Various filters defending unmodified mnist cnn classifier
This commit is contained in:
parent
d0a09e839f
commit
47b14362de
BIN
Dual-Filtering-Schemes.pdf
Normal file
BIN
Dual-Filtering-Schemes.pdf
Normal file
Binary file not shown.
Binary file not shown.
@ -70,8 +70,10 @@ def test(model, device, test_loader, epsilon):
|
|||||||
orig_correct = 0
|
orig_correct = 0
|
||||||
# Attacked dataset correct classifications
|
# Attacked dataset correct classifications
|
||||||
attacked_correct = 0
|
attacked_correct = 0
|
||||||
# Filtered attacked dataset correct classifications
|
kuwahara_correct = 0
|
||||||
filtered_correct = 0
|
bilateral_correct = 0
|
||||||
|
gaussian_blur_correct = 0
|
||||||
|
noisy_correct = 0
|
||||||
|
|
||||||
adv_examples = []
|
adv_examples = []
|
||||||
|
|
||||||
@ -104,14 +106,23 @@ def test(model, device, test_loader, epsilon):
|
|||||||
perturbed_data_normalized = transforms.Normalize((0.1307,), (0.3081,))(perturbed_data)
|
perturbed_data_normalized = transforms.Normalize((0.1307,), (0.3081,))(perturbed_data)
|
||||||
|
|
||||||
# Filter the attacked image
|
# Filter the attacked image
|
||||||
perturbed_data_filtered = filtered(perturbed_data_normalized, len(perturbed_data_normalized))
|
kuwahara_data = filtered(perturbed_data_normalized, len(perturbed_data_normalized), filter="kuwahara")
|
||||||
|
bilateral_data = filtered(perturbed_data_normalized, len(perturbed_data_normalized), filter="bilateral")
|
||||||
|
gaussian_blur_data = filtered(perturbed_data_normalized, len(perturbed_data_normalized), filter="gaussian_blur")
|
||||||
|
noisy_data = filtered(perturbed_data_normalized, len(perturbed_data_normalized), filter="noise")
|
||||||
|
|
||||||
# evaluate the model on the attacked and filtered images
|
# evaluate the model on the attacked and filtered images
|
||||||
output_attacked = model(perturbed_data_normalized)
|
output_attacked = model(perturbed_data_normalized)
|
||||||
output_filtered = model(perturbed_data_filtered)
|
output_kuwahara = model(kuwahara_data)
|
||||||
|
output_bilateral = model(bilateral_data)
|
||||||
|
output_gaussian_blur = model(gaussian_blur_data)
|
||||||
|
output_noisy = model(noisy_data)
|
||||||
|
|
||||||
attacked_pred = output_attacked.max(1, keepdim=True)[1]
|
attacked_pred = output_attacked.max(1, keepdim=True)[1]
|
||||||
filtered_pred = output_filtered.max(1, keepdim=True)[1]
|
kuwahara_pred = output_kuwahara.max(1, keepdim=True)[1]
|
||||||
|
bilateral_pred = output_bilateral.max(1, keepdim=True)[1]
|
||||||
|
gaussian_blur_pred = output_gaussian_blur.max(1, keepdim=True)[1]
|
||||||
|
noisy_pred = output_noisy.max(1, keepdim=True)[1]
|
||||||
|
|
||||||
if orig_pred.item() == target.item():
|
if orig_pred.item() == target.item():
|
||||||
orig_correct += 1
|
orig_correct += 1
|
||||||
@ -119,30 +130,37 @@ def test(model, device, test_loader, epsilon):
|
|||||||
if attacked_pred.item() == target.item():
|
if attacked_pred.item() == target.item():
|
||||||
attacked_correct += 1
|
attacked_correct += 1
|
||||||
|
|
||||||
if epsilon == 0 and len(adv_examples) < 5:
|
if kuwahara_pred.item() == target.item():
|
||||||
adv_ex = perturbed_data.squeeze().detach().cpu().numpy()
|
kuwahara_correct += 1
|
||||||
adv_examples.append( (orig_pred.item(), attacked_pred.item(), adv_ex) )
|
|
||||||
|
|
||||||
if filtered_pred.item() == target.item():
|
if bilateral_pred.item() == target.item():
|
||||||
filtered_correct += 1
|
bilateral_correct += 1
|
||||||
|
|
||||||
if epsilon == 0 and len(adv_examples) < 5:
|
if gaussian_blur_pred.item() == target.item():
|
||||||
adv_ex = perturbed_data.squeeze().detach().cpu().numpy()
|
gaussian_blur_correct += 1
|
||||||
adv_examples.append( (orig_pred.item(), filtered_pred.item(), adv_ex) )
|
|
||||||
|
if noisy_pred.item() == target.item():
|
||||||
|
noisy_correct += 1
|
||||||
|
|
||||||
orig_acc = orig_correct/float(len(test_loader))
|
orig_acc = orig_correct/float(len(test_loader))
|
||||||
attacked_acc = attacked_correct/float(len(test_loader))
|
attacked_acc = attacked_correct/float(len(test_loader))
|
||||||
filtered_acc = filtered_correct/float(len(test_loader))
|
kuwahara_acc = kuwahara_correct/float(len(test_loader))
|
||||||
|
bilateral_acc = bilateral_correct/float(len(test_loader))
|
||||||
|
gaussian_blur_acc = gaussian_blur_correct/float(len(test_loader))
|
||||||
|
noisy_acc = noisy_correct/float(len(test_loader))
|
||||||
|
|
||||||
print(f"Epsilon: {epsilon}")
|
print(f"Epsilon: {epsilon}")
|
||||||
print(f"Original Accuracy = {orig_correct} / {len(test_loader)} = {orig_acc}")
|
print(f"Original Accuracy = {orig_correct} / {len(test_loader)} = {orig_acc}")
|
||||||
print(f"Attacked Accuracy = {attacked_correct} / {len(test_loader)} = {attacked_acc}")
|
print(f"Attacked Accuracy = {attacked_correct} / {len(test_loader)} = {attacked_acc}")
|
||||||
print(f"Filtered Accuracy = {filtered_correct} / {len(test_loader)} = {filtered_acc}")
|
print(f"Kuwahara Accuracy = {kuwahara_correct} / {len(test_loader)} = {kuwahara_acc}")
|
||||||
print(f"Filtered:Attacked = {filtered_acc} / {attacked_acc} = {filtered_acc/attacked_acc}")
|
print(f"Bilateral Accuracy = {bilateral_correct} / {len(test_loader)} = {bilateral_acc}")
|
||||||
|
print(f"Gaussian Blur Accuracy = {gaussian_blur_correct} / {len(test_loader)} = {gaussian_blur_acc}")
|
||||||
|
print(f"Noisy Accuracy = {noisy_correct} / {len(test_loader)} = {noisy_acc}")
|
||||||
|
|
||||||
return attacked_acc, filtered_acc, adv_examples
|
return attacked_acc, kuwahara_acc, bilateral_acc, gaussian_blur_acc, noisy_acc
|
||||||
|
|
||||||
|
|
||||||
def filtered(data, batch_size=64):
|
def filtered(data, batch_size=64, filter="kuwahara"):
|
||||||
# Turn the tensor into an image
|
# Turn the tensor into an image
|
||||||
images = None
|
images = None
|
||||||
try:
|
try:
|
||||||
@ -153,35 +171,57 @@ def filtered(data, batch_size=64):
|
|||||||
# Apply the Kuwahara filter
|
# Apply the Kuwahara filter
|
||||||
filtered_images = np.ndarray((batch_size,28,28,1))
|
filtered_images = np.ndarray((batch_size,28,28,1))
|
||||||
|
|
||||||
for i in range(batch_size):
|
if filter == "kuwahara":
|
||||||
filtered_images[i] = kuwahara(images[i], method='gaussian', radius=5, image_2d=images[i])
|
for i in range(batch_size):
|
||||||
|
filtered_images[i] = kuwahara(images[i], method='gaussian', radius=5, image_2d=images[i])
|
||||||
|
elif filter == "aniso_diff":
|
||||||
|
for i in range(batch_size):
|
||||||
|
img_3ch = np.zeros((np.array(images[i]), np.array(images[i]).shape[1], 3))
|
||||||
|
img_3ch[:,:,0] = images[i]
|
||||||
|
img_3ch[:,:,1] = images[i]
|
||||||
|
img_3ch[:,:,2] = images[i]
|
||||||
|
img_3ch_filtered = cv2.ximgproc.anisotropicDiffusion(img2, alpha=0.2, K=0.5, niters=5)
|
||||||
|
filtered_images[i] = cv2.cvtColor(img_3ch_filtered, cv2.COLOR_RGB2GRAY)
|
||||||
|
plt.imshow(filtered_images[i])
|
||||||
|
plt.show()
|
||||||
|
elif filter == "noise":
|
||||||
|
for i in range(batch_size):
|
||||||
|
mean = 0
|
||||||
|
stddev = 180
|
||||||
|
noise = np.zeros(images[i].shape, images[i].dtype)
|
||||||
|
cv2.randn(noise, mean, stddev)
|
||||||
|
filtered_images[i] = cv2.addWeighted(images[i], 1.0, noise, 0.001, 0.0).reshape(filtered_images[i].shape)
|
||||||
|
elif filter == "gaussian_blur":
|
||||||
|
for i in range(batch_size):
|
||||||
|
filtered_images[i] = cv2.GaussianBlur(images[i], ksize=(5,5), sigmaX=0).reshape(filtered_images[i].shape)
|
||||||
|
elif filter == "bilateral":
|
||||||
|
for i in range(batch_size):
|
||||||
|
filtered_images[i] = cv2.bilateralFilter(images[i], 5, 50, 50).reshape(filtered_images[i].shape)
|
||||||
|
|
||||||
# Modify the data with the filtered image
|
# Modify the data with the filtered image
|
||||||
filtered_images = filtered_images.transpose(0,3,1,2)
|
filtered_images = filtered_images.transpose(0,3,1,2)
|
||||||
return torch.tensor(filtered_images).float()
|
return torch.tensor(filtered_images).float()
|
||||||
|
|
||||||
attacked_accuracies = []
|
attacked_accuracies = []
|
||||||
filtered_accuracies = []
|
kuwahara_accuracies = []
|
||||||
ratios = []
|
bilateral_accuracies = []
|
||||||
examples = []
|
gaussian_blur_accuracies = []
|
||||||
|
noisy_accuracies = []
|
||||||
|
|
||||||
print(f"Model: {pretrained_model}")
|
print(f"Model: {pretrained_model}")
|
||||||
|
|
||||||
for eps in epsilons:
|
for eps in epsilons:
|
||||||
aacc, facc, ex = test(model, device, test_loader, eps)
|
aacc, kacc, bacc, gacc, nacc = test(model, device, test_loader, eps)
|
||||||
attacked_accuracies.append(aacc)
|
attacked_accuracies.append(aacc)
|
||||||
filtered_accuracies.append(facc)
|
kuwahara_accuracies.append(kacc)
|
||||||
ratios.append(facc/aacc)
|
bilateral_accuracies.append(bacc)
|
||||||
examples.append(ex)
|
gaussian_blur_accuracies.append(gacc)
|
||||||
|
noisy_accuracies.append(nacc)
|
||||||
|
|
||||||
# Plot the results
|
# Plot the results
|
||||||
plt.subplot(121)
|
|
||||||
plt.plot(epsilons, attacked_accuracies, label="Attacked Accuracy")
|
plt.plot(epsilons, attacked_accuracies, label="Attacked Accuracy")
|
||||||
plt.plot(epsilons, filtered_accuracies, label="Filtered Accuracy")
|
plt.plot(epsilons, kuwahara_accuracies, label="Kuwahara Accuracy")
|
||||||
plt.legend()
|
plt.legend()
|
||||||
|
|
||||||
plt.subplot(122)
|
|
||||||
plt.plot(epsilons, ratios, label="Filtered:Attacked")
|
|
||||||
plt.legend()
|
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
|
@ -1,4 +1,9 @@
|
|||||||
# The Approach
|
# The Approach
|
||||||
|
|
||||||
The goal is to use a filtering algorithm such as the [[https://en.wikipedia.org/wiki/Kuwahara_filter#|Kuwahara Filter]] to
|
Attacking classifier models essentially boils down to adding precisely calculated noise to the input image, thereby tricking the classifier into selecting an incorrect class. The goal is to understand the efficacy of an array of denoising algorithms as adversarial machine learning defenses.
|
||||||
|
|
||||||
|
## Individual Denoising Algorithms
|
||||||
|
|
||||||
|
## An Ensemble Approach
|
||||||
|
|
||||||
|
## Training the Model on Filtered Data
|
||||||
|
@ -1,32 +0,0 @@
|
|||||||
# Notes on Filter-Based Defenses
|
|
||||||
|
|
||||||
## Engineering Design Principles
|
|
||||||
1. Clearly defined problem
|
|
||||||
- Defending gradient-based attacks using denoising filters as a buffer between an attacked image and a classifier
|
|
||||||
2. Requirements
|
|
||||||
3. Constraints
|
|
||||||
- Computing power
|
|
||||||
4. Engineering standards
|
|
||||||
- [[https://peps.python.org/pep-0008/|PEP 8]]
|
|
||||||
5. Cite applicable references
|
|
||||||
- [[https://pytorch.org/tutorials/beginner/fgsm_tutorial.html|FGSM Attack]]
|
|
||||||
- [[https://github.com/pytorch/examples/blob/main/mnist/main.py|MNIST Model]]
|
|
||||||
- [[https://www.cs.toronto.edu/~kriz/cifar.html|CIFAR-10]]
|
|
||||||
6. Considered alternatives
|
|
||||||
a) Iterate on the design
|
|
||||||
i) Advantages
|
|
||||||
- Potentially more computationally efficient than an ML approach
|
|
||||||
ii) Disadvantages
|
|
||||||
- Potentially less effective than than an ML approach
|
|
||||||
iii) Risks
|
|
||||||
- Conventional algorithm may be more vulnerable to reverse engineering
|
|
||||||
7. Evaluation process
|
|
||||||
- Cross validation
|
|
||||||
- Effectiveness will be measured as the percent of correct classifications
|
|
||||||
- Testing clean vs. filtered training data
|
|
||||||
- Ablation variables:
|
|
||||||
- Different models
|
|
||||||
- Different datasets
|
|
||||||
- Different filters
|
|
||||||
-
|
|
||||||
8. Deliverables and timeline
|
|
100
Filter_Analysis/wiki/Results.md
Normal file
100
Filter_Analysis/wiki/Results.md
Normal file
@ -0,0 +1,100 @@
|
|||||||
|
# Experimental Results
|
||||||
|
|
||||||
|
## Models Trained on Various Filters
|
||||||
|
**NOTE**: The results in this section contain an oversight in the defense strategy. While models were trained using different filters, they were all defended from FGSM using a Kuwahara filter.
|
||||||
|
|
||||||
|
### Model Trained on Unfiltered MNIST Dataset
|
||||||
|
| $\epsilon$ | Accuracy |
|
||||||
|
|---------|----------|
|
||||||
|
| 0.05 | 0.9600 |
|
||||||
|
| 0.10 | 0.8753 |
|
||||||
|
| 0.15 | 0.7228 |
|
||||||
|
| 0.20 | 0.5008 |
|
||||||
|
| 0.25 | 0.2922 |
|
||||||
|
| 0.30 | 0.1599 |
|
||||||
|
|
||||||
|
### Model Trained on Kuwahara (R=5) Filtered MNIST Dataset
|
||||||
|
| $\epsilon$ | Attacked Accuracy | Filtered Accuracy | Ratio |
|
||||||
|
|---------|-------------------|-------------------|--------|
|
||||||
|
| 0.05 | 0.9605 | 0.9522 | 0.9914 |
|
||||||
|
| 0.1 | 0.8743 | 0.9031 | 1.0329 |
|
||||||
|
| 0.15 | 0.7107 | 0.8138 | 1.1451 |
|
||||||
|
| 0.2 | 0.4876 | 0.6921 | 1.4194 |
|
||||||
|
| 0.25 | 0.2714 | 0.5350 | 1.9713 |
|
||||||
|
| 0.3 | 0.1418 | 0.3605 | 2.5423 |
|
||||||
|
|
||||||
|
### Model Trained on Gaussian Blurred (K-Size=5x5) MNIST Dataset
|
||||||
|
| $\epsilon$ | Attacked Accuracy | Filtered Accuracy | Ratio |
|
||||||
|
|---------|-------------------|-------------------|-------|
|
||||||
|
| 0.05 | 0.9192 | 0.9325 | 1.014 |
|
||||||
|
| 0.10 | 0.7629 | 0.8802 | 1.154 |
|
||||||
|
| 0.15 | 0.4871 | 0.7865 | 1.615 |
|
||||||
|
| 0.20 | 0.2435 | 0.6556 | 2.692 |
|
||||||
|
| 0.25 | 0.1093 | 0.5024 | 4.596 |
|
||||||
|
| 0.30 | 0.0544 | 0.3522 | 6.474 |
|
||||||
|
|
||||||
|
### Model Trained on Bilateral Filtered (d=5) MNIST Dataset
|
||||||
|
| $\epsilon$ | Attacked Accuracy | Filtered Accuracy | Ratio |
|
||||||
|
|---------|-------------------|-------------------|-------|
|
||||||
|
| 0.05 | 0.9078 | 0.9287 | 1.023 |
|
||||||
|
| 0.10 | 0.7303 | 0.8611 | 1.179 |
|
||||||
|
| 0.15 | 0.4221 | 0.7501 | 1.777 |
|
||||||
|
| 0.20 | 0.1927 | 0.6007 | 3.117 |
|
||||||
|
| 0.25 | 0.0873 | 0.4433 | 5.078 |
|
||||||
|
| 0.30 | 0.0525 | 0.3023 | 5.758 |
|
||||||
|
|
||||||
|
## Models Defended with Various Filters
|
||||||
|
|
||||||
|
### Tabulated Results
|
||||||
|
| $\epsilon$ | FGSM | Kuwahara | Bilateral | Gaussian Blur | Random Noise |
|
||||||
|
|------------|--------|----------|-----------|---------------|--------------|
|
||||||
|
| 0.05 | 0.9600 | 0.8700 | 0.8902 | 0.9271 | 0.9603 |
|
||||||
|
| 0.10 | 0.8753 | 0.8123 | 0.8133 | 0.8516 | 0.8677 |
|
||||||
|
| 0.15 | 0.7229 | 0.7328 | 0.7098 | 0.7415 | 0.7153 |
|
||||||
|
| 0.20 | 0.5008 | 0.6301 | 0.5683 | 0.5983 | 0.4941 |
|
||||||
|
| 0.25 | 0.2922 | 0.5197 | 0.4381 | 0.4591 | 0.2843 |
|
||||||
|
| 0.30 | 0.1599 | 0.3981 | 0.3364 | 0.3481 | 0.1584 |
|
||||||
|
|
||||||
|
### Raw Program Output
|
||||||
|
Epsilon: 0.05
|
||||||
|
Original Accuracy = 9920 / 10000 = 0.992
|
||||||
|
Attacked Accuracy = 9600 / 10000 = 0.96
|
||||||
|
Kuwahara Accuracy = 8700 / 10000 = 0.87
|
||||||
|
Bilateral Accuracy = 8902 / 10000 = 0.8902
|
||||||
|
Gaussian Blur Accuracy = 9271 / 10000 = 0.9271
|
||||||
|
Noisy Accuracy = 9603 / 10000 = 0.9603
|
||||||
|
Epsilon: 0.1
|
||||||
|
Original Accuracy = 9920 / 10000 = 0.992
|
||||||
|
Attacked Accuracy = 8753 / 10000 = 0.8753
|
||||||
|
Kuwahara Accuracy = 8123 / 10000 = 0.8123
|
||||||
|
Bilateral Accuracy = 8133 / 10000 = 0.8133
|
||||||
|
Gaussian Blur Accuracy = 8516 / 10000 = 0.8516
|
||||||
|
Noisy Accuracy = 8677 / 10000 = 0.8677
|
||||||
|
Epsilon: 0.15000000000000002
|
||||||
|
Original Accuracy = 9920 / 10000 = 0.992
|
||||||
|
Attacked Accuracy = 7229 / 10000 = 0.7229
|
||||||
|
Kuwahara Accuracy = 7328 / 10000 = 0.7328
|
||||||
|
Bilateral Accuracy = 7098 / 10000 = 0.7098
|
||||||
|
Gaussian Blur Accuracy = 7415 / 10000 = 0.7415
|
||||||
|
Noisy Accuracy = 7153 / 10000 = 0.7153
|
||||||
|
Epsilon: 0.2
|
||||||
|
Original Accuracy = 9920 / 10000 = 0.992
|
||||||
|
Attacked Accuracy = 5008 / 10000 = 0.5008
|
||||||
|
Kuwahara Accuracy = 6301 / 10000 = 0.6301
|
||||||
|
Bilateral Accuracy = 5683 / 10000 = 0.5683
|
||||||
|
Gaussian Blur Accuracy = 5983 / 10000 = 0.5983
|
||||||
|
Noisy Accuracy = 4941 / 10000 = 0.4941
|
||||||
|
Epsilon: 0.25
|
||||||
|
Original Accuracy = 9920 / 10000 = 0.992
|
||||||
|
Attacked Accuracy = 2922 / 10000 = 0.2922
|
||||||
|
Kuwahara Accuracy = 5197 / 10000 = 0.5197
|
||||||
|
Bilateral Accuracy = 4381 / 10000 = 0.4381
|
||||||
|
Gaussian Blur Accuracy = 4591 / 10000 = 0.4591
|
||||||
|
Noisy Accuracy = 2843 / 10000 = 0.2843
|
||||||
|
Epsilon: 0.3
|
||||||
|
Original Accuracy = 9920 / 10000 = 0.992
|
||||||
|
Attacked Accuracy = 1599 / 10000 = 0.1599
|
||||||
|
Kuwahara Accuracy = 3981 / 10000 = 0.3981
|
||||||
|
Bilateral Accuracy = 3364 / 10000 = 0.3364
|
||||||
|
Gaussian Blur Accuracy = 3481 / 10000 = 0.3481
|
||||||
|
Noisy Accuracy = 1584 / 10000 = 0.1584
|
@ -1,42 +0,0 @@
|
|||||||
= Experimental Results =
|
|
||||||
|
|
||||||
== Model Trained on Unfiltered MNIST Dataset ==
|
|
||||||
| Epsilon | Accuracy |
|
|
||||||
|---------|----------|
|
|
||||||
| 0.05 | 0.9600 |
|
|
||||||
| 0.10 | 0.8753 |
|
|
||||||
| 0.15 | 0.7228 |
|
|
||||||
| 0.20 | 0.5008 |
|
|
||||||
| 0.25 | 0.2922 |
|
|
||||||
| 0.30 | 0.1599 |
|
|
||||||
|
|
||||||
== Model Trained on Kuwahara (R=5) Filtered MNIST Dataset ==
|
|
||||||
| Epsilon | Attacked Accuracy | Filtered Accuracy | Ratio |
|
|
||||||
|---------|-------------------|-------------------|--------|
|
|
||||||
| 0.05 | 0.9605 | 0.9522 | 0.9914 |
|
|
||||||
| 0.1 | 0.8743 | 0.9031 | 1.0329 |
|
|
||||||
| 0.15 | 0.7107 | 0.8138 | 1.1451 |
|
|
||||||
| 0.2 | 0.4876 | 0.6921 | 1.4194 |
|
|
||||||
| 0.25 | 0.2714 | 0.5350 | 1.9713 |
|
|
||||||
| 0.3 | 0.1418 | 0.3605 | 2.5423 |
|
|
||||||
|
|
||||||
== Model Trained on Gaussian Blurred (K-Size=5x5) MNIST Dataset ==
|
|
||||||
| Epsilon | Attacked Accuracy | Filtered Accuracy | Ratio |
|
|
||||||
|---------|-------------------|-------------------|-------|
|
|
||||||
| 0.05 | 0.9192 | 0.9325 | 1.014 |
|
|
||||||
| 0.10 | 0.7629 | 0.8802 | 1.154 |
|
|
||||||
| 0.15 | 0.4871 | 0.7865 | 1.615 |
|
|
||||||
| 0.20 | 0.2435 | 0.6556 | 2.692 |
|
|
||||||
| 0.25 | 0.1093 | 0.5024 | 4.596 |
|
|
||||||
| 0.30 | 0.0544 | 0.3522 | 6.474 |
|
|
||||||
|
|
||||||
== Model Trained on Bilateral Filtered (d=5) MNIST Dataset ==
|
|
||||||
| Epsilon | Attacked Accuracy | Filtered Accuracy | Ratio |
|
|
||||||
|---------|-------------------|-------------------|-------|
|
|
||||||
| 0.05 | 0.9078 | 0.9287 | 1.023 |
|
|
||||||
| 0.10 | 0.7303 | 0.8611 | 1.179 |
|
|
||||||
| 0.15 | 0.4221 | 0.7501 | 1.777 |
|
|
||||||
| 0.20 | 0.1927 | 0.6007 | 3.117 |
|
|
||||||
| 0.25 | 0.0873 | 0.4433 | 5.078 |
|
|
||||||
| 0.30 | 0.0525 | 0.3023 | 5.758 |
|
|
||||||
|
|
31913
RobustAnisotropicDiffusionFilter.pdf
Normal file
31913
RobustAnisotropicDiffusionFilter.pdf
Normal file
File diff suppressed because one or more lines are too long
BIN
engineering-clinic---engineering-design-and-impact-statement.pdf
Normal file
BIN
engineering-clinic---engineering-design-and-impact-statement.pdf
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user