Implemented LeNet for CIFAR-10

This commit is contained in:
Adog64 2024-04-25 11:57:14 -04:00
parent 343958653e
commit 6c4723a633

View File

@ -10,9 +10,37 @@ import torch.optim as optim
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
import dla #import dla
EPOCHS = 200
class CifarCNN(nn.Module):
def __init__(self):
super(CifarCNN, self).__init__()
self.conv1 = nn.Conv2d(3, 96, 3, 1)
self.conv2 = nn.Conv2d(96, 192, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(37632, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x,2)
x = self.dropout1(x)
x = torch.flatten(x,1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
def train(model, trainloader, optimizer, epoch): def train(model, trainloader, optimizer, epoch):
running_loss = 0.0 running_loss = 0.0
for i, [data, target] in enumerate(trainloader, 0): for i, [data, target] in enumerate(trainloader, 0):
@ -21,9 +49,8 @@ def train(model, trainloader, optimizer, epoch):
optimizer.zero_grad() optimizer.zero_grad()
# forward + backward + optimize # forward + backward + optimize
outputs = model(data) output = model(data)
criterion = nn.CrossEntropyLoss() loss = F.nll_loss(output, target)
loss = criterion(outputs, target)
loss.backward() loss.backward()
optimizer.step() optimizer.step()
@ -42,9 +69,9 @@ def test(model, testloader, classes):
with torch.no_grad(): with torch.no_grad():
for data, target in testloader: for data, target in testloader:
# calculate outputs by running images through the network # calculate outputs by running images through the network
outputs = model(data) output = model(data)
# the class with the highest energy is what we choose as prediction # the class with the highest energy is what we choose as prediction
_, predicted = torch.max(outputs.data, 1) _, predicted = torch.max(output.data, 1)
total += target.size(0) total += target.size(0)
correct += (predicted == target).sum().item() correct += (predicted == target).sum().item()
@ -58,8 +85,8 @@ def test(model, testloader, classes):
# again no gradients needed # again no gradients needed
with torch.no_grad(): with torch.no_grad():
for data, target in testloader: for data, target in testloader:
outputs = model(data) output = model(data)
_, predictions = torch.max(outputs, 1) _, predictions = torch.max(output, 1)
# collect the correct predictions for each class # collect the correct predictions for each class
for label, prediction in zip(target, predictions): for label, prediction in zip(target, predictions):
if label == prediction: if label == prediction:
@ -94,15 +121,15 @@ def main():
'deer', 'dog', 'frog', 'horse', 'ship', 'truck') 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = dla.DLA().to(device) model = CifarCNN().to(device)
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9) optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
for epoch in range(14): for epoch in range(EPOCHS):
train(model, trainloader, optimizer, epoch) train(model, trainloader, optimizer, epoch)
test(model, testloader, classes) test(model, testloader, classes)
PATH = './cifar_net.pth' PATH = './cifar_cnn.pth'
torch.save(model.state_dict(), PATH) torch.save(model.state_dict(), PATH)