacc)
unfiltered_acc, kuwahara_acc, bilateral_acc, gaussian_blur_acc, random_noise_acc, snap_color_acc, one_bit_acc, plurality_acc = test(model, device, test_loader, eps)
unfiltered_accuracies.append(unfiltered_acc)
kuwahara_accuracies.append(kuwahara_acc)
bilateral_accuracies.append(bilateral_acc)
gaussian_blur_accuracies.append(gaussian_blur_acc)
random_noise_accuracies.append(random_noise_acc)
snap_color_accuracies.append(snap_color_acc)
one_bit_accuracies.append(one_bit_acc)
pluality_vote_accuracies.append(plurality_acc)
# Plot the results
plt.plot(epsilons, attacked_accuracies, label="Attacked Accuracy")
plt.plot(epsilons, unfiltered_accuracies, label="Attacked Accuracy")
plt.plot(epsilons, kuwahara_accuracies, label="Kuwahara Accuracy")
plt.plot(epsilons, bilateral_accuracies, label="Bilateral Accuracy")
plt.plot(epsilons, gaussian_blur_accuracies, label="Gaussian Blur Accuracy")
plt.plot(epsilons, random_noise_accuracies, label="Random Noise Accuracy")
plt.plot(epsilons, attacked_snap_color_accuracies, label="Snapped Color Accuracy")
plt.plot(epsilons, snap_color_accuracies, label="Snapped Color Accuracy")
plt.plot(epsilons, one_bit_accuracies, label="1-Bit Accuracy")
plt.plot(epsilons, pluality_vote_accuracies, label="Plurality Vote Accuracy")
plt.legend()
plt.show()

View File

@ -46,64 +46,87 @@
## Models Defended with Various Filters
### Tabulated Results
| $\epsilon$ | FGSM | Kuwahara | Bilateral | Gaussian Blur | Random Noise | Snapped Color |
|------------|--------|----------|-----------|---------------|--------------|---------------|
| 0.05 | 0.9600 | 0.8700 | 0.8902 | 0.9271 | 0.9603 | 0.9781 |
| 0.10 | 0.8753 | 0.8123 | 0.8133 | 0.8516 | 0.8677 | 0.8818 |
| 0.15 | 0.7229 | 0.7328 | 0.7098 | 0.7415 | 0.7153 | 0.8408 |
| 0.20 | 0.5008 | 0.6301 | 0.5683 | 0.5983 | 0.4941 | 0.7496 |
| 0.25 | 0.2922 | 0.5197 | 0.4381 | 0.4591 | 0.2843 | 0.4301 |
| 0.30 | 0.1599 | 0.3981 | 0.3364 | 0.3481 | 0.1584 | 0.2091 |
| $\epsilon$ | Unfiltered | Kuwahara | Bilateral | Gaussian Blur | Random Noise | Snapped Color | 1-Bit | Plurality |
|------------|------------|----------|-----------|---------------|--------------|---------------|--------|-----------|
| 0.00 | 0.992 | 0.9066 | 0.9391 | 0.9682 | 0.9911 | 0.9913 | 0.9722 | 0.9889 |
| 0.05 | 0.9600 | 0.8700 | 0.8902 | 0.9271 | 0.9603 | 0.9781 | 0.8409 | 0.9600 |
| 0.10 | 0.8753 | 0.8123 | 0.8133 | 0.8516 | 0.8677 | 0.8818 | 0.7919 | 0.8799 |
| 0.15 | 0.7229 | 0.7328 | 0.7098 | 0.7415 | 0.7153 | 0.8408 | 0.7329 | 0.7879 |
| 0.20 | 0.5008 | 0.6301 | 0.5683 | 0.5983 | 0.4941 | 0.7496 | 0.6794 | 0.6467 |
| 0.25 | 0.2922 | 0.5197 | 0.4381 | 0.4591 | 0.2843 | 0.4301 | 0.6233 | 0.4721 |
| 0.30 | 0.1599 | 0.3981 | 0.3364 | 0.3481 | 0.1584 | 0.2091 | 0. | |
### Plotted Results
![]()
![Results Plot](../Plurality_Vote_Accuracy_Agaisnt_Individual_Filters.png)
### Raw Program Output
Epsilon: 0.05
====== EPSILON: 0.0 ======
Clean (No Filter) Accuracy = 9920 / 10000 = 0.992
Attacked (No Filter) Accuracy = 9600 / 10000 = 0.96
Attacked (Kuwahara Filter) Accuracy = 8700 / 10000 = 0.87
Attacked (Bilateral Filter) Accuracy = 8902 / 10000 = 0.8902
Attacked (Gaussian Blur) Accuracy = 9271 / 10000 = 0.9271
Attacked (Random Noise) Accuracy = 9603 / 10000 = 0.9603
Attacked (Snapped Color) Accuracy = 9781 / 10000 = 0.9781
Epsilon: 0.1
Unfiltered Accuracy = 9920 / 10000 = 0.992
Kuwahara Filter Accuracy = 9066 / 10000 = 0.9066
Bilateral Filter Accuracy = 9391 / 10000 = 0.9391
Gaussian Blur Accuracy = 9682 / 10000 = 0.9682
Random Noise Accuracy = 9911 / 10000 = 0.9911
Snapped Color Accuracy = 9913 / 10000 = 0.9913
1 Bit Accuracy = 9722 / 10000 = 0.9722
Plurality Vote Accuracy = 9889 / 10000 = 0.9889
====== EPSILON: 0.05 ======
Clean (No Filter) Accuracy = 9920 / 10000 = 0.992
Attacked (No Filter) Accuracy = 8753 / 10000 = 0.8753
Attacked (Kuwahara Filter) Accuracy = 8123 / 10000 = 0.8123
Attacked (Bilateral Filter) Accuracy = 8133 / 10000 = 0.8133
Attacked (Gaussian Blur) Accuracy = 8516 / 10000 = 0.8516
Attacked (Random Noise) Accuracy = 8677 / 10000 = 0.8677
Attacked (Snapped Color) Accuracy = 8818 / 10000 = 0.8818
Epsilon: 0.15000000000000002
Unfiltered Accuracy = 9600 / 10000 = 0.96
Kuwahara Filter Accuracy = 8700 / 10000 = 0.87
Bilateral Filter Accuracy = 8902 / 10000 = 0.8902
Gaussian Blur Accuracy = 9271 / 10000 = 0.9271
Random Noise Accuracy = 9587 / 10000 = 0.9587
Snapped Color Accuracy = 9781 / 10000 = 0.9781
1 Bit Accuracy = 8409 / 10000 = 0.8409
Plurality Vote Accuracy = 9600 / 10000 = 0.96
====== EPSILON: 0.1 ======
Clean (No Filter) Accuracy = 9920 / 10000 = 0.992
Attacked (No Filter) Accuracy = 7229 / 10000 = 0.7229
Attacked (Kuwahara Filter) Accuracy = 7328 / 10000 = 0.7328
Attacked (Bilateral Filter) Accuracy = 7098 / 10000 = 0.7098
Attacked (Gaussian Blur) Accuracy = 7415 / 10000 = 0.7415
Attacked (Random Noise) Accuracy = 7153 / 10000 = 0.7153
Attacked (Snapped Color) Accuracy = 8408 / 10000 = 0.8408
Epsilon: 0.2
Unfiltered Accuracy = 8753 / 10000 = 0.8753
Kuwahara Filter Accuracy = 8123 / 10000 = 0.8123
Bilateral Filter Accuracy = 8133 / 10000 = 0.8133
Gaussian Blur Accuracy = 8516 / 10000 = 0.8516
Random Noise Accuracy = 8696 / 10000 = 0.8696
Snapped Color Accuracy = 8818 / 10000 = 0.8818
1 Bit Accuracy = 7919 / 10000 = 0.7919
Plurality Vote Accuracy = 8799 / 10000 = 0.8799
====== EPSILON: 0.15000000000000002 ======
Clean (No Filter) Accuracy = 9920 / 10000 = 0.992
Attacked (No Filter) Accuracy = 5008 / 10000 = 0.5008
Attacked (Kuwahara Filter) Accuracy = 6301 / 10000 = 0.6301
Attacked (Bilateral Filter) Accuracy = 5683 / 10000 = 0.5683
Attacked (Gaussian Blur) Accuracy = 5983 / 10000 = 0.5983
Attacked (Random Noise) Accuracy = 4941 / 10000 = 0.4941
Attacked (Snapped Color) Accuracy = 7496 / 10000 = 0.7496
Epsilon: 0.25
Unfiltered Accuracy = 7229 / 10000 = 0.7229
Kuwahara Filter Accuracy = 7328 / 10000 = 0.7328
Bilateral Filter Accuracy = 7098 / 10000 = 0.7098
Gaussian Blur Accuracy = 7415 / 10000 = 0.7415
Random Noise Accuracy = 7119 / 10000 = 0.7119
Snapped Color Accuracy = 8408 / 10000 = 0.8408
1 Bit Accuracy = 7329 / 10000 = 0.7329
Plurality Vote Accuracy = 7879 / 10000 = 0.7879
====== EPSILON: 0.2 ======
Clean (No Filter) Accuracy = 9920 / 10000 = 0.992
Attacked (No Filter) Accuracy = 2922 / 10000 = 0.2922
Attacked (Kuwahara Filter) Accuracy = 5197 / 10000 = 0.5197
Attacked (Bilateral Filter) Accuracy = 4381 / 10000 = 0.4381
Attacked (Gaussian Blur) Accuracy = 4591 / 10000 = 0.4591
Attacked (Random Noise) Accuracy = 2843 / 10000 = 0.2843
Attacked (Snapped Color) Accuracy = 4301 / 10000 = 0.4301
Epsilon: 0.3
Unfiltered Accuracy = 5008 / 10000 = 0.5008
Kuwahara Filter Accuracy = 6301 / 10000 = 0.6301
Bilateral Filter Accuracy = 5683 / 10000 = 0.5683
Gaussian Blur Accuracy = 5983 / 10000 = 0.5983
Random Noise Accuracy = 4933 / 10000 = 0.4933
Snapped Color Accuracy = 7496 / 10000 = 0.7496
1 Bit Accuracy = 6794 / 10000 = 0.6794
Plurality Vote Accuracy = 6467 / 10000 = 0.6467
====== EPSILON: 0.25 ======
Clean (No Filter) Accuracy = 9920 / 10000 = 0.992
Attacked (No Filter) Accuracy = 1599 / 10000 = 0.1599
Attacked (Kuwahara Filter) Accuracy = 3981 / 10000 = 0.3981
Attacked (Bilateral Filter) Accuracy = 3364 / 10000 = 0.3364
Attacked (Gaussian Blur) Accuracy = 3481 / 10000 = 0.3481
Attacked (Random Noise) Accuracy = 1584 / 10000 = 0.1584
Attacked (Snapped Color) Accuracy = 2091 / 10000 = 0.2091
Unfiltered Accuracy = 2922 / 10000 = 0.2922
Kuwahara Filter Accuracy = 5197 / 10000 = 0.5197
Bilateral Filter Accuracy = 4381 / 10000 = 0.4381
Gaussian Blur Accuracy = 4591 / 10000 = 0.4591
Random Noise Accuracy = 2876 / 10000 = 0.2876
Snapped Color Accuracy = 4301 / 10000 = 0.4301
1 Bit Accuracy = 6233 / 10000 = 0.6233
Plurality Vote Accuracy = 4721 / 10000 = 0.4721
====== EPSILON: 0.30000000000000004 ======
Clean (No Filter) Accuracy = 9920 / 10000 = 0.992
Unfiltered Accuracy = 1599 / 10000 = 0.1599
Kuwahara Filter Accuracy = 3981 / 10000 = 0.3981
Bilateral Filter Accuracy = 3364 / 10000 = 0.3364
Gaussian Blur Accuracy = 3481 / 10000 = 0.3481
Random Noise Accuracy = 1560 / 10000 = 0.156
Snapped Color Accuracy = 2091 / 10000 = 0.2091
1 Bit Accuracy = 5462 / 10000 = 0.5462
Plurality Vote Accuracy = 3312 / 10000 = 0.3312